
1/13/09 6:18 PMChris Squared HCI Final Project: Report

Page 1 of 7http://www.princeton.edu/~ctralie/Projects/TAB/

TAB: Talking Alarm Buddy Report

By the Sleep Hunters (Chris Tralie and Chris Koscielny)

1. Description
2. Motivations / Target Audience
3. Related Past Work
4. Design
5. Source Code
6. Group Member Contributions
7. Testing for success
8. Conclusions / Future Work
9. References/Acknowledgements

Description

The goal is to have the user select a time that he/she wants to wake up. When the alarm goes off, it plays an
annoying sound and waits for the user to say "stop," at which point it shuts off. The alarm clock will then go
into "conversation mode" where it will speak to the user (using voice synthesis) to fully wake him up and
make sure he doesn't go back to sleep. The alarm clock will start by telling the user the current time and
reading the day's weather based on a previously specified zip code. It will then proceed to play an

http://www.princeton.edu/~ctralie/Projects/TAB/#description
http://www.princeton.edu/~ctralie/Projects/TAB/#motivations
http://www.princeton.edu/~ctralie/Projects/TAB/#related
http://www.princeton.edu/~ctralie/Projects/TAB/#design
http://www.princeton.edu/~ctralie/Projects/TAB/#source
http://www.princeton.edu/~ctralie/Projects/TAB/#contributions
http://www.princeton.edu/~ctralie/Projects/TAB/#testing
http://www.princeton.edu/~ctralie/Projects/TAB/#conclusions
http://www.princeton.edu/~ctralie/Projects/TAB/#references


1/13/09 6:18 PMChris Squared HCI Final Project: Report

Page 2 of 7http://www.princeton.edu/~ctralie/Projects/TAB/

interactive verbal game with the user, where the alarm reads two numbers from 2-13, and the user says back
the product. If the user makes too many mistakes or is unresponsive (he probably went back to bed), the
alarm with make loud/unpleasant sounds to wake him up again. The alarm asks 10 questions to try to wake
the user up initially, then reads the news from a previously-specified RSS feed, and then resumes the math
game until the user gets up from bed and terminates the program manually.

Motivations / Target Audience

As put by Chris Koscielny:
I sometimes wake up to my loud alarm clock, only to turn it off and fall back to sleep. While my alarm
clock successfully jolts me into a mental state capable of turning it off and going back to bed, it fails to
wake me up enough to start the day. I hypothesize that the proposed conversational alarm clock will have
more success for the following reasons:

1. It's preferable to shut off the alarm by saying/shouting "stop" rather than by getting out of bed and
manually disabling the entire system (especially on cold days). Therefore, I won't be as tempted to get
out of bed, disable the verbal interface, then go back to sleep.

2. The verbal interface will serve to gradually wake me up by forcing me to do basic thinking. It will also
encourage me to wake up by providing me with useful information (e.g. news, weather). The goal of
the interface is to bring me to a conscious mental state so that it won't be unpleasant to get out of bed.

3. The ultimate goal is not only to get the user out of bed, but to have the user feel ready for the day by
giving him/her useful information during the waking process, improving overall quality of life.

Most people with busy and stressful schedules who need to maximize their productivity while awake
(99.999% of Princeton students) will benifit from this alarm clock.

Related Past Work

"The Voice Interactive Alarm Clock":
A physical alarm clock that does some voice recognition for commands like "set alarm," "set time,"
"check alarm," "what is the date," "alarm sound." It can also tell the user the temperature in the room.
But since the alarm clock doesn't have web access, it can't do stuff like finding the temperature
outside on weather.com or finding news clips. It also doesn't play games with the user. Our alarm
clock would also be less expensive since it relies on existing hardware
Another voice activated alarm clock, but this one can turn on a TV in the morning. Perhaps our alarm
clock can feature turning on internet TV.
Clocky: A physical annoying alarm clock that goes counter to our mission: to engage the user in
positive, constructive interaction upon waking. But it's still cool
The Easy Wake Wrist Watch: A wrist watch that uses motion detection and heuristics to induce sleep
cycle to help figure out the optimal time to wake a subject up

Design

http://www.hammacher.com/publish/75359.asp?source=Google&keyword=interactive+alarm+clock&cm_ven=NewGate&cm_cat=Google&cm_pla=OtherProducts&cm_ite=interactive+alarm+clock&OVMTC=Exact&site=&creative=2348315897&OVKEY=interactive%20alarm%20clock
http://www.activeforever.com/p-2105-sunshine-alarm-clock.aspx?Source=Nextag
http://www.uberreview.com/2006/01/clocky-alarm-clock-for-snooze-button.htm
http://www.patentstorm.us/patents/7306567.html


1/13/09 6:18 PMChris Squared HCI Final Project: Report

Page 3 of 7http://www.princeton.edu/~ctralie/Projects/TAB/

Software Environment:
This project was developed under Ubuntu Linux 8.10 using primarily the C language (the only place we had
to use C++ was to plug in Festival audio). We used a make to organize library dependencies and
interdependencies between source files, and gcc/g++ to compile everything. We used subversion to
organize code collaboration efforts (especially helpful over break).

Hardware Environment:
microphone:
cheap microphone that came with a computer Chris K. bought almost ten years ago.
telex brand, patent # D395893

Overview of libraries/modules and their functions:

Festival: Developed by the University of Edinburgh, this library was used for voice synthesis. We
plugged it in through speak.cpp, so that any file that includes this module simply has to call the
function speak(char*). We needed to do some special work in our makefile to link this to the rest of
our program, since the Festival API is written for C++ (and our program was in C)
Sphinx II: Carnegie Mellon has done a lot of work with voice recognition over the past couple of
decades, all grouped together under the name "CMU Sphinx." SphinxII is a fast, tried-and-true system
from this project that can be used in C. We developed a module in sphinx_recognition.c that class
functions from this library. It works by filling a buffer of audio from the default microphone for a
specified amount of time (while listening to the user), and sends this off to the sphinx system to be
decoded into a string based off an acoustic and language model. For our project, we used a custom
dictionary (alarm.dict) and custom finite state machines (alarm.fsg, numbers.fsg) to assist in
decoding. The dictionary file consists of a list of words that our program recognizes along with their
respective phonemes. The finite state machine uses state transitions to define what combinations of
words are recognized (e.g. "three hundred fifty six" and "three hundred and fifty six" are valid
sentences, but "three hundred hundred six" isn't); the finite state machine isn't required, but it reduces
computations and makes the system more accurate. 
libmrss: A C library that facilitates the process of reading rss feeds. We first used this to read a
specified RSS feed for the news (the default is "top stories" on yahoo, but we even had it set to
slashdot and celebrity gossip at one point), which is encapsulated in the file news.c. We also used this
library to help read weather, because weather.com has an rss feed returned based on zip code. The
weather functionality is encapsulated in the file weather.c
strftime: This is a library in C that can be used to return systen time in any format desired. It is used
both to tell the user the current time when he/she wakes up (implemented in weather.c) and to check
the current hour and minute to see when to set the alarm off (implemented in alarmconfig.c with the
functions getCurrentHour() and getCurrentMinute())
glib: This library had some useful functions for manipulating C strings and creating an argc/argv array
combination from a given string (the festival library actually requires its performance tweaking
parameters in this format). We also used this library to help spawn command line processes, which
enabled a simple solution for playing alarm sounds; we simply called the Unix program "play" from
within the command line to play the alarm sound. This approach is implemented in the file play.c.

Other Technical Details:



1/13/09 6:18 PMChris Squared HCI Final Project: Report

Page 4 of 7http://www.princeton.edu/~ctralie/Projects/TAB/

We use a very simple configuration file scheme to specify the name of the user, the RSS feed to use,
the max number of RSS feed items to read, the zip code for obtaining weather, and the minute and the
hour to wake the user up (specified in 24 hour format to disambiguate). The user runs the program
from the console and specifies one parameter: the location of this configuration file (e.g. ./TAB
config). The configuration file is then opened and parsed in the file alarmconfig.c
The alarm clock sleeps and occasionally checks to see how close it's getting to the alarm time, and
then continues sleeping
When the alarm first goes off, it plays a loud sound for a couple of seconds, and then listens for three
seconds to hear if the user says "STOP." It stays in this loop until it has determined that the user has
said STOP

Source Code

A snapshot of our source code is located here

Group Member Contributions

Chris Tralie:

Got a basic interface to connect with Festival Speech Synthesis System
Found a C library, libmrss, for reading in rss feeds. Used this library to create modules to read the
news (specifying a specific RSS feed) and the weather (weather.com rss feed with a zipcode
specified)
Learned how to read in system time and output in a manner the user can easily understand
Worked on configuration file scheme for easy tweaking and testing
Created the base implementation for obtaining audio streams and sending them to be decoded into text
using the sphinx2 library
Learned how to play alarm sounds in the console, and experimented with other ways to load and play
raw audio data using the Sphinx library

Chris Koscielny:

Set up and maintained subversion server that was used for code collaboration throughout the project
Worked with finite state grammar and dictionary for sphinx voice recognition
Used the dictionary to help create the arithmetic game that the user plays
Experimented with an tweaked voice recognition system

Worked on linking C and C++ code together (so that a more elegant solution could be used to call
Festival), creating a makefile, improving the modularity of the program, and solving library
dependency issues
Tied all of the modules together into a main program that blocks until the alarm is ready to be set off,
and then does logic to determine when the user is awake.

http://www.princeton.edu/~ctralie/Projects/TAB/trunk
http://www.cstr.ed.ac.uk/projects/festival/
http://www.autistici.org/bakunin/libmrss/doc/


1/13/09 6:18 PMChris Squared HCI Final Project: Report

Page 5 of 7http://www.princeton.edu/~ctralie/Projects/TAB/

Testing for success

Instead of testing qualitative aspects of the alarm, we decided to quantitatively test features using ourselves
as the subjects. This was also better given the time constraints, because not only does Chris T.'s soundcard
not work properly under Linux (making recording impossible), but most people do not have linux (and
getting the dependencies working so that it can be compile under Windows would be a mess right now), so
the logistics of using test subjects to qualitatively test features at this time is not feasible.
Our main metric for success is the accuracy of the voice recognition during the number game. We created a
test that reads 30 numbers 0 to 999, and we repeat them back to the microphone. We lied in bed, head
facing towards the ceiling instead of towards the microphone resting 7 feet away on a table. This is how we
would use the system if we were waking up in the morning. The logic for performing this test is contained
in function number_test() in the file number_game.c

Results (the first column is what we said, and the second column is what the computer thought we said):

Chris K. First time: 21/30 (70%)
9 Wrong:
880 808
522 542
383 308
869 868
63 62
490 408
623 620
877 873
580 558

Chris K. Second Time: 21/30 (70%)
9 Wrong:
763 752
324 824
297 293
408 48
480 48
522 520
158 150
518 588
885 883

Chris T: First Time: 16/30 (53%)
Wrong 14 out of 30
5 3
417 416
727 626
803 883
397 396
307 306
697 696
409 12
247 646
653 683
706 76
899 811
360 368
667 663

Chris T: Second Time: 16/30 (53%)
Wrong 14 out of 30
161 86
49 45
837 836
992 982
907 307
707 76
239 235
135 133
937 936
665 663
680 63
704 604
432 436
843 823

Mike (a friend down the hall) : 17/30 (57%)
13/30 Wrong:
721 71
997 97



1/13/09 6:18 PMChris Squared HCI Final Project: Report

Page 6 of 7http://www.princeton.edu/~ctralie/Projects/TAB/

956 56
889 808
59 55
964 26
291 281
59 58
552 3
219 298
887 87
671 68
281 40

Overall accuracy: 61%
The two consistent trends here are mixing 5 and 3 and 6 and 7 (especially for Chris T on the latter).

Conclusions / Future Work

Overall, the voice synthesis and the integration with news, weather, and time worked out extremely well.
The voice recognition accuracy definitely needs to be improved, however. Chris K. also used the alarm to
wake him up one morning when he knew he wouldn't be getting much sleep (so that he would have trouble
getting up when he heard the alarm). He reported that it was nice to get news and weather, but that it would
have been more soothing to have played music to wake him up initially instead of the annoying alarm.

What we have done is only a very basic prototype for what could be done with this concept. We can still
greatly improve voice detection and voice synthesis (better voices are coming out on Festival, and we have
the option to make our own voices for the Festival system). There are also heuristics we can use to help
improve the accuracy of the number game itself. For example, if we have a three digit number and two out
of the three digits are correct and in the correct location, then assume it's right, even if the third digit is off.
This would have marked 4 additional numbers correct in the first test for Chris K, 6 more in the second test
for Chris K, 8 more in the first test for Chris T, and 10 more for the second test for Chris T, for an overall
corrected accuracy of 85% for the Chrises. Since we're just trying to get an overall feel for if the user is
awake, these heuristics may be acceptable, even though the probability of accepting wrong answers is
slightly higher with this scheme. Also note that if the user got the least significant digits right, then the
probability that the whole thing is right is much higher (the philosophy used in md5 checksums). For
instance, when 324 was confused with 824, it is clear that it is a computer error.
Another thing that could really help is to have the user calibrate the system by saying a bunch of numbers.
This increases user independence. Note that Chris T's accuracy is lower, so Chris T may have benifited from
calibration. Note also that sometimes the first digit gets cut off because the user starts talking before the
device is ready to record, so perhaps also include heuristics for this. 
One of the main features we originally planned on having but had to abandon was a hueristic to deduce
sleep cycle, and to wake a user up before the set time if necessary so that they don't fall into deep sleep
again. The The Easy Wake Wrist Watch made use of the fact that a person tends to move more while in
light sleep, so we could use a similar concept with the alarm clock. And in the spirit of this project (which is
supposed to rely on existing hardware), we could use a webcam to help detect motion. There's apparently a
library called video4linux that can be used to help with this effort. Another idea is to use a microphone as a
motion detector (placing it near the bed).

http://linuxtv.org/v4lwiki/index.php/Main_Page
http://www.patentstorm.us/patents/7306567.html


1/13/09 6:18 PMChris Squared HCI Final Project: Report

Page 7 of 7http://www.princeton.edu/~ctralie/Projects/TAB/

Aside from adding sleep cycle capabilities, we would also like to add more games that the user can play
aside from the arithmetic one, such as a pitch matching game or auditory tic tac toe. We have also discussed
making a plugin system so that people from the community can develop their own games for the alarm
clock. There is also definitely work to be done with the speech recognition accuracy before the latter can be
feasible.

We are both planning to put this up on sourceforge.net and to continue development as an open source
project.

References / Acknowledgements

Festival Speech Synthesis System
CMU Sphinx. speech recognition library

Sphinx II: User Guide
Sphinx II: Examples

Gnome Library Tools: Spawning processes, String utility functions
GNOME Voice Control (used as an example to help understand spawning processes and a system that
uses SphinxII, and we used many of the command line parameters for sphinx from here)
cplusplus.com tutorial on strftime for outputting system time in a user friendly manner
The libmrss library for C: A library used to facilitate reading RSS feeds
Microcontrollor Programming site (helped us to figure out library dependencies needed for festival)
SVN
Ubuntu Linux 8.10

http://www.cstr.ed.ac.uk/projects/festival/
http://cmusphinx.sourceforge.net/html/cmusphinx.php
http://cmusphinx.sourceforge.net/sphinx2/doc/sphinx2.html
https://cmusphinx.svn.sourceforge.net/svnroot/cmusphinx/trunk/sphinx2/src/examples/
http://library.gnome.org/devel/glib/unstable/glib-String-Utility-Functions.html
http://library.gnome.org/devel/glib/unstable/glib-Spawning-Processes.html
http://live.gnome.org/GnomeVoiceControl
http://www.cplusplus.com/reference/clibrary/ctime/strftime.html
http://www.autistici.org/bakunin/libmrss/doc/
http://mcuprogramming.com/
http://subversion.tigris.org/
http://www.ubuntu.com/

