
Min Sun
Srdjan Krstic

COS429
Computer Vision

Optical Flow

2

Today's outline

Optical Flow theory
Introduction
Shi-Tomasi
Lucas-Kanade

OpenCV implementation
Things to look out for
Example code, step-by-step

3

Optical flow theory - introduction

Optical flow means tracking specific features (points)
in an image across multiple frames
Human vision does optical flow analysis all the time –
being aware of movement around them
Use cases:

Find objects from one frame in other frames
Determine the speed and direction of movement of
objects
Determine the structure of the environment

Questions:
How to determine one frame's features in another
frame? (Lucas-Kanade)
How to choose which features are “good” to track?
(Shi-Tomasi)

4

Optical flow theory - Lucas-Kanade

Brightness Constancy

5

Optical flow theory - Lucas-Kanade

6

Optical flow theory - Lucas-Kanade

7

Optical flow theory - Lucas-Kanade

Prob: we have more equations than unknowns

– The summations are over all pixels in the K x K window
– This technique was first proposed by Lukas & Kanade

(1981)
• described in Trucco & Verri reading

– minimum least squares solution given by solution (in d) of:
• Solution: solve least squares problem

8

Optical flow theory – Shi-Tomasi
(cont'd)

Shi-Tomasi calculates the following matrix

where is the intensity of the pixel, and and are
the horizontal and vertical displacements of the
center of the window containing the neighborhood

9

Optical flow theory – Shi-Tomasi

A “good” feature will intuitively have two distinctive
qualities: texturedness and corner

Lack of texture = ambiguity in tracking
No corner = aperture problem
Many algorithms – Harris, SUSAN, FAST, Shi-Tomasi...

OpenCV implements the Shi-Tomasi algorithm

10

OpenCV implementation – HW5

optical flow analysis

11

OpenCV implementation – Tips

We will go through the crucial steps.
For reference of sample code using optical
flow analysis in OpenCV, please see
YOUR_OPENCV_INSTALL_FOLDER/share/ope
ncv/samples/c/lkdemo.c

12

OpenCV implementation – Tips
(cont'd)

CvCapture *input_video =
cvCaptureFromFile(“filename.avi”);

Clearly, this fails when the file doesn't exist
But also, OpenCV uses a limited set of codecs, and it
fails if it cannot read the codec

Obviously raw AVI is good
MJPEG and Cinepak are good for instance
DV is bad

Opening the input file

13

OpenCV implementation – Tips
(cont'd)

cvQueryFrame(input_video);

Ugly hack.
This is an OpenCV “gotcha”. Unless we get a frame
from the video first, we can't look inside of the AVI to
determine the properties of the video. In fact we can,
but the results are incorrect.

Dummy get a frame from the video

14

OpenCV implementation – Tips
(cont'd)

CvSize frame_size;
frame_size.height =
cvGetCaptureProperty(input_video,
CV_CAP_PROP_FRAME_HEIGHT);

This is the standard format of getting the properties
of the video. Similar constructions are for other
properties, differing in the second parameter. For
instance, if set to CV_CAP_PROP_FRAME_WIDTH, we
would get the width of the frame

Read AVI properties

15

OpenCV implementation – Tips
(cont'd)

CvNamedWindow(“Optical Flow”,
CV_WINDOW_AUTOSIZE);

This is using HIGHGUI. It creates a window which we
can use for output, for the purposes of visualization
and debugging.

Create a window

16

OpenCV implementation – Tips
(cont'd)

cvSetCaptureProperty(input_video,
CV_CAP_PROP_POS_FRAMES, N);
IplImage *frame =
cvQueryFrame(input_video);

To get the Nth frame, we set the “current” frame to
N and then execute cvQueryFrame.
GOTCHA: cvQueryFrame always returns a pointer to
the same location in memory. So the latter calls
always overwrite the former ones. The only way to
store multiple frames is to manually copy them to
another place in memory.

Loop through frames

17

OpenCV implementation – Tips
(cont'd)

IplImge *frame1 =
cvCreateImage(cvSize(width, height),
IPL_DEPTH_8U, 1);
cvConvertImage(frame, frame1,
CV_CVTIMG_FLIP);

First line creates a new image of the appropriate
size, 8-bit depth mono (single channel – grayscale)
Second line converts the captured frame to this new
format.
GOTCHA: on top of converting, we need to flip the
frame, since OpenCV by default reads AVI frames
upside-down?!?!?!?

Allocate and convert

18

OpenCV implementation – Tips
(cont'd)
CvPoint2D32f frame1_features[N];
cvGoodFeaturesToTrack(frame1, eig_image,
temp_image, frame1_features, &N, .01, .01,
NULL);
First line allocates the memory to store the features
Second line actually runs the algorithm

eig_image and temp_image are just workspace for the
algorithm
&N is the place to store the number of features found
first .01 is the minimum eigenvalue of the feature to accept
second .01 is the minimum euclidean distance between two
feature points
NULL is the masking frame poining to the part of the image
which should be search, whole image if NULL

19

OpenCV implementation – Tips
(cont'd)

char optical_flow_found_feature[];
float optical_flow_feature_error[];
CvTermCriteria term =
cvTermCriteria(CV_TERMCRIT_ITER |
CV_TERMCRIT_EPS, 20, .3);
cvCalcOpticalFlowPyrLK(...);

The first three lines are set-up steps needed for the
algorithm. They are arguments to
cvCalcOpticalFlowPyrLK, which has 13 arguments in
total, explained in detail in the implementation
below.

Run Lucas-Kanade

20

OpenCV implementation – Tips
(cont'd)

CvPoint p, q;
p.x = 1; p.y = 1; q.x = 2; q.y = 2;
CvScalar line_color;
line_color = CV_RGB(255, 0, 0);
int line_thickness = 1;
cvLine(frame1, p,q, line_color,
line_thickness, CV_AA, 0);
cvShowImage(“Optical Flow”, frame1);

This shows how to draw a red line from (1,1) to (2,2)
CV_AA means draw the line antialiased
0 means there are no fractional bits

Visualizing the output

21

Demo

22

 Final Project

Skeleton code

23

OpenCV implementation – Tips
(cont'd)

CvVideoWriter *video_writer =
cvCreateVideoWriter(“output.avi”, -1,
frames_per_second, cvSize(w,h));
cvWriteFrame(video_writer, frame);
cvReleaseVideoWriter(&video_writer);

We first create a video_writer object. The “-1”
argument pops up a nice GUI
Then we write frames with cvWriteFrame
Finally the third line deallocates the video_writer
This part is not implemented in the below code;
instead, we show each frame as it is created until
user presses a key

Make the output video

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

