
Object Recognition with Invariant Features

Definition: Identify objects or scenes and 
determine their pose and model parameters

Applications
Industrial automation and inspection
Mobile robots, toys, user interfaces
Location recognition
Digital camera panoramas
3D scene modeling, augmented reality

Slides credit: David Lowe



Zhang, Deriche, Faugeras, Luong (95)
Apply Harris corner detector
Match points by correlating only at corner points 
Derive epipolar alignment using robust least-squares



Cordelia Schmid & Roger Mohr (97)
Apply Harris corner detector
Use rotational invariants at 
corner points

However, not scale invariant.  
Sensitive to viewpoint and 
illumination change. 



Invariant Local Features

Image content is transformed into local feature 
coordinates that are invariant to translation, rotation, 
scale, and other imaging parameters

SIFT Features



Advantages of invariant local features

Locality: features are local, so robust to occlusion 
and clutter (no prior segmentation)

Distinctiveness: individual features can be matched 
to a large database of objects

Quantity: many features can be generated for even 
small objects

Efficiency: close to real-time performance

Extensibility: can easily be extended to wide range 
of differing feature types, with each adding robustness



Build Scale-Space Pyramid

All scales must be examined to identify scale-invariant 
features
An efficient function is to compute the Difference of 
Gaussian (DOG) pyramid (Burt & Adelson, 1983)
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Scale space processed one octave at a time



Key point localization

Detect maxima and minima 
of difference-of-Gaussian in 
scale space Blur 

Res ample

Subtra ct



Sampling frequency for scale
More points are found as sampling frequency increases, but 
accuracy of matching decreases after 3 scales/octave



Select canonical orientation

Create histogram of local 
gradient directions computed 
at selected scale
Assign canonical orientation 
at peak of smoothed 
histogram
Each key specifies stable 2D 
coordinates (x, y, scale, 
orientation)

0 2π



Example of keypoint detection
Threshold on value at DOG peak and on ratio of principle 
curvatures (Harris approach)

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak

value threshold
(d) 536 left after testing

ratio of principle
curvatures



SIFT vector formation
Thresholded image gradients are sampled over 16x16 
array of locations in scale space
Create array of orientation histograms
8 orientations x 4x4 histogram array = 128 dimensions



Feature stability to noise
Match features after random change in image scale & 
orientation, with differing levels of image noise
Find nearest neighbor in database of 30,000 features



Feature stability to affine change
Match features after random change in image scale & 
orientation, with 2% image noise, and affine distortion
Find nearest neighbor in database of 30,000 features



Distinctiveness of features
Vary size of database of features, with 30 degree affine 
change, 2% image noise
Measure % correct for single nearest neighbor match



Nearest-neighbor matching to feature database

Hypotheses are generated by approximate nearest 
neighbor matching of each feature to vectors in the 
database 

We use best-bin-first (Beis & Lowe, 97) 
modification to k-d tree algorithm
Use heap data structure to identify bins in order 
by their distance from query point

Result: Can give speedup by factor of 1000 while 
finding nearest neighbor (of interest) 95% of the time



Detecting 0.1% inliers among 99.9% outliers

We need to recognize clusters of just 3 consistent 
features among 3000 feature match hypotheses
LMS or RANSAC would be hopeless!

Generalized Hough transform
Vote for each potential match according to model 
ID and pose
Insert into multiple bins to allow for error in 
similarity approximation
Check collisions



Probability of correct match
Compare distance of nearest neighbor to second nearest 
neighbor (from different object)
Threshold of 0.8 provides excellent separation



Model verification

1. Examine all clusters with at least 3 features

2. Perform least-squares affine fit to model.  

3. Discard outliers and perform top-down check for 
additional features.

4. Evaluate probability that match is correct
Use Bayesian model, with probability that features 
would arise by chance if object was not present 
(Lowe, CVPR 01)



Solution for affine parameters

Affine transform of [x,y] to [u,v]:

Rewrite to solve for transform parameters:



3D Object Recognition
Extract outlines 
with background 
subtraction



3D Object Recognition

Only 3 keys are needed 
for recognition, so extra 
keys provide robustness
Affine model is no longer 
as accurate



Recognition under occlusion



Test of illumination invariance

Same image under differing illumination

273 keys verified in final match



Examples of view interpolation



Recognition using View Interpolation



Location recognition



Robot localization results

Map registration: The robot can 
process 4 frames/sec and localize itself 
within 5 cm

Global localization: Robot can be 
turned on and recognize its position 
anywhere within the map

Closing-the-loop: Drift over long map 
building sequences can be recognized.  
Adjustment is performed by aligning 
submaps.

Joint work with Stephen Se, Jim Little



Robot Localization





Map continuously built over time



Locations of map features in 3D



Augmented Reality (with Iryna Gordon)

Solve for 3D structure from multiple images
Recognize scenes and insert 3D objects

Shows one of 20 images taken with handheld camera



3D Structure and Virtual Object Placement
Solve for cameras and 3D points:

Uses bundle adjustment with Levenberg-Marquardt 
and robust metric
Initialize all cameras at the same location and points at 
the same depths
Solve bas-relief ambiguity by trying both options

Insert object into scene:

Set location in one image, move along epipolar in other, adjust orientation



Jitter Reduction

Minimize change in camera location, while 
keeping solution within expected noise range:

p – camera pose
W – diagonal matrix for relative changes in

camera parameters
Adjust α to keep residual within noise level of 
data so that object does not lag large motions



Augmentation Examples

Example of augmented tracking (executes about 
5 frames/sec)



Sony Aibo
(Evolution 
Robotics)

SIFT usage:

Recognize  
charging 
station

Communicate
with visual
cards



Recognising Panoramas

M. Brown and D. Lowe, 
University of British Columbia
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– Compact Camera FOV = 50 x 35°
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Introduction

• Are you getting the whole picture?
– Compact Camera FOV = 50 x 35°
– Human FOV                = 200 x 135°
– Panoramic Mosaic        = 360 x 180°
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• 2D Rotations (θ, φ)
– Ordering ⇒ matching images



Why “Recognising Panoramas”?
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Invariant Features

• Schmid & Mohr 1997, Lowe 1999, Baumberg 2000, Tuytelaars
& Van Gool 2000, Mikolajczyk & Schmid 2001, Brown & Lowe 
2002, Matas et. al. 2002, Schaffalitzky & Zisserman 2002 



SIFT Features

• Invariant Features
– Establish invariant frame

• Maxima/minima of scale-space DOG ⇒ x, y, s
• Maximum of distribution of local gradients ⇒ θ

– Form descriptor vector
• Histogram of smoothed local gradients
• 128 dimensions

• SIFT features are…
– Geometrically invariant to similarity transforms,

• some robustness to affine change

– Photometrically invariant to affine changes in 
intensity
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Nearest Neighbour Matching

• Find k-NN for each feature
– k ≈ number of overlapping images (we use k = 4)

• Use k-d tree
– k-d tree recursively bi-partitions data at mean in the 

dimension of maximum variance
– Approximate nearest neighbours found in O(nlogn) 
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Probabilistic model for verification



Probabilistic model for verification

• Compare probability that this set of RANSAC 
inliers/outliers was generated by a 
correct/false image match

– ni = #inliers, nf = #features
– p1 = p(inlier | match), p0 = p(inlier | ~match)
– pmin = acceptance probability

• Choosing values for p1, p0 and pmin



Finding the panoramas
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Error function

• Sum of squared projection errors

– n = #images
– I(i) = set of image matches to image i
– F(i, j) = set of feature matches between images i,j
– rij

k = residual of kth feature match between images i,j

• Robust error function



• Parameterise each camera by rotation and 
focal length

• This gives pairwise homographies

Homography for Rotation



Bundle Adjustment

• New images initialised with rotation, focal 
length of best matching image



Bundle Adjustment

• New images initialised with rotation, focal 
length of best matching image
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Multi-band Blending

• Burt & Adelson 1983
– Blend frequency bands over range ∝ λ



Low frequency (λ > 2 pixels)

High frequency (λ < 2 pixels)

2-band Blending



Linear Blending



2-band Blending
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Results


