
COS 429: COMPUTER VISON

Segmentation
• human vision: grouping
• k-means clustering
• graph-theoretic clustering
• Hough transform
• line fitting
• RANSAC

Reading: Chapters 14, 15
Some of the slides are credited to: David Lowe, David Forsyth, Christopher Rasmussen

Segmentation by Clustering

• Data reduction - obtain a compact representation for
interesting image data in terms of a set of components

• Find components that belong together (form clusters)

Segmentation by Clustering

Segmentation by Clustering

Segmentation by Clustering

From: Object Recognition as Machine Translation, Duygulu, Barnard, de Freitas, Forsyth, ECCV02

General ideas

• Tokens

– whatever we need to group (pixels, points,
surface elements, etc., etc.)

• Bottom up segmentation

– tokens belong together because they are locally
coherent

• Top down segmentation

– tokens belong together because they lie on the
same object

• These two are not mutually exclusive

What is Segmentation?

• Clustering image elements that “belong together”
– Partitioning

• Divide into regions/sequences with coherent internal
properties

– Grouping
• Identify sets of coherent tokens in image

• Tokens: Whatever we need to group
– Pixels
– Features (corners, lines, etc.)
– Larger regions with uniform colour or texture
– Discrete objects (e.g., people in a crowd)
– Etc.

Slide credit: Christopher Rasmussen

Why do these tokens belong together?

Basic ideas of grouping in human vision

• Figure-ground
discrimination
– grouping can be seen in

terms of allocating some
elements to a figure, some
to ground

– Can be based on local
bottom-up cues or high
level recognition

• Gestalt properties
– elements in a collection of

elements can have
properties that result from
relationships (Muller-Lyer
effect)

– A series of factors affect
whether elements should be
grouped together

• Gestalt factors

Application:
Background Subtraction

• The problem: Segment moving foreground objects from static background

• Applications
– Traffic monitoring
– Surveillance/security
– User interaction

Current image
from C. Stauffer and W. Grimson

Background image Foreground pixels

courtesy of C. Wren

Pfinder

Slide credit: Christopher Rasmussen

Technique: Background Subtraction

• If we know what the
background looks like, it is easy
to identify “interesting bits”

• Applications
– Person in an office
– Tracking cars on a road
– surveillance

• Approach:
– use a moving average to

estimate background image
– subtract from current frame
– large absolute values are

interesting pixels
• trick: use morphological

operations to clean up
pixels

Algorithm

video sequence background
frame difference thresholded frame diff

for t = 1:N
Update background model
Compute frame difference
Threshold frame difference
Noise removal

end

Objects are detected where is non-zero

Background Modelling

• Offline average
– Pixel-wise mean values are computed during training phase (also

called Mean and Threshold)

• Adjacent Frame Difference
– Each image is subtracted from previous image in sequence

• Moving average
– Background model is linear weighted sum of previous frames

• Multi-Modal
– Background model is Gaussian mixture model learnt from training

data

Results & Problems
for Simple Approaches

from K. Toyama et al.

Background Subtraction: Issues
• Noise models

– Unimodal: Pixel values vary over time even for static
scenes

– Multimodal: Features in background can “oscillate”,
requiring models which can represent disjoint sets of
pixel values (e.g., waving trees against sky)

• Gross illumination changes
– Continuous: Gradual illumination changes alter the

appearance of the background (e.g., time of day)
– Discontinuous: Sudden changes in illumination and

other scene parameters alter the appearance of the
background (e.g., flipping a light switch)

• Bootstrapping
– Is a training phase with “no foreground” necessary, or

can the system learn what’s static vs. dynamic online?
Slide credit: Christopher Rasmussen

Technique: Shot Boundary Detection

• Find the shots in a sequence of
video
– shot boundaries usually

result in big differences
between succeeding frames

• Strategy:
– compute interframe

distances
– declare a boundary where

these are big

• Possible distances
– frame differences
– histogram differences
– block comparisons
– edge differences

• Applications:
– representation for movies,

or video sequences
• find shot boundaries
• obtain “most

representative” frame
– supports search

Segmentation as clustering

• Cluster together (pixels, tokens, etc.) that belong together
• Agglomerative clustering

– attach closest to cluster it is closest to
– repeat

• Divisive clustering
– split cluster along best boundary
– Repeat

• Dendrograms
– yield a picture of output as clustering process continues

Feature Space

• Every token is identified by a set of salient visual
characteristics called features. For example:
– Position
– Color
– Texture
– Motion vector
– Size, orientation (if token is larger than a pixel)

• The choice of features and how they are quantified implies a
feature space in which each token is represented by a point

• Token similarity is thus measured by distance between points
(“feature vectors”) in feature space

Slide credit: Christopher Rasmussen

Matlab Code

• rand('seed',12);
• X = rand(100,2);
• Y = pdist(X,‘euclidean');
• Z = linkage(Y,‘single');
• [H, T] = dendrogram(Z);

K-Means Clustering

• Initialization: Given K categories, N points in feature space.
Pick K points randomly; these are initial cluster centers
(means) m1, …, mK. Repeat the following:

1. Assign each of the N points, xj, to clusters by nearest mi
(make sure no cluster is empty)

2. Recompute mean mi of each cluster from its member
points

3. If no mean has changed more than some ε, stop

• Effectively carries out gradient descent to minimize:

x j − μ i

2

j∈elements of i'th cluster
∑

⎧
⎨
⎩

⎫
⎬
⎭ i∈clusters

∑
Slide credit: Christopher Rasmussen

Example: 3-means Clustering

from
Duda et al.

Convergence in 3 steps

K-means clustering using intensity alone and color alone

Image Clusters on intensity Clusters on color

K-Means

EM

Compare K-means VS EM

• K-means

• EM

Graph theoretic clustering

Graph theoretic clustering

• Sometimes, clusters have unusual shapes and K-
means fails.

• Alternative approach: encode similarity of tokens
instead of absolute properties

• Represent similarity of tokens using a weighted
graph/affinity matrix

• Cut up this graph to get subgraphs with strong
interior links

Graph theoretic clustering

Measuring Affinity

Intensity

Texture

Distance

aff x, y()= exp − 1
2σ i

2
⎛
⎝

⎞
⎠ I x()− I y() 2()⎧

⎨
⎩

⎫
⎬
⎭

aff x, y()= exp − 1
2σ d

2
⎛
⎝

⎞
⎠ x − y 2()⎧

⎨
⎩

⎫
⎬
⎭

aff x, y()= exp − 1
2σ t

2
⎛
⎝

⎞
⎠ c x()− c y() 2()⎧

⎨
⎩

⎫
⎬
⎭

Scale affects affinity

Eigenvectors and Segmentation

• Extract a single good cluster
– Where elements have high affinity values with each

other

Example eigenvector

points

matrix

eigenvector

Eigenvectors and Segmentation

• Extract a single good cluster
• Extract weights for a set of clusters

Normalized cuts

• Current criterion evaluates
within cluster similarity, but not
across cluster difference

• Instead, we’d like to maximize
the within cluster similarity
compared to the across cluster
difference

• Write graph as V, one cluster as
A and the other as B

• Minimize

• (or equivalently) Maximize

• i.e. construct A, B such that
their within cluster similarity is
high compared to their
association with the rest of the
graph

Normalized cuts

• Write a vector y whose
elements are 1 if item is in A, -b
if it’s in B

• Write the matrix of the graph as
W, and the matrix which has
the row sums of W on its
diagonal as D, 1 is the vector
with all ones.

• Criterion becomes

• and we have a constraint

• This is hard to do, because y’s
values are quantized

miny
yT D −W()y

yT Dy
⎛
⎝ ⎜

⎞
⎠ ⎟

yT D1 = 0

Normalized cuts

Normalized cuts

• Instead, solve the generalized eigenvalue problem

• which gives

• Now look for a quantization threshold that maximises the
criterion --- i.e all components of y above that threshold go
to one, all below go to -b

maxy yT D − W()y() subject to yT Dy = 1()

D − W()y = λDy

More than two segments

• Two options
– Recursively split each side to get a tree, continuing till

the eigenvalues are too small
– Use the other eigenvectors

Normalized cuts: Summary

Normalized cuts: Results

Normalized cuts: Results

Figure from “Image and video segmentation: the normalised cut framework”,
by Shi and Malik, copyright IEEE, 1998

F igure from “Normalized cuts and image segmentation,” Shi and Malik, copyright IEEE, 2000

Application: Supervised Segmentation I

Data in Colour Space Gaussian Models

Gaussian Colour Distributions

Gaussian Colour Distributions

Application: Supervised Segmentation II

Mixture of Gaussian Colour Distributions

Data in Colour Space Mixture of Gaussian Models

Mixture of Gaussian Colour Distributions

Colour is not always sufficient…

Colour is not always sufficient…

Data in Colour Space Mixture of Gaussian Models

Texture = Colour in context

• Independent pixel assumption fails when foreground and
background share colours

• Need to look at context
– ? Over what area should we look ?

Markov Random Fields

• Markov Random Fields (MRFs) express spatial dependence in terms of
neighbours

• BUT this does not mean that non-neighbours are independent!

Example: Markov Random Fields

A. Blake, C. Rother, M. Brown, P. Perez and P. Torr. Interactive image segmentation using an adaptive Gaussian Mixture MRF model. ECCV2004

Fitting a Model to Data
Reading: 15.1, 15.5.2

• Cluster image parts together by fitting a model to some
selected parts

• Examples:
– A line fits well to a set of points. This is unlikely to be

due to chance, so we represent the points as a line.
– A 3D model can be rotated and translated to closely fit

a set of points or line segments. It it fits well, the object
is recognized.

Line Grouping Problem

Slide credit: David Jacobs

This is difficult because of:

• Extraneous data: clutter or multiple models
– We do not know what is part of the model?
– Can we pull out models with a few parts from much

larger amounts of background clutter?
• Missing data: only some parts of model are present
• Noise

• Cost:
– It is not feasible to check all combinations of features

by fitting a model to each possible subset

The Hough Transform for Lines

• Idea: Each point votes for the lines that pass through it.
• A line is the set of points (x, y) such that

• Different choices of θ, d give different lines
• For any (x, y) there is a one parameter family of lines

through this point. Just let (x,y) be constants and for each
value of θ the value of d will be determined.

• Each point enters votes for each line in the family
• If there is a line that has lots of votes, that will be the line

passing near the points that voted for it.

sinθ()x + cosθ()y + d = 0

tokens Votes

Horizontal axis is θ,
vertical is d.

tokens votes

Fewer votes land in a single bin when noise increases.

Adding more clutter increases number of bins with false peaks.

Mechanics of the Hough transform

• Construct an array
representing θ, d

• For each point, render the
curve (θ, d) into this array,
adding one vote at each cell

• Difficulties
– how big should the cells

be? (too big, and we
merge quite different
lines; too small, and
noise causes lines to be
missed)

• How many lines?
– Count the peaks in the

Hough array
– Treat adjacent peaks as

a single peak
• Which points belong to

each line?
– Search for points close

to the line
– Solve again for line

and iterate

More details on Hough transform

• It is best to vote for the two closest bins in each dimension,
as the locations of the bin boundaries is arbitrary.
– By “bin” we mean an array location in which votes are

accumulated
– This means that peaks are “blurred” and noise will not

cause similar votes to fall into separate bins
• Can use a hash table rather than an array to store the votes

– This means that no effort is wasted on initializing and
checking empty bins

– It avoids the need to predict the maximum size of the
array, which can be non-rectangular

When is the Hough transform useful?
• The textbook wrongly implies that it is useful mostly for

finding lines
– In fact, it can be very effective for recognizing arbitrary

shapes or objects
• The key to efficiency is to have each feature (token)

determine as many parameters as possible
– For example, lines can be detected much more

efficiently from small edge elements (or points with
local gradients) than from just points

– For object recognition, each token should predict scale,
orientation, and location (4D array)

• Bottom line: The Hough transform can extract feature
groupings from clutter in linear time!

RANSAC
(RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points necessary to
fit model (a sample)

2. Points within some distance threshold t of model are a
consensus set. Size of consensus set is model’s support

3. Repeat for N samples; model with biggest support is most
robust fit
– Points within distance t of best model are inliers
– Fit final model to all inliers

Two samples
and their supports

for line-fitting

from Hartley & Zisserman Slide: Christopher Rasmussen

RANSAC: How many samples?

How many samples are needed?
Suppose w is fraction of inliers (points from line).
n points needed to define hypothesis (2 for lines)
k number of samples.

Probability that a single sample of n points is correct:

Probability that all samples fail is:

Choose k high enough to keep this below desired failure rate.

nw
knw)1(−

RANSAC: Computed k (p = 0.99)

1177272784426958

588163543320847

29397372416746

14657261712645

723417139534

35191197433

1711765322

50%40%30%25%20%10%5%n
Proportion of outliers Sample

size

adapted from Hartley & Zisserman

Slide credit: Christopher Rasmussen

After RANSAC

• RANSAC divides data into inliers and outliers and yields
estimate computed from minimal set of inliers

• Improve this initial estimate with estimation over all inliers
(e.g., with standard least-squares minimization)

• But this may change inliers, so alternate fitting with re-
classification as inlier/outlier

from Hartley & Zisserman

Slide credit: Christopher Rasmussen

Discussion of RANSAC

• Advantages:
– General method suited for a wide range of model fitting

problems
– Easy to implement and easy to calculate its failure rate

• Disadvantages:
– Only handles a moderate percentage of outliers without

cost blowing up
– Many real problems have high rate of outliers (but

sometimes selective choice of random subsets can help)
• The Hough transform can handle high percentage of outliers

