Applications of Image Motion Estimation I

Mosaicing

Princeton University COS 429 Lecture

 Oct. 23, 2007Harpreet S. Sawhney
hsawhney@sarnoff.com

Visual Motion Estimation : Recapitulation

Plan

- Explain optical flow equations
- Show inclusion of multiple constraints for solution
- Another way to solve is to use global parametric models

Brightness Constancy Assumption

Model image transformation as:

How do we solve for the flow?

$$
I_{2}(p)=I_{1}(p-u(p))=I_{1}\left(p^{\prime}\right)
$$

Use Taylor Series Expansion

$$
\begin{gathered}
I_{2}(p)=I_{1}(p)-\nabla I_{1}^{\top} u(p)+O(2) \\
\prod^{\text {Image Cradient }}
\end{gathered}
$$

Convert constraint into an objective function

$$
\left.E_{S S D}(u)=\sum_{p \in R} \nabla \nabla I_{1}^{\top} u(p)+\delta I(p)\right)^{2}
$$

Optical Flow Constraint Equation

At a Single Pixel

$$
I_{2}(p)=I_{1}(p)-\nabla I_{1}^{\top} u(p)+O(2)
$$

Leads to

$$
\nabla I_{1}^{\top} u(p)+\delta I(p) \approx 0
$$

Multiple Constraints in a Region

$$
\left.E_{s s D}(u)=\sum_{p \in R} \nabla I_{1}^{\top} u(p)+\delta I(p)\right)^{2}
$$

Solution

$$
\begin{gathered}
\left.E_{s S D}(u)=\sum_{p \in R} \nabla I_{1}^{T} u(p)+\delta I(p)\right)^{2} \\
\frac{\partial E_{S S D}(u)}{u}=0 \\
\sum_{p \in R} \nabla I\left(\nabla I_{1}^{T} u(p)+\delta I(p)\right)=0 \\
{\left[\sum_{p \in R} \nabla \nabla I_{1}^{T}\right] u=\sum_{p \in R}-\nabla I \delta I} \\
\mathbf{A u}=\boldsymbol{b}
\end{gathered}
$$

Solution

$A u=b$

$$
A=\left[\begin{array}{ccc}
\sum_{R} I_{x}^{2} & \sum_{R} I_{x} I_{y} \\
\sum_{R} I_{x} I_{y} & \sum_{R} I_{y}^{2}
\end{array}\right] \quad \mathrm{b}=\left[\begin{array}{l}
\sum_{\mathrm{R}}-I_{x} \delta I^{R} \\
\sum_{\mathrm{R}}-I_{y} \delta I^{2}
\end{array}\right]
$$

Observations:

- A is a sum of outer products of the gradient vector
- A is positive semi-definite
- A is non-singular if two or more linearly independent gradients are available
- Singular value decomposition of A can be used to compute a solution for u

Another way to provide unique solution Global Parametric Models

$$
E_{S S D}(u)=\sum_{p \in R}\left(\nabla I_{1}^{\top} u(p)+\delta I(p)\right)^{2}
$$

- $u(p)$ is described using an affine transformation valid within the whole region R

$$
u(p)=H p+t \quad H=\left[\begin{array}{ll}
\mathbf{h}_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right] \quad t=\left[\begin{array}{l}
\mathbf{t}_{1} \\
\mathbf{t}_{2}
\end{array}\right]
$$

$$
u(p)=\left[\begin{array}{llllllllllll}
x & y & 0 & 0 & 1 & 0 \\
0 & 0 & x & y & 0 & 1
\end{array} \mathbf{1}^{\left[h_{11}\right.} h_{12} h_{21}\right.
$$

$$
\begin{aligned}
& \left.E_{\text {sso }}(\mathbf{u})=\sum_{p \in R} \nabla \mathbb{I}_{1}^{\top} B(p) \beta+\delta I(p)\right)^{2} \\
& \frac{\partial E_{S S O}(u)}{u}=0 \\
& {\left[\sum_{p \in R} B(p)^{\top} \nabla \| \nabla l_{1}^{\top} B(p)\right] \beta=\sum_{p \in R}-B(p)^{\top} \nabla I \delta I} \\
& A \beta=b
\end{aligned}
$$

Affine Motion

Good approximation for :

- Small motions
- Small Camera rotations
- Narrow field of view camera
- When depth variation in the scene is small compared to the average depth and small motion
- Affine camera images a planar scene

Affine Motion

- Affine camera: $p=s\left[\begin{array}{l}X \\ Y_{Y}\end{array}\right] \quad p^{\prime}=s^{\prime}\left[\begin{array}{l}X^{\prime} \\ Y^{\prime}\end{array}\right] \quad$. 3D Motion: $P^{\prime}=R P+T$

$$
p^{\prime}=s^{\prime}\left[\begin{array}{l}
r_{1}^{\top} P+T_{x} \\
r_{2}^{\top} P+T_{y}
\end{array}\right]=s^{\prime} R_{22}^{\top} p+s^{\prime}\left[\begin{array}{l}
r_{13} \\
r_{23}
\end{array}\right] Z+s^{\prime} T_{x y}
$$

- A 3D Plane: $Z=\alpha X+\beta Y+\eta=\frac{1}{s}\left[\begin{array}{ll}\alpha & \beta\end{array}\right] p+\eta$

$$
p^{\prime}=s^{\prime} R_{22}^{\top} p+s^{\prime}\left[r_{r_{23}}^{r_{13}}\right] \frac{1}{s}\left[\begin{array}{ll}
\alpha & \beta
\end{array}\right] p+\eta+s^{\prime} T_{x y}
$$

$$
u(p)=p^{\prime}-p=H p+t
$$

Two More Ingredients for Success

- Iterative solution through image warping
- Linearization of the BCE is valid only when $u(p)$ is small
- Warping brings the second image "closer" to the reference
- Coarse-to-fine motion estimation for estimating
a wider range of image displacements
- Coarse levels provide a convex function with unique local minima
- Finer levels track the minima for a globally optimum solution

Image Warping

$$
I_{2}(p)=I_{1}(p-u(p))
$$

- Express $u(p)$ as: $\mathbf{u}(\mathbf{p})=\mathbf{u}^{(k)}(\mathbf{p})+\delta \mathbf{u}(\mathbf{p})$

$$
I_{2}(p)=I_{1}\left(p-u^{(k)}(p)-\delta u(p)\right) \approx_{1}^{w}(p-\delta u(p))
$$

Coarse-to-fine Image Alignment : A Primer

Mosaics In Art

...combine individual chips to create a big picture...

Part of the Byzantine mosaic floor that has been preserved in the Church of Multiplication in Tabkha (near the Sea of Galilee). www.rtlsoft.com/mmmosaic

Image Mosaics

- Chips are images.
- May or may not be captured from known locations of the camera.

OUTPUT IS A SEAMLESS MOSAIC

Videobrush in Action

WHAT MAKES MOSAICING POSSIBBLE ...the simplest geometry...

Single Center of Projection for all Images

Projection Surfaces

Planar Mosaic Construction

- Align Pairwise: 1:2, 2:3, 3:4, ...
- Select a Reference Frame
- Align all Images to the Reference Frame
- Combine into a Single Mosaic

Virtual Camera (Pan)
Image Surface - Plane
Projection - Perspective

Key Problem

What Is the Mapping From Image Rays to the Mosaic Coordinates?

Rotations/Homographies
Plane Projective Transformations

$$
\begin{aligned}
\mathbf{P}^{\prime} & =\mathbf{R P} \\
\mathbf{p}_{\mathbf{c}}^{\prime} & \approx \mathbf{R} \mathbf{p}_{\mathbf{c}} \\
\mathbf{K}^{\prime} \mathbf{p}^{\prime} & \approx \mathbf{R K} \mathbf{p} \\
\mathbf{p}^{\prime} & \approx \mathbf{K}^{\prime-1} \mathbf{R K} \mathbf{p} \\
\mathbf{p}^{\prime} & \approx \mathbf{H}_{\infty} \mathbf{p}
\end{aligned}
$$

IMAGE ALIGNMENT IS A BASIC REQUIREMENT

PYRAMID BASED COARSE-TO-FINE ALIGNMENT

... a core technology ...

- Coarse levels reduce search.
- Models of image motion reduce modeling complexity.
- Image warping allows model estimation without discrete feature extraction.
- Model parameters are estimated using iterative nonlinear optimization.
- Coarse level parameters guide optimization at finer levels.

ITERATIVE SOLUTION OF THE ALIGNMENT MODEL

Assume that at the k th iteration, $\mathbf{P}^{(\mathbf{k})}$, is available

$$
\mathbf{I}^{\prime \prime}\left(\mathbf{p}^{\prime \prime}\right)=\mathbf{I}^{\prime}\left(\mathbf{p}^{\prime}\right)=\mathbf{I}^{\prime}\left(\mathbf{P}^{(k)} \mathbf{p}^{\prime \prime}\right)
$$

model the residual transformation between the coordinate systems, $\mathbf{p}^{\mathbf{w}}$ and \mathbf{p}, as:

$$
\mathbf{p}^{\mathbf{w}} \approx[\mathbf{I}+\mathbf{D}] \mathbf{p}
$$

$$
\mathbf{I}^{\mathrm{w}}\left(\mathbf{p}^{\mathrm{w}}(\mathbf{p} ; \mathbf{D})\right) \approx \mathbf{I}^{\mathrm{w}}\left(\mathbf{p}^{\mathrm{w}}(\mathbf{p} ; \mathbf{0})\right)+\left.\nabla \mathbf{I}^{\mathbf{w}^{\mathrm{T}}} \frac{\partial \mathbf{p}^{\mathrm{w}}}{\partial \mathbf{D}}\right|_{\mathbf{D}=\mathbf{0}} \mathbf{D}=\mathbf{I}(\mathbf{p})
$$

$$
\left.\frac{\partial \mathbf{p}^{w}}{\partial \mathbf{D}}\right|_{\mathbf{D}=0} \quad \mathbf{p}^{\mathrm{w}}=\left.\left[\begin{array}{c}
\frac{\left(\mathbf{1}+\mathbf{d}_{11}\right) \mathbf{x}+\mathbf{d}_{12} \mathbf{y}+\mathbf{d}_{13}}{\mathbf{d}_{31} \mathbf{x}+\mathbf{d}_{32} \mathbf{y}+\mathbf{1}} \\
\frac{\mathbf{d}_{21} \mathbf{x}+\left(\mathbf{1}+\mathbf{d}_{22}\right) \mathbf{y}+\mathbf{d}_{23}}{\mathbf{d}_{31} \mathbf{x}+\mathbf{d}_{32} \mathbf{y}+\mathbf{1}}
\end{array}\right] \therefore \frac{\partial \mathbf{p}^{w}}{\partial \mathbf{D}}\right|_{\mathbf{D}=\mathbf{0}}=\left[\begin{array}{lllllll}
\mathbf{x} & \mathbf{y} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathbf{x}^{2} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{y} & \mathbf{1} & -\mathbf{x y} \\
\mathbf{x y} & -\mathbf{y}^{2}
\end{array}\right]
$$

$$
\mathbf{P}^{(\mathbf{k}+1)} \approx \mathbf{P}^{(\mathrm{k})}[\mathbf{I}+\mathbf{D}]
$$

ITERATIVE REWEIGHTED SUM OF SQUARES

- Given a solution $\boldsymbol{\Theta}^{(\mathbf{m})}$ at the mth iteration, find $\boldsymbol{\delta} \boldsymbol{\Theta}$ by solving :

- $\mathbf{W}_{\mathbf{i}}$ acts as a soft outlier rejecter :

$$
\frac{\dot{\rho}_{\mathrm{SS}}(r)}{r}=\frac{1}{\sigma^{2}} \quad \frac{\dot{\rho}_{\mathrm{GM}}(r)}{r}=\frac{2 \sigma^{2}}{\left(\sigma^{2}+r^{2}\right)^{2}}
$$

- Provide user feedback by coarsely aligning incoming frames with a low order model
- robust matching that covers a wide search range
- achieve about 6-8 frames a sec. on a Pentium 200
- Use the coarse alignment parameters to seed the fine alignment
- increase model complexity from similarity, to affine, to projective parameters
- coarse-to-fine alignment for wide range of motions and managing computational complexity

COARSE-TO-FINE ALIGNMENT

VIDEO MOSAIC EXAMPLE

Princeton Chapel Video Sequence 54 frames

UNBLENDED CHAPEL MOSAIC

Image Merging withLaplacian Pyramids

Combined Seamless Image

VORONOI TESSELATIONS W/ L1 NORM

BLENDED CHAPEL MOSAIC

Image Matching Sidebar

Discrete Features

Demo

1D vs. 2D SCANNING

- 1D : The topology of frames is a ribbon or a string.

Frames overlap only with their temporal neighbors.

1D vs. 2D SCANNING

The 1D scan scaled by 2 to 600×692

A 2D scanned mosaic of size 600×692

CHOICE OF 1D/2D MANIFOLD

1D SCANNING

... handling camera tilt and wrap around ...

Figure 1: 1D scanning with the optical axis tilted by θ resulting in the cone geometry for the mosaic.

DEVELOPING THE CONE INTO A RECTANGULAR PLANAR MOSAIC

Figure 2: Left: The developed cone mosaic resulting in a curved mosaic on the plane. Right: The rectified mosaic with a rectilinear coordinate system whose mapping to the curved mosaic is given in the text.

$$
\left[\begin{array}{l}
l \\
y
\end{array}\right] \rightarrow y\left[\begin{array}{c}
\sin \alpha \\
\cos \alpha
\end{array}\right]+\left[\begin{array}{c}
L \sin \alpha \\
L(\cos \alpha-1)
\end{array}\right]
$$

where $\alpha=\frac{l}{L}$, and l, L, y are as shown.

THE "DESMILEY" ALGORITHM

- Compute 2D rotation and translation between successive frames
- Compute L by intersecting central lines of each frame
- Fill each pixel $\left[\begin{array}{ll}l & y\end{array}\right]$ in the rectified planar mosaic by mapping it to the appropriate video frame

- Inference of 2D neighborhood relations (topology) between frames
- Input video just provides a temporal 1D ordering of frames
- Need to infer 2D neighborhood relations so that local constraints may be setup between pairs of frames
- Globally consistent alignment and mosaic creation
- Choose appropriate alignment model
- Local constraints incorporated in a global optimization

PROBLEM FORMULATION

Given an arbitrary scan of a scene

Create a globally aligned mosaic by minimizing

$$
\min _{\left\{\mathbf{P}_{\mathrm{i}}\right\}} E=\sum_{i j \in G} E_{i j}+\sum_{i} E_{i}+\sigma^{2}(\text { Area of the mosaic })
$$

Like an MDL measure :
Create a compact appearance while being geometrically consistent

$$
\min _{\left\{\mathbf{P}_{\mathrm{i}}\right\}} E=\sum_{i j \in G} E_{i j}+\sum_{i} E_{i}+\sigma^{2}(\text { Area of the mosaic })
$$

where
$\mathbf{P}_{\mathbf{i}}$: Reference - to - image mapping, $\mathbf{u}_{\mathbf{i}}=\mathbf{P}_{\mathbf{i}} \mathbf{X}$
$E_{i j}$: Any measure of alignment error between neighbors i and j
$G:$ Graph that represents the neighborhood relations
E_{i} : Frame to reference error term to allow for a priori criterion like least distortion transformation

ALGORITHMIC APPROACH

 From a 1D ordered collection of frames

 From a 1D ordered collection of frames
 to
 A Globally consistent set of alignment parameters

 Iterate through

 Iterate through}

1. Graph Topology Determination

Given: pose of all frames
Establish neighborhood relations $\rightarrow \min$ (Area of Mosaic)
\rightarrow Graph G
2. Local Pairwise Alignment

Given: G
Quality measure validates hypothesized arcs
Provides pairwise constraints
3. Globally Consistent Alignment

Given: pairwise constraints
Compute reference-to-frame pose parameters $\rightarrow \min \quad \sum E_{i j}$

GRAPH TOPOLOGY DETERMINATION

- Given: Current estimate of pose*
- Lay out each frame on the 2D manifold (plane, sphere, etc.)
- Hypothesize new neighbors based on
- proximity
- predictability of relative pose
- non redundancy w.r.t. current G
- Specifically, try arc (i,j) if

Normalized Euclidean dist $\mathrm{d}_{\mathrm{ij}} \ll$ Path distance D_{ij}

- Validate hypothesis by local registration
- Add arc to G if good quality registration
* Initialize using low order frame-to-frame mosaic algorithm on a plane

LOCAL COARSE \& FINE ALIGNMENT

- Given: a frame pair to be registered
- Coarse alignment
- Low order parametric model e.g. shift, or 2D R \& T
- Majority consensus among subimage estimates
- Fine alignment [Bergen, ECCV 92]
- Coarse to fine over Laplacian pyramid
- Progressive model complexity, up to projective
- Incrementally adjust motion parameters to minimize SSD
- Quality measure
- Normalized correlation helps reject invalid registrations
- Given: arcs ij in graph G of neighbors
- The local alignment parameters, Qij, help establish feature correspondence between i and j
- If $u i l$ and $u_{j l}$ are corresponding points in frames i, j, then

$$
E_{i j}=\left|\mathbf{P}_{\mathbf{i}}^{-1}\left(u_{\mathrm{i} 1}\right)-\mathbf{P}_{\mathbf{j}}^{-1}\left(u_{\mathrm{j} 1}\right)\right|^{2}
$$

- Incrementally adjust poses $\mathbf{P}_{\mathbf{i}}$ to minimize

$$
\min _{\left\{\mathbf{P}_{\mathbf{i}}\right\}} E=\sum_{i j \in G} E_{i j}+\sum_{i} E_{i}
$$

SPECIFIC EXAMPLES: 1. PLANAR MOSAICS

- Mosaic to frame transformation model: $\mathbf{u} \approx \mathbf{P}_{\mathrm{i}} \mathbf{X}$
- Local Registration
- Coarse 2D translation \& fine 2D projective alignment
- Topology : Neighborhood graph defined over a plane
- Initial graph topology computed with the 2D T estimates
- Iterative refinement using arcs based on projective alignment
- Global Alignment
$E_{i j}=\sum_{k}\left|\Pi\left(\mathbf{A}_{\mathbf{i}} \mathbf{u}_{\mathbf{i k}}\right)-\Pi\left(\mathbf{A}_{\mathbf{j}} \mathbf{u}_{\mathbf{j k}}\right)\right|^{2}$
Pair Wise Alignment Error
$E_{i}=\sum_{k=1}^{2}\left|\left(\prod\left(\mathbf{A}_{\mathbf{i}} \alpha_{\mathbf{k}}\right)-\Pi\left(\mathbf{A}_{\mathbf{j}} \beta_{\mathbf{k}}\right)\right)-\left(\alpha_{\mathbf{k}}-\beta_{\mathbf{k}}\right)\right|^{2}$
Minimum Distortion Error

PLANAR TOPOLOGY EVOLUTION

Whiteboard Video Sequence 75 frames

PLANAR TOPOLOGY EVOLUTION

315 K
3
Days In The Month

- Thirty days hath September April, Tune, and November
- All the rest have thirg-ale
- Excepting February alone,

And that has twenty-eight days char And twenty -nine in each leap year

$$
3 \pi x^{26 / 29} x^{130} x^{30} x x^{30} x^{33} x
$$

30 $x^{1010} x^{1} x \times x \times x \times x \times x$
29 x X] $x \times x \times x \times 1 \times x \times x$
$\frac{28 \times x \times \times \times \times \times \times \times 1 \times x \times x}{2 F M(A) J A(S) O O D}$

Al wore cud n way musithidadil goa
All play at no work

$$
\text { Want } \left.\rightarrow K_{A R} R_{1 N} \rightarrow \text { Play }\right\}
$$

hippy Skippy - Peanut Butter!!

One Hards Onetleart. - rode hiperinimion...

SPECIFIC EXAMPLES: 2. SPHERICAL MOSAICS

- Frame to mosaic transformation model:

$\mathbf{u} \approx \mathbf{F R}_{\mathrm{i}}{ }^{T} \mathbf{X}$

- Local Registration
- Coarse 2D translation \& fine 2D projective alignment
- Parameter Initialization
- Compute F and R's from the 2D projective matrices
- Topology :
- Initial graph topology computed with the 2D R \& T estimates on a plane
- Subsequently the topology defined on a sphere
- Iterative refinement using arcs based on alignment with F and R's
- Global Alignment

$$
E_{i j}=\sum_{k}\left|\mathbf{R}_{\mathbf{i}} \mathbf{F}^{-1} \mathbf{u}_{\mathbf{i k}}-\mathbf{R}_{\mathbf{j}} \mathbf{F}^{-1} \mathbf{u}_{\mathbf{j k}}\right|^{2}
$$

SPHERICAL MOSAICS

Sarnoff Library Video
Captures almost the complete sphere with 380 frames

SPHERICAL TOPOLOGY EVOLUTION

SPHERICAL MOSAIC Sarnoff Library

SPHERICAL MOSAIC Sarnoff Library

NEW SYNTHESIZED VIEWS

FINAL MOSAIC

Mosaicing from Strips

Problem: Forward Translation

General Camera Motion

- Strip Perpendicular to Optical Flow
- Cut/Paste Strip (warp to make Optical Flow parallel)

Parallel Flow: Straight Strip

Radial Flow (FOE):
Circular Strip

Mosaic Construction

Simple Cases

Horizontal Translation

$$
\binom{u}{v}=\binom{a}{0}
$$

$$
a x+M=0
$$

(M determines displacement)
Zoom

$$
\binom{u}{v}=\binom{b x}{b y}
$$

$$
\frac{b}{2}\left(x^{2}+y^{2}\right)+M=0
$$

(M determines radius)

Manifold for Forward Motion

- Stationary (but rotating) Camera - Viewing Sphere
- Translating Camera
- Sphere carves a "Pipe" in space

Pipe Projection

One Image
Sequence

Concatenation of Pipes

Forward Motion Mosaicing

Example: Forward Motion

Side View of Mosaic

Mosaic Construction

OmniStereo: Stereo in Full 360°
 Two Panoramas: One for Each Eye

Each panorama can be mapped on a cylinder

Paradigm: A Rotating Stereo Pair of Slit Cameras

-Rays are tangent to viewing circle (Gives 360° stereo)
-Image planes are
radial
(Makes mosaicing difficult)

Panoramic Projections of Slit Cameras

Slit Camera Model

-Center Strip: Rays perpendicular to image plane

- Side Strip: Rays tilted from image plane

Stereo Panorama from Strips

MultiView Panoramas

Stereo Panorama from Video

Stereo viewing with
Red/Blue Clacoc

Viewing Panoramic Stereo Printed Cylindrical Surfaces

- Print panorama on a cylinder
- No computation needed!!!

The

