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The Geometry of
IVultiple Views

Despite the wealth of inform ation contained in a photograph, the depth of a scene point along the
corresponding projection ra ' is not directly accessible in a single image. With at least two pic-
tures, depth can be measurec through triangulation. This is of course one of the reasons that most
animals have at least two ¢ es and/or move their head when looking for friend or foe, as well
as the motivation for equip| ing an autonomous robot with a stereo or motion analysis system.
Before building such a syst :m, we must understand how several views of the same scene con-
strain its three-dimensional tructure as well as the corresponding camera configurations. This is
the goal of this chapter. In ‘ articular, we elucidate the geometric and algebraic constraints that
hold among two, three, or nore views of the same scene. In the familiar setting of binocular
stereo vision, we show that 1 1e first image of any point must lie in the plane formed by its second
image and the optical cente s of the two cameras. This epipolar constraint can be represented
algebraically by a 3 x 3 ma rix, called the essential matrix when the intrinsic parameters of the
cameras are known and the undamental matrix otherwise. Three pictures of the same line intro-
duce a different constraint— namely, that the intersection of the planes formed by their preimages
be degenerate. Algebraicall , this geometric relationship can be represented by a 3 x 3 x 3 tri-
focal tensor. More images i itroduce additional constraints, for example four projections of the
same point satisfy certain q 1adrilinear relations whose coefficients are captured by the quadri-
Jocal tensor. Remarkably, tl e equations satisfied by multiple pictures of the same scene feature
can be set up without any k owledge of the cameras or the scene they observe, and a number of
methods for estimating thei. parameters directly from image data are presented in this chapter.
Computer vision is n it the only scientific field concerned with the geometry of multiple
views: The goal of photogra nmetry, already mentioned in chapter 3, is precisely to recover quan-
titative geometric informati»n from multiple pictures. Applications of the epipolar and trifocal
constraints to the classical rhotogrammetry problem of transfer (i.e., the prediction of the po-
sition of a point in an ima, e given its position in a number of reference pictures) are briefly
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discussed in this chapter, along with some examples. Many nore applications in the domains of
stereo and motion analysis are presented in latter chapters.

10.1 TWO VIEWS
10.1.1 Epipolar Geometry

Consider the images p and p’ of a point P observed by t vo cameras with optical centers O
and O'. These five points all belong to the epipolar plane « efined by the two intersecting rays
OP and O'P (Figure 10.1). In particular, the point p’ lies on the line [’ where this plane and
the retina I’ of the second camera intersect. The line !’ is t 1e epipolar line associated with the
point p, and it passes through the point ¢’ where the baseli e joining the optical centers O and
O’ intersects IT'. Likewise, the point p lies on the epipolar line ! associated with the point p’,
and this line passes through the intersection e of the baselin« with the plane I1.

The points e and e’ are called the epipoles of the two cameras. The epipole e’ is the pro-
jection of the optical center O of the first camera in the im 1ge observed by the second camera
and vice versa. As noted before, if p and p’ are images of ‘he same point, then p’ must lie on
the epipolar line associated with p. This epipolar constrair * plays a fundamental role in stereo
vision and motion analysis.

Let us assume, for example, that we know the intrinsic and extrinsic parameters of the two
cameras of a stereo rig. As shown in chapter 11, the most d fficult part of stereo data analysis is
establishing correspondences between the two images (i.e., leciding which points in the second
picture match the points in the first one). The epipolar constr: int greatly limits the search for these
correspondences: Indeed, since we assume that the rig is cali rrated, the coordinates of the point p
completely determine the ray joining O and p, and thus the issociated epipolar plane @O’ p and
epipolar line I’. The search for matches can be restricted to his line instead of the whole image
(Figure 10.2). In two-frame motion analysis, each camera 11ay be internally calibrated, but the
rigid transformation separating the two camera coordinate s /stems is unknown. In this case, the
epipolar geometry obviously constrains the set of possible motions. The next sections explore
several variants of this situation.

Figure 10.1 Epipolar geometry: The point P, the ¢ stical centers O and 0’ of
the two cameras, and the two images p and p’ of I all lie in the same plane.
Here, as in the other figures of this chapter, camer: s are represented by their
pinholes and a virfual image plane located in front of the pinhole. This is to
simplify the drawings: The geometric and algebraic rguments presented in the
rest of this chapter hold just as well for physical imag : planes located behind the
corresponding pinholes.
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Figure 10.2  Epipolar constraint: Given a calibrated st reo rig, the set of possi-
ble matches for the point p is constrained to lie on the as sociated epipolar line /'

10.1.2 The Calibrated Case

Here we assume that the intrinsic parameters of each camera : re known, so p = p. Clearly, the
epipolar constraint implies that the three vectors '0_;7, O'p',anl 00 are coplanar. Equivalently,
one of them must lie in the plane spanned by the other two, or
—_ - -,
Op-[00" x O'p'1=0.
We can rewrite this coordinate-independent equation in t ie coordinate frame associated to
the first camera as

p -t x (Rp"], (10.1)

where p = (u, v, 1)7 and p’ = (’, v/, 1) denote the homoger ous image coordinate vectors of
p and p’, t is the coordinate vector of the translation 00" separ iting the two coordinate systems,
and R is the rotation matrix such that a free vector with coordi ates w’ in the second coordinate
system has coordinates Rw’ in the first one. In this case, the tw. » projection matrices are given in
the coordinate system attached to the first cameraby (Id 0) ard (RT — RT¥).

Equation (10.1) can finally be rewritten as

p EP =0, (10.2)

where £ = [t,]R, and [a.] denotes the skew-symmetric matri : such that [a, Jx = a x x is the
cross-product of the vectors a and x. The matrix £ is called the essential matrix, and it was first
introduced by Longuet-Higgins (1981). Its nine coefficients a e only defined up to scale, and
they can be parameterized by the three degrees of freedom of tl e rotation matrix R and the two
degrees of freedom defining the direction of the translation veci ir £.

Note that £p’ can be interpreted as the coordinate vect: r representing the epipolar line
associated with the point p’ in the first image: Indeed, an im ige line / can be defined by its
equation au + bv+ ¢ = 0, where (4, v) denote the coordinates  f a point on the line, (a, b) is the
unit normal to the line, and —c is the (signed) distance between t 1e origin and /. Alternatively, we
can define the line equation in terms of the homogeneous coorc inate vector p = (u, v, 1)T of a
point on the line and the vector ! = (a, b, ¢)” by I- p = 0, in whic h case the constraint a*+br =1
is relaxed since the equation holds independently of any scale ch inge applied to /. In this context,
Eq. (10.2) expresses the fact that the point p lies on the epipolz - line associated with the vector
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Ep'. By symmetry, it is also clear that £ Tp is the coor linate vector representing the epipolar}
line associated with p in the second image. It is obvic us that essential matrices are singular®
since ¢ is parallel to the coordinate vector e of the first ¢ pipole, so that £Te — -R7[t.]e = 04
Likewise, it is easy to show that ¢’ is in the nullspace o ' €. As shown by Huang and Faugeras
(1989), essential matrices are in fact characterized by t e fact that they are singular with twf
equal nonzero singular values (see Exercises).

10.1.3 Small Motions

Let us now turn our attention to infinitesimal dispiacemel ts. We consider a moving camera
translational velocity v and rotational velocity w and rew ite Eq. (10.2) for two frames separa
by a small time interval 6¢. Let us denote by P=(%,0,0 T the velocity of the point p or mo

field. Using the exponential representation of rotations (s e Exercises), it is possible to show that
(to first order) o : : .

t=24ty,
R =1Id + 8¢ [wx]
P =p+étp.

Substituting if Eq ( 10.2) and neglecting all terms of orde * two or greater in 8¢ yields:
pT([Vx][wx])P —(Pxp) v=0,

Equation (10.4) is simply the instantaneous form o ' the Longuet-Higgins relation (10.2
which captures the epipolar geometry in the discrete casc Note that in the case of pure trans|
tion, we have w = 0, thus (p x P) - v = 0. In other wo ds, the three vectors p = 0p, ) X
v must be coplanar. If e denotes the infinitesimal epipolt or focus of expansion (i.e., the poj
where the line passing through the optical center and parz lel to the velocity vector v pierces
image plane), we obtain the well-known result that the n otion field points toward the focus
expansion under pure translational motion (Figure 10.3),

The Longuet-Higgins relation holds for internally calibi 1ted cameras. When the intrinsic pa-]
rameters are unknown (uncalibrated cameras), we can wi ite p=Kpand p = K'p’, where

Figure 10.3 Focus of expansion: Under pure tra slation, the motion field at
every point in the image points toward the focus of « Xpansion.
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and K’ are 3 x 3 calibration matrices and p and p’ are normalized image coordinate vectors. The
Longuet-Higgins relation holds for these vectors, and we obtain

p"Fp' =0, , (10.5)

where the matrix F = K-TEX'™!, called the fundamental matrix, is no , in general, an essential
matrix. It has again rank two, and the eigenvector of JF (resp- FT)corres onding to its zero eigen-
value is as before the position e’ (resp. e) of the epipole. Note that F ' (resp. F T p) represents
the epipolar line corresponding to the point p’ (resp. p) in the first (resf . second) image.

The rank two constraint means that the fundamental matrix only ¢ imits seven independent
parameters. Several choices of parameterization are possible, but the m« st natural one is in terms
of the coordinate vectors e = (e, 8)T and e’ = (&', B/)7 of the two epij oles, and of-the epipolar
transformation that maps one set of epipolar lines onto the other one. \ e examine in chapter 13
the properties of this transformation in the context of structure from m: tion. For the time being,
let us just note (without proof) that it can be parameterized (up to s ale) by four numbers—
a, b, c, d—and that the fundamental matrix can be written as

b a —af — ba
F = —d —C cB +da . (10.6)
df —ba' cp' —aa' —cpp —dfa+ apa’ + bao'

10.1.5 Weak Calibration

As mentioned earlier, the essential matrix is defined up to scale by ive independent parame-
ters. It is therefore possible (at least in principle) to calculate it by v riting Eq. (10.2) for five
point correspondences. Likewise, the fundamental matrix is defined b; seven independent coef-
ficients (the parameters a, b, ¢, d in Eq. (10.6) are only defined up to ¢ cale) and can in principle
be estimated from seven point correspondences. Methods for estimatir g the essential and funda-
mental matrices from a minimal number of parameters indeed exist (s :¢ Notes), but they are far
too involved to be described here. This section addresses the simpler jroblem of estimating the
epipolar geometry from a redundant set of point correspondences bet reen two images taken by
cameras with unknown intrinsic parameters—a process known as wea ¢ calibration.
Note that Eq. (10.5) is linear in the nine coefficients of the fund: mental matrix F:

Fuu Fo Fis\ (v
(u, v, 1) le F22 F23 v ]| =0. (10.7)
F Fn Fu/\1

>

Since this equation is homogeneous in the coefficients of F, we can set F33 = 1 and use eight

point correspondences p; < pii=1,..,8to rewrite the corre sponding instances of Eq.
(10.7) as an 8 x 8 system of nonhomogeneous linear equations:
(ulu’l wiv) wy v vy v W ”i\ Fiy (1\
uzu’2 uzvé us vzu’2 vgvé 15 u v’2 F12 1
usuy  u3vy U3 vsuy v3vy U3 uy vy |l Fis 1
uguy ugVy Ug valty U4V, Vs uy, vyl Fa | _

! ’ ! !
usul5 usvé us vsul5 Usvs Us Us Us Fn
uguy UsVg U6 Vollg UsVg Vs Ug Vg
! ! ! !
ugul, wqvy; W7 Vg Vv U1 Uy Uy F3;
uguy ugly Us vsug Uglg Us ug Vg \Fn

\
3
3
W
e -

/

Using this system to estimate the fundamental matrix gives the eighi -point algorithm originally
proposed by Longuet-Higgins (1981) in the case of calibrated camer 1s. It fails when the associ-
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ated 8 x 8 matrix is singular. As shown in Faugeras (1¢ 93) and the exercises, this only happens
when the eight points and two optical centers lie on a « uadric surface. Fortunately, this is quite
unlikely since a quadric surface is completely determine d by nine points, which means that there
is generally no quadric that passes through 10 arbitrary joints.

When n > 8 correspondences are available, F ca 1 be estimated using linear least squares
by minimizing

> ! Fp))? (10.8)
i=1

with respect to the coefficients of F under the constrai t that the vector formed by these coeffi-
cients has unit norm.

Note that both the eight-point algorithm and its | ast-squares version ignore the rank two
property of fundamental matrices.! To enforce this const aint, Luong et al. (1993, 1996) proposed
to use the matrix F output by the eight-point algorithm : s the basis for a two-step estimation pro-
cess: First, use linear least squares to find the epipoles e and ¢’ that minimize | F7e|? and | Fe'|?;
second, substitute the coordinates of these points in Eq. 10.6): This yields a linear parameteriza-
tion of the fundamental matrix by the coefficients of the epipolar transformation, which can now
be estimated by minimizing Eq. (10.8) via linear least s juares.

The least-squares version of the eight-point algor thm minimizes the mean-squared alge-
braic distance associated with the epipolar constraint (i. :., the mean-squared value of e(p, p') =
pT Fp' calculated over all point correspondences). This error function admits a geometric inter-
pretation: In particular, we have

e(p, p') = Md(p, Fp') = M 1(p, FT p),

where d(p, ) denotes the (signed) Euclidean distance >etween the point p and the line I, and
Fp and FT p’ are the epipolar lines associated with z and p’. The scale factors A and A’ are
simply the norms of the vectors formed by the first two components of Fp’ and 7 p, and their
dependence on the pair of data points observed may bia . the estimation process.

It is of course possible to eliminate the scale fi ctors and directly minimige the mean-
squared geometric distance between the image points ind the corresponding epipolar lines—
that is,

Y [d i, Fp) + ) Fpp).

i=1

This is a nonlinear problem regardless of the para neterization chosen for the fundamental
matrix, but the minimization can be initialized with the result of the eight-point algorithm. This
method was first proposed by Luong et al. (1993), and it has been shown to provide results vastly
superior to those obtained using the eight-point methoc . As an alternative, Hartley (1995) pro-
posed to normalize the linear eight-point algorithm. Tt s approach is based on the observation
that the poor performance of the original technique is ¢ 1e, for the most part, to poor numerical
conditioning. This suggests translating and scaling the d ita so they are centered at the origin and
the average distance to the origin is +/2 pixel. In pract ce, this normalization dramatically im-
proves the conditioning of the linear least-squares estim ition process. Concretely, the algorithm
is divided into four steps: First, transform the image coor linates using appropriate translation and
scaling operators 7 : p; — p, and T’ : p} — p.. Sec nd, use linear least squares to compute

'The original algorithm proposed by Longuet-Higgins ignor s that essential matrices have rank two and two
equal singular values as well.
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the matrix F minimizing

Z(ﬁ’f”

Third, enforce the rank two constraint; this can be done using t! e two-step method of Luong et al.
described earlier, but Hartley uses instead a technique suggeste 1 by Tsai and Huang (1984) in the
calibrated case, which constructs the singular value decompo ‘ition F = USVT of F. Singular
value decomposition is formally defined in chapter 12. Let us j 1st note here that S = diag(r, s, )
is a diagonal 3 x 3 matrix with entries r > s > ¢, U/, V are ¢ 'thogonal 3 x 3 matrices, and, as
shown in chapter 12, the rank two matrix F minimizing the F1 sbenius norm of F — F is simply
F = Udiag(r, s, 0)VT. The last step of the algorithm sets F = 7T FT as the final estimate of
the fundamental matrix.

Figure 10.4 shows weak-calibration experiments using a input data a set of 37 point corre-
spondences between two images of a toy house. The data poin s are shown in the figure as small
discs, and the recovered epipolar lines are shown as short line s jgments. Figure 10.4(a) shows the
output of the least-squares version of the plain eight-point alg >rithm, and Figure 10.4(b) shows
the results obtained using Hartley’s variant of this method. As « xpected, the results are much bet-
ter in the second case and, in fact, extremely close to those obt. ined using the geometric distance
criterion of Luong et al. (1993, 1996).

(b)

Linear Least Squares | (Hartley, 1995) | (Luong et al., 1993)
Av. Dist. 2.33 pixels 0.92 pixel 0.86 pixel

Figure 10.4 Weak-calibration experiment using 37 pc nt correspondences be-
tween two images of a toy house. The figure shows the epipolar lines found by
(2) the least-squares version of the eight-point algoritt m, and (b) the normal-
ized variant of this method proposed by Hartley (1995, Note, for example, the
much larger error in (a) for the feature point close to he bottom of the mug.
Quantitative comparisons are given in the table, where t \e average distances be-
tween the data points and corresponding epipolar lines re shown for both tech-
niques as well as the nonlinear algorithm of Luong et a . (1993). Data courtesy
of Boubakeur Boufama and Roger Mohr.
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10.2 THREE VIEWS

' Let us now go back to the calibrated case where p = p as we study the geometric constraints
associated with three views of the same scene. Consid r three perspective cameras observing the
same point P, whose images are denoted by p1, p2, an | p3 (Figure 10.5). The optical centers Oy,
0, and 05 of the cameras define a trifocal plane that ntersects their retinas along three trifocal
lines 1, t;, and 3. Each one of these lines passes thrc igh the associated epipoles (e.g., the line
1; associated with the second camera passes through the projections e;; and e3; of the optical
centers of the two other cameras).
Each pair of cameras defines an epipolar constre nt—that is,

PrEnps =1, (10.9)
P;&Hl’l = ’

s where &;; denotes the essential matrix associated witt the image pairs i + j. These three con-
straints are not independent since we must have e],£; e3; = eT,£xe13 = e1,£31€21 = O (to see
why, consider the epipoles e3; and es; they are the fir t and second images of the optical center
O; of the third camera and are therefore in epipolar cc respondence).

Any two of the equations in Eq. (10.9) are inde sendent. In particular, when the essential
matrices are known, it is possible to predict the posii .on of the point p; from the positions of
the two corresponding points p; and ps: Indeed, the fi st and third constraints in Eq. (10.9) form

€3 3

0,

Figure 10.5 Trinocular epipolar geometry. N ste that the point P does not lie,
in general, in the trifocal plane defined by the | sints Oy, O,, and O;.
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a system of two linear equations in the two unknown coo dinates of p,. Geometrically, p, is
found as the intersection of the epipolar lines associated \ ith p, and p3 (Figure 10.5). Thus,
the trinocular epipolar geometry offers a solution to the pi oblem of transfer mentioned in the
introduction.

10.2.1 Trifocal Geometry

A second set of constraints can be obtained by considerin; three images of a line instead of a
point: The set of points that project onto an image line [ is t e plane L that contains the line and
pinhole: We can characterize this plane as follows: If M ¢ znotes a 3 X 4 projection matrix, a
point P in L pro_lects onto the point p on ! when zp = MP or

"MP =0, (10.10)

where P = (x, y, z, 1)7 is the 4-vector of homogeneous co rdinates of P and I = (a, b, ¢)7 is
the 3-vector of homogeneous coordinates of /. Equation (10 10) is, of course, the equation of the
plane L that contains both the optical center O of the camer 1 and the line /, and L = MTlis the
coordinate vector of this plane.

Two images I, and I, of the same line do not constrain the relative position and orientation
of the associated cameras since the corresponding planes _; and L; always intersect (unless
they are parallel, in which case they can be thought of as : atersecting at infinity; more on this
in chapter 13). Let us now consider three images [;, I, and I3 of the same line ! and denote by
Ly, Lz, and L3 the associated planes (Figure 10.6). The inte section of these planes forms a line
instead of being reduced to a point in the generic case. Alge jraically, this means that the system

Ly
LT|p=0
L

of three equations in three unknowns x, ¥, and z must be deg enerate, or, equivalently, the rank of
the 3 x 4 matrix

llTMl
LE M,

I M,

must be 2, which in turn implies that the determinants of all ts 3 x 3 minors must be zero. These
determinants are clearly trilinear combinations of the coord rate vectors /1, I, and ;. As shown
next, only two of the four determinants are independent.

10.2.2 The Calibrated Case

To obtain an explicit formula for the trilinear constraints, we pick the coordinate system attached
to the first camera as the world reference frame, which allov s us to write the projection matrices
asaMy=0d 0O),My=(Ry t),and M3 = (Rs t3),ad torewrite L as

m o
' L=}0R, It ]. (10.11)
IRy Bt
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Figure 10.6 Three images of a line define it s the (degenerate) intersection of
three planes.

As shown in the exercises, three of the minor de ‘erminants can be written together as .

S gl
Lhx |86 -0, (10.12)
" where

Gi =6RT — R for i=1,2,3, (10.13) 4

and R; and R} (i = 1,2, 3) denote the columns of R and Rj. The fourth determinant is equal ~ §
to |l Ral2 Rslsl, and it is zero when the normals 1 ) the planes L,, Ly, and L3 are coplanar. j
; The corresponding equation can be written as a linea: combination of the three determinants in
Eq. (10.12) (see Exercises). Only two of those are line urly independent of course; .
The three 3 x 3 matrices G define the 3 x 3 x 3 trifocal tensor with 27 coefficients '3
(or 26 up to scale). (A tensor is the multidimension Ul array of coefficients associated with a .3
multilinear form, in the same way that matrices are as iociated with bilinear forms.) Since O, is
the origin of the coordinate system in which all proje :tion equations are expressed, the vectors
t; and ¢3 can be interpreted as the homogeneous image coordinates of the epipoles ;2 and ey3. In
particular, it follows from Eq. (10.13) that ] Gil; = ( for any pair of matching epipolar lines l;
and /3. 4




Three Views ' 225

Equation (10.12) can be rewritten as

L6l .
Lo |G|, (10.14)
LG

where we use @ « b to indicate that two vectors @ and b only d ffer by a (nonzero) scale factor. It
follows that the trifocal tensor also constrains the positions of tl ree corresponding points: Indeed,
suppose that P is a point on [. Its first image lies on /;, so pTl = 0. In particular,

126l i
pr| G | =o0. (10.15)
G |

Given three point correspondences p; <> p; < p3 (Figt re 10.7), we obtain four indepen-
dent constraints by rewriting Eq. (10.15) for independent pair of lines passing through p, and
p3 (eg., & = [1,0,—u;]" and I = [0, 1, —v;]7 for i = 2, ). These constraints are trilinear
in the coordinates of the points p;, ps, and p3. When the ten or is known, it can thus be used
to predict the position of, say, p, from the positions of P2 anc ps in the other images, giving a
second solution to the transfer problem.

Figure 10.7 Given three images p;, p,, and p; of the ame point P, and two
arbitrary image lines I and /5 passing through p, and ps, e ray passing through
O, and p; must intersect the line where the planes L, an | L, projecting onto
and-l; meet in space.
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10.2.3 The Uncalibrated Case

We can still derive trilinear constraints in the image | ne coordinates when the intrinsic parame-
ters of the three cameras are unknown. Since in this « ase p = Kp and the image line associated
with the vector [ is defined by ITp = 0, we imme liately obtain I = K-71 or, equivalently,

I1=xTL :
In particular, Eq. (10.11) holds when p; = p, a d; = I;. In the general case, we have
mx, 0
L=|EKR, LK,
BK3Rs 6 Kats
and

T
. K—l 0 v ll 0
Rank(£) = 2 <= Rank [c( 5 1)] =Rank| [ A, &b, )] =2,
, LA by

where .A,-'déf )C,-'R;ICI“' and b; «f Kit; for i = 2, 3. Nte that the projection matrices associated
with our three cameras are now M; = (K; 0), M3 = (4,K; b,), and Mz = (AK; By).
In particular, b and b3 can still be interpreted as th : homogeneous image coordinates of the
epipoles ej2 and e;3, and the trilinear constraints of Eqgs. (10.14) and (10.15) still hold when,
this time,

G =bAY — 4],

where A5 and A (i =1,2,3) denote the columns of . {; and 43. As before, we have I Gil; =0
for any pair of matching epipolar lines I; and /.

10.2.4 Estimation of the Trifocal Tensor

We now address the problem of estimating the trifo al tensor from point and line correspon- .
dences established across triples of pictures. The equ itions defining the tensor are linear in its ]
coefficients and depend only on image measurements. As in the case of weak calibration, we can
use linear methods to estimate these 26 parameters. E: ch triple of matching points provides four
independent linear equations, and every triple of mat ‘hing lines provides two additional linear o
constraints. Thus, the tensor coefficients can be comp ted from p points and / lines granted that - F
2p +1 > 13. For example, 7 triples of points or 13 tri sles of lines do the trick, as do 3 triples of 1]
points and 7 triples of lines, and so on. As in the case 0. weak calibration, it is possible to improve
the numerical stability of the tensor estimation proces by normalizing the image coordinates so
the data points are centered at the origin with an avera je distance from the origin of /2 pixel.
The methods outlined so far ignore that the 2€ parameters of the trifocal tensor are not 3
independent. This should not come as a surprise: The :ssential matrix only has five independent
coefficients (the associated rotation and translation par meters, the latter being only definedupto
scale) and the fundamental matrix only has seven. Lik :wise, the parameters defining the trifoca) E
tensor satisfy a number of constraints, including the a orementioned equations 1;” g{l; =0G= %
1,2, 3) satisfied by any pair of matching epipolar line : I, and I3. It is also easy to show that the 3
matrices G} are singular—a property we come back o in chapter 13. Faugeras and Mourrain 4
(1995) showed that the coefficients of the trifocal ten: or of an uncalibrated trinocular stereo rig
satisfy eight independent constraints, reducing the tota number of independent parameters to 18. 3
The method described in Hartley (1995) enforces the se constraints a posteriori by recovering
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the epipoles e)2 and e)3 (or equivalently the vectors #; and ¢ in E |. [10.13]) from the linearly
estimated trifocal tensor, then recovering in a linear fashion a set of t :nsor coefficients that satisfy
the constraints.

10.3 MORE VIEWS

What about four views? In this section, we follow Faugeras and M >urrain (1995) and first note
that clearing the denominators in the perspective projection Eq. (2.1 )) derived in chapter 2 yields

3 _ 1
(zﬁ3 _ﬁz)P=0, - (10.16)

where M!, M2, and M?> denote the three rows of the matrix /\z (Note that we depart here
from our habit of denoting the rows of a projection matrix by mT, | 12 , and m . This is to avoid
possible confusions between the different rows of different matrice in the rest of this section. It
should be clear that M’ and m] denote the same row vector.)

Suppose now that we have four views, with associated prcjection matrices M; (j =
1,2, 3, 4). Writing Eq. (10.16) for each one of these yields

(u1M3 M ‘
v|M3 M2
u2M2 - M2
3 2
OP=0, where Q% Zﬁé - xé (10.17)
M3 — M3
‘u4M2 —‘M‘l‘

\vaM2 — M2/

This system of eight homogeneous equations in four unknos 'ns admits a nontrivial solu-
tion. It follows that the rank of the corresponding 8 x 4 matrix Q s at most 3, or, equivalently,
all its 4 x 4 minors must have zero determinants. Geometrically, ¢ ach pair of equations in Eq.
(10.17) represents the ray R; (i = 1, 2, 3, 4) associated with the ima ;e point p,, and Q@ must have
rank 3 for these rays to intersect at a point P (Figure 10.8).

The matrix Q has three kinds of 4 x 4 minors:

1. Those that involve two rows from one projection matrix and two rows from another one.
The equations associated with the six minors of this type incl ide, for example,?

ulM? —M:
U]M:;’ —M%
Det =0. 10.18
oM — M) (10.18)
sz%—Mg

These determinants yield bilinear constraints on the position o the associated image points.
It is easy to show (see Exercises) that the corresponding equ itions reduce to the epipolar
constraints of Eq. (10.2) when we take M| = (Id 0)and A , = (RT —RTp).

General formulas can be obtained by using, for example (u', u?), instead of (u, v) and playing around with
indexes and tensorial notation. We abstain from this worthy exercise here. )
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2. The second type of minors involves two rows from one projection matrix and one row from

. The last type of determinant involves one 1w of each matrix. The equations associated
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Figure 10.8 Four images p;, p2, p3, an p, of the same point P define this
point as the intersection of the correspondi grays R; (i = 1,2, 3, 4).

each of two other matrices. There are 48 of tl ose, and the associated equations include, for
example,

ulM? - M}

le? - M? . ) k
Det =0, 10.19

uM - M} (10.19)

nM} - M}

These minors yield trilinear constraints on tt : corresponding image positions. It is easy to
show (see Exercises) that the corresponding quations reduce to the trifocal constraints of
Eq. (10.15) when we take M; = (Id 0). I particular, they can be expressed in terms of
the matrices G; (i = 1,2, 3). Note that this :ompletes the geometric interpretation of the ‘¢
trifocal constraints that express here that the ays associated with three images of the same
point must intersect in space. ’

with the 16 minors of this form include, for « xample,

le? - M%
uzMg - M;

Det =0.
M3 - M}

vM3 - M?
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These equations yield quadrilinear constraints on the position of the points p; (i =
1,2, 3, 4). Geometrically, each row of the matrix Q is associated with an image line or
equivalently with a plane passing through the optical ce iter of the corresponding camera.
Thus each quadrilinearity expresses the fact that the fo' r associated planes intersect in a
point (instead of not intersecting at all in the generic cas :).

Let us focus on the quadrilinear equations. Developing determinants such as Eq. (10.20)
with respect to the image coordinates reveals immediately that he coefficients of the quadrilinear
constraints can be written as

M‘;.

Eijkl Det y (10.21)
M
M,

where &;ji = F1 and i, j, k, and [ are indexed between 1 an 1 3 (see Exercises). These coeffi-
cients determine the quadrifocal tensor (Triggs, 1995). .

Like its trifocal cousin, this tensor can be interpreted ge metrically using both points and
lines. In particular, consider four pictures p; (i = 1,2, 3, 4) of .point P and four arbitrary image
lines /; passing through these points. The four planes L; (i = 1 2, 3, 4) formed by the preimages
of the lines must intersect in P, which implies in turn that the - x 4 matrix

lITMl
e LMy
1T M,

I M,

must have rank 3 and, in particular, that its determinant must t = zero. This obviously provides a
quadrilinear constraint on the coefficients of the four lines ; (i = 1, 2, 3, 4). In addition, since
each row L,.T = I,TM,- of L is a linear combination of the row: of the associated matrix M;, the
coefficients of the quadrilinearities obtained by developing Det: £) with respect to the coordinates
of the lines /; are simply the coefficients of the quadrifocal ten or.as defined by Eq. (10.21).

Finally, note that since Det(L) is linear in the coordinate of I}, the vanishing of this deter-
minant can be written as I, - g(I2, I3, ls) = 0, where q is a (tril near) function of the coordinates
of the lines [; (i = 2,3, 4). Since this relationship holds for ny line /; passing through p, it
follows that p; o q(l3, I3, 1s). Geometrically, this means tha the ray passing through O, and
p1 must also pass through the intersection of the planes form d by the preimages of [, I3, and
l4 (Figure 10.9). Algebraically, this means that, given the qua rifocal tensor and arbitrary lines
passing through three images of .a point, we can predict the josition of this point in a fourth
image. This provides yet another method for transfer.

Note that the quadrifocal constraints are valid in both the calibrated and uncalibrated cases
since we have made no assumption on the form of the matric :s' M;. The quadrifocal tensor is
defined by 81 coefficients (or 80 up to scale), but it can be shi wn that these coefficients satisfy
51 independent constraints, reducing the total number of ind¢ pendent parameters to 29. It can
also be shown that, although each quadruple of images of tt : same point yields 16 indepen-
dent constraints like Eq. (10.20) on the 80 tensor coefficients. there exists a linear dependency
among the 32 equations associated with each pair of points. Tt 1s, six point correspondences are
necessary to estimate the quadrifocal tensor in a linear fashior . Algorithms for performing this
task and enforcing the 51 constraints associated with actual qu adrifocal tensors can be found in
Hartley (1998). Finally, Faugeras and Mourrain (1995) have sh. wn that the quadrilinear tensor is
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10.4 NOTES
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Figure 10.9 Given four images p, p2, p3, a d p4 of some point P and three

arbitrary image lines l, I3, and /; passing throt zh the points p;, p;, and pq, the

ray passing through O, and p; must also pass ( wrough the point where the three
.planes Lj, L3, and L, formed by the preimages of these lines intersect.

algebraically dependent on the associated essential/fun lamental matrices and trifacal tensor, and
thus does not add independent new constraints. Likew se, it can be shown that additional views
do not add independent constraints either. .

The essential matrix as an algebraic form of the epipol rr constraint was discovered by Longuet- 4
Higgins (1981), and its properties have been elucida ed by Huang and Faugeras (1989). The
fundamental matrix was introduced by Luong and Fa geras (1992, 1996). Robust methods for
estimating the fundamental matrix from point corresp« ndences include Zhang et al. (1995). We
come back to the properties of the fundamental mati x apd of the epipolar transformation in
chapter 13, when we adress the problem of recoverin; : the structure of a scene and the motion
of a camera from a sequence of perspective images. " he instantaneous version of the epipolar
constraint given by Eq. (10.4) and derived in Section 1 ).1.3 is only valid for calibrated cameras, : 4§
See Viéville and Faugeras (1995) for the case of ca neras with varying intrinsic parameters. :

The trilinear constraints associated with three views o! a line were introduced independently by .38
Spektakis and Aloimonos (1990) and Weng, Huang ai d Ahuja (1992) in the context of motion 4
analysis for internally calibrated cameras. They were :xtended by Shashua (1995) and Hartley:
(1997) to the uncalibrated case. The quadrifocal ten: or was introduced by Triggs (1995). Its
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properties are investigated in Faugeras and Mourrain (1995), Fa igeras and Papadopoulo (1997),
Hartley (1998), and Heyden (1998).

The introduction mentioned that photogrammetry is conce ned with the extraction of quan-
titative information from multiple pictures. In this context, bin >cular and trinocular geometric
constraints are regarded as the source of condition equations th: t determine the intrinsic and ex-
trinsic parameters (called interior and exterior orientation para neters in photogrammetry) of a
stereo pair or triple. In particular, the Longuet-Higgins relatior appears, in a slightly disguised
form, as the coplanarity condition equation, and trinocular cons raints yield scale-restraint con-
dition equations that take calibration and image measurement e rors into account (Thompson et
al., 1966, chapter X). In this case, the rays associated with three mages of the same point are not
guaranteed to intersect anymore (Figure 10.10).

The setup is as follows: If the rays Ry and R; (i = 2,3): ssoc:ated thh the image points
p1 and p; do not intersect, the minimum distance between ther . is reached at the points P, and
P;:, such that the line joining these points is perpendlcular to bo h R; and R;. Algebraically, this
can be written as

o?=z';o,p’.— 0 +2:0ip: + M(O1pL x Oip;  for i=2,3. (10.22)

Assuming that the cameras are internally cahbrated so tt 2 projection matrices associated
with the second and third cameras are (R} — RIt;) and (R© - RI#3), Eq. (10.22) can be
rewritten in the coordinate system attached to the first camera a

Zp =t +zRip; + Ai(py x Rip;) fo i=2,3. . (10.23)

03

Figure 10.10 Trinocular constraints in the presence of :alibration or measure-
ment errors: The rays Ry, R;, and R; may not intersect.
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PROBLEMS

" he Geometry of Multiple Views  Chap. 10

A Note that a similar equation could be written as well.-for completely uncalibrated cameras

by including terms depending on the (unknown) ini insic parameters. In either case, Eq. (10.23)
can be used to calculate the unknowns z;, A;, and z in terms of p,, p; and the projection matri-
ces associated with the cameras (see Exercises). Tl e scale-restraint condition is then written as 3
z} = z3. Although it is more complex than the trifc :al constraint (in particular, it is not trilinear - §
in the coordinates of the points p;, p2, and p), thi ; condition does not involve the coordinates . %
of the observed point, and it can be used (in princif le) to estimate the trifocal geometry directly
from image data. A potential advantage is that the :rror function z2 — z3 has a clear geometric
meaning: It is the difference between the estimates )f the depth of P obtained using the pairs of
cameras 1 > 2 and 1 « 3. It would be interesting t » further investigate the relationship between
the trifocal tensor and the scale-constraint conditic n, as well as its practical application to the 3
estimation of the trifocal geometry.

10.1. Show that one of the singular values of an essenti: . matrix is 0 and the other two are equal. (Huang 3
and Faugeras, 1989 have shown that the converse is also true—that is, any 3 x 3 matrix with one ¢
sihgular value equal to 0 and the other two equal t« each other is an essential matrix.) ’ p

Hint: The singular values of £ are the eigen alues of ££7.

10.2. Exponential representation of rotation matrices. T] e matrix associated with the rotation whose axis
is the unit vector a and whose angle is 6 can be shi wn to be equal to ?@x] & o 1@la.)y. Use
this representation to derive Eq. (10.3). 3

10.3. The infinitesimal epipolar constraint of Eq. (10.4) vas derived by assuming that the observed scene
was static and the camera was moving. Show that ' /hen the camera is fixed and the scene is moving
with translational velocity v and rotational veloci y w, the epipolar constraint can be rewritten as b
PT(vxllwxD)p+ (p x p) - v = 0. Note that this eq 1ation is now the sum of the two terms appearing ‘%
in Eq. (10.4) instead of their difference. E

Hint: If R and ¢ denote the rotation matrix ¢ 1d translation vectors appearing in the definition B
of the essential matrix for a moving camera, show hat the object displacement that yields the same ° 3
motion field for a static camera is given by the rota jon matrix R” and the translation vector —R7t. &

10.4. Show that when the 8 x 8 matrix associated witl the eight-point algorithm is singular, the eight -3
points and the two optical centers lie on a quadric : irface (Faugeras, 1993). P

Hint: Use the fact that when a matrix is sin jular, there exists some nontrivial linear combi-
nation of its columns that is equal to zero. Also t: e advantage of the fact that the matrices repre- 8
senting the two projections in the coordinate syste: 1 of the first camera are in this case (Id 0) and

(RT —R". . 1

10.5. Show that three of the determinants of the 3 x 3 m nors of ke
r o G,

L=|LR, L] canbew ttenas I x |IIGH; | =0.

I;R:; l;t3 12791313 "

Show that the fourth determinant can be writter: as 1 linear combination of these.
10.6. Show that Eq. (10.18) reduces to Eq. (10.2) when s 4, = (Id 0) and M, = (RT —RTp).
10.7. Show that Eq. (10.19) reduces to Eq. (10.15) when M, = (Id 0). o T
10.8. Develop Eq. (10.20) with respect to the image coor« inates, and verify that the coefficients can indeed ‘%
be written in the form of Eq. (10.21).
10.9. Use Eq. (10.23) to calculate the unknowns z;, A;, nd z} in terms of p,, p;, Ry, and & (i = 2,3).
Show that the value of A; is directly related to the e iipolar constraint, and characterize the degree of
the dependency of z2 — z} on the data points. Co




Programming Assignments

10.10. Implement the eight-point algorithm for weak calibration fro n binocular point correspondences.

10.11. Implement the linear least-squares version of that algorithm with and without Hartley's precondi-
tioning step.

10.12. Implement an algorithm for estimating the trifocal tensor fro n point correspondences.

10.13. Implement an algorithm for estimating the trifocal tensor fro n line correspondences.




