C0S429: COMPUTER VISON
CAMERAS AND PROJECTIONS (2 lectures)

- PInhole cameras

*Analytical Euclidean geometry

 The Intrinsic parameters of a camera
 The extrinsic parameters of a camera
« Camera calibration

o Least-squares techniques

Reading: Chapters 1 — 3, Forsyth & Ponce

Many of the slides in this lecture are courtesy to Prof. J. Ponce






Some history...

Milestones:
 Leonardo da Vinci (1452-1519): first
record of camera obscura
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Some history...

Milestones:

 Leonardo da Vinci (1452-1519): first
record of camera obscura

e Johann Zahn (1685): first portable
camera

« Joseph Nicephore Niepce (1822):
first photo - birth of photography

» Daguerreotypes (1839) B &
» Photographic Film (Eastman, 1889) ¥ S

e Cinema (Lumiére Brothers, 1895) "7 W iy

 Color Photography (Lumiere

Brothers, 1908) Photography (Niepce, “La
e Television (Baird, Farnsworth, Table Servie,” 1822)

Zworykin, 1920s)




Let’s also not forget...

Motzu Aristotle Ibn al-Haitham
(468-376 BC) (384-322 BC) (965-1040)



Pinhole perspective projection
image
plane
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Distant objects are smaller
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Parallel lines meet

Common to draw image plane in front of the focal point.
Moving the image plane merely scales the image.

o0




Vanishing points

 Each set of parallel lines meets at a different
point
— The vanishing point for this direction

o Sets of parallel lines on the same plane lead to
collinear vanishing points.
— The line is called the horizon for that plane



Properties of Projection

PoInts project to points

_ines project to lines

Planes project to the whole image or a half image
Angles are not preserved

Degenerate cases
— Line through focal point projects to a point.
— Plane through focal point projects to line

— Plane perpendicular to image plane projects to part of
the image (with horizon).




Pinhole Perspective Equation

NOTE: z is always negative..




Affine projection models: Weak perspective projection

IS the magnification.

When the scene depth is small compared its distance from the
Camera, m can be taken constant: weak perspective projection.



Affine projection models: Orthographic projection

‘?:"

When the camera is at a
(roughly constant) distance
from the scene, take m=1.



Pros and Cons of These Models

* \Weak perspective much simpler math.
— Accurate when object is small and distant.
— Most useful for recognition.
* Pinhole perspective much more accurate for
scenes.
— Used In structure from motion.

* \When accuracy really matters, must model
real cameras.



Diffraction effects
In pinhole
cameras.

2 mm

Shrinking
pinhole
size

(.6mm (.35 mm

Use a lens!

.15 mm 0.07 mm



Quantitative Measurements and Calibration
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Euclidean Geometry



Euclidean Coordinate Systems




Planes




Coordinate Changes: Pure Translations

(B)

°P = AP + B0,

ip



Coordinate Changes: Pure Rotations
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Coordinate Changes: Pure Rotations




Coordinate Changes: Rotations about the z Axis




A rotation matrix Is characterized by the following properties:

e Its inverse Is equal to its transpose, and

e its determinant is equal to 1.

Or equivalently:

* Its rows (or columns) form a right-handed
orthonormal coordinate system.



Coordinate Changes: Rigid Transformations




Block Matrix Multiplication

What is AB ?

Homogeneous Representation of Rigid Transformations




Rigid Transformations as Mappings

J




Rigid Transformations as Mappings: Rotation about the k AXis

Fpr—RFP, where R =

sinfl  cosf 0

0 0 1

cos) —sinf C‘]



Pinhole Perspective Equation




The Intrinsic Parameters of a Camera
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The Intrinsic Parameters of a Camera

i
J Physical
retina

Calibration Matrix
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The Perspective p= l

Projection Equation z

J Normalized
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The Extrinsic Parameters of a Camera

e When the camera frame (C') is different from the world frame

W), C Cp C W
(0)=( 5)(7)
1 (L 1)
e Thus,
(M=K(R t),
R =R,
1
= -MP,| where ,
P < t_(/OW’a
W p
P-())
e Note: z is not independent of M and P:
mT U= 21 '1};
M = m%n ::>z:m3+P? or A« 3
T mQ‘P
m3 v = .
TH3*P




Explicit Form of the Projection Matrix

(ar] —acotfri + uyri at, — acotBt, + upt, )
3 3
T
— r r — 1y L,
M sin 2 + voTy sin @ ¥ T Vot
l\ Tg t, J
Note: fM=(A b)then |ag|=1.
Replacing M by AM in
m, - P
U =
msy - P
4
mo - P
1 =
msy - P

r does not change v and wv.

M is only defined up to scale in this setting!!




Theorem (Faugeras, 1993)

Let M= (A b)be a3 x4 matrix and let a! (i = 1,2,3) denote
the rows of the matrix A formed by the three leftmost columns of

M.

e A necessary and sufficient condition for M to be a perspective
projection matrix is that Det(.4) # 0.

e A necessary and sufficient condition for M to be a zero-skew
perspective projection matrix is that Det(.4) # 0 and

(a1 X a3) - (ay x a3) = 0.

e A necessary and sufficient condition for M to be a perspective
projection matrix with zero skew and unit aspect-ratio is that

Det(A) # 0 and

{ (a1 x a3) - (as x a3z) =0,
(a1 X a3) - (a1 X a3) = (ay X a3) - (a2 X az).



Quantitative Measurements and the Calibration Problem
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Calibration Procedure

Calibration target : 2 planes at right angle with
checkerboard (Tsai grid)

We know positions of corners of grid with respect
to a coordinate system of the target

Obtain from images the corners

Using the equations (relating pixel coordinates to
world coordinates) we obtain the camera
parameters (the internal parameters and the
external (pose) as a side effect)



Estimation procedure

 First estimate M from corresponding image
points and scene points (solving
nomogeneous equation)

e Second decompose M Into internal and
external parameters

» Use estimated parameters as starting point
to solve calibration parameters non-linearly.




Homogeneous Linear Systems

Square system:

A X| =10 e unigue solution: 0

e unless Det(A)=0

Rectangular system ??

e 0 1Is always a solution

) Minimize |Ax| °
under the constraint x| “=1




How do you solve overconstrained homogeneous linear equations ??

E= Uzl =" U U=

e Orthonormal basis of eigenvectors: ey, ..., e,.

e Associated eigenvalues: 0 < A < ... < A,.

eAny vector can be written as
L= [he +...+ €,
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E(x)-E(e,) = xT(UTU)x-e,T(UTU)e, —
= 2+ ... FAul-A The solutionise .
> L (u+ .. +u2-1)=0




Example: Line Fitting
y
e

8 E(a,b,d) = 3 (az; + by, — d)?

i=1

Problem: minimize

with respect to (a,b,d).

X

e Minimize E with respect to d:

IE n
fi—:o::»dzz:a-xé+bu=aff+bﬁ?
Od i=1 n

e Minimize E with respect to a,b:

i=1

Ly =T Yp— Y

T =T h—y
B = 3 la(a—2)th(y—g) = [unf  Where u[ J

e Done !l



Note:

Tt Tt

S a2 —nz’ Yz — nky
T .= -=
H H: 1'211 =1

%9 9
2. TiYi —NTY 2 Y; — Ny

e Matrix of second moments of inertia

e Axis of least inertia



Linear Camera Calibration

Given n points Py, .... F, with known positions and their images
pl?...?pn_
(ml Pz\'l
u; ms - P; m, — u;m
) ()| mE | (i
(BF me - Pz' Mo — ;113
\m3 - P;)

of Pl —uP! My
‘ Pm=0withP¥ | .. .. and m € | my | =0
Pl ol —u,P! ms




Once M is known, you still got to recover the intrinsic and
extrinsic parameters !!!

This iIs a decomposition problem, not an estimation
problem.

(ar] —acotfri + uyri at, — acotBt, + upt, )

M — 16} 16}
P a sin HTZ * UDT?’ sin @ ¢

\ Ty t: )

[ e Intrinsic parameters

e EXtrinsic parameters

f + vt »




Degenerate Point Configurations

Are there other solutions besides M ??

(P] 07 —u,P]) ( PTA —u, PTw)
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 Coplanar points: (A,u,v )=(IL,0,0) or (0,IT1,0) or (0,0,IT )

* Points lying on the intersection curve of two quadric
surfaces = straight line + twisted cubic

Does not happen for 6 or more random points!



Analytical Photogrammetry

Given n points Pi,..., P, with known positions and their images

2 2
——:> El sz — E;E:g _ P:‘) + (wé — Ejg:g _ Pé) J| 1s minimized

Non-Linear Least-Squares Methods

e Newton
e Gauss-Newton
* Levenberg-Marquardt

Iterative, quadratically convergent in favorable situations



Mobile Robot Localization (Devy et al., 1997)
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