8.1 NOISE
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=dge Detection

Sharp changes in image brightness are interesting for many reasons. First, object boundaries
often generate sharp char ges in brightness—a light object may lie ona dark background or a dark
object may lie on a light »ackground. Second, reflectance changes often generate sharp changes
in brightness, which can have quite distinctive patterns—zebras have stripes and leopards have
spots. Cast shadows car also generate sharp changes in brightness. Finally, sharp changes in
surface orientation are o ien associated with sharp changes in image brightness.

Points in the image where brightness changes particularly sharply are often called edges or
edge points. We should ~ ke edge points to be associated with the boundaries of objects and other
kinds of meaningful cha: ges. It is hard to define precisely the changes we would like to mark—is
the region of a pastoral cene where the leaves give way to the sky the boundary of an object?
Typically, it is hard to t Il a semantically meaningful edge from a nuisance edge, and to do so
requires a great deal of I igh-level information. Nonetheless, experience building vision systems
suggests that interesting things often happen at an edge in an image and it is worth knowing
where the edges are.

A primary problem in ¢ ige detection is image noise. This is because edge detectors are con-
structed to respond stror zly to sharp changes; but one way to get sharp changes in an image is to
add noise to the pixels ( recause the noise values at each pixel are typically uncorrelated, mean-
ing they can be very difi >rent). As Section 7.3 indicated, noise makes finite difference estimates
of image derivatives un isable. We use this observation as an impetus to study image noise in
general.
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The term . oise usually means image measurements from which we do not know how to
extract informat on or from which we do not care to extract information; all the rest is signal.
It is wrong to b lieve that noise does not contain information—for example, we should be able
to extract some stimate of the camera temperature by taking pictures in a dark room with the
lens cap on. Fur hermore, since we cannot say anything meaningful about noise without a noise
model, it is wror g to say that noise is not modeled. Noise is everything we don’t wish to use, and
that’s all there it to it.

8.1.1 Additive Stationary Gaussian Noise

In the additive . tationary Gaussian noise model, each pixel has added to it a value chosen in-
dependently frc n the same Gaussian probability distribution. Almost always the mean of this
distribution is z ro. The standard deviation is a parameter of the model. The model is intended
to describe ther: 1al noise in cameras. It is illustrated in Figure 8.1.

Fig re 8.1 The top row shows three realizations of a stationary additive Gaus-
sia noise process. We have added half the range of brightnesses to these images
to « 10w both negative and positive values of noise. From left to right, the noise
has standard deviation 1/256, 4/256, and 16/256 of the full range of brightness,
res ectively. This corresponds roughly to bits zero, two, and five of a camera that
has an output range of eight bits per pixel. The lower row shows this noise added
to . n image. In each case, values below zero or above the full range have been
adj isted to zero or the maximum value accordingly.
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Linear Filter R :sponse to Additive Gaussian Noise Assume we have a discrete
linear filter whose kern ‘1 is G and we apply it to a noise image A consisting of stationary additive
Gaussian noise with r 2an u and standard deviation o. The response of the filter at some point
i, j will be

R(N)lj - Z Gi—u.j—vNu.v-
u.v
Because the noise is s ationary, the expectations that we compute do not depend on the point,

and we assume that i a «d j are zero and dispense with the subscript. Assume the kernel has finite i
support so that only sc ne subset of the noise variables contributes to the expectation; write this

subset as ngg, . .. , nr, . The expected value of this response must be
) o0
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-0
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= G { / Nu_up(N,,.»dNu.v] :
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where we have done ;ome aggressive moving around of variables and integrated out all the
variables that do not aj pear in each expression in the sum. Since all the N, ,, are independent and
identically distributed Saussian random variables with mean i, we have

B[R] = 1 ) Gi-wjov:

u.v

The variance of the nc :se response is obtained as easily. We want to determine
E[(R)i.j — EIRW):; 111,

and this is the same as
/{ﬁ N)ij — E[RW); 1)’ p(Noo, - . N, )dNog ... dN,,

which expands to

L v

2
/ [j "G uo(Nuw — u)} p(Noo. .- - Nrs)dNog - .- dN,s,
This expression expat ds into a sum of two kinds of integral. Terms of the form

j Gz—u.—v(Nu,v - I/«)zl’(NO,O» ) Nr,s)dNOVO PN dN,..s

(for some u, v) can be integrated easily because each N, ., is independent; the integral is
0°G%, _,, where o is the standard deviation of the noise. Terms of the form

/ Gyt 5—a-b(Nuy — )(Nap — 1) p(Noo, ..., Nrs)dNoo ... dNrs |

(for some u, v and a, ») integrate to zero again because each noise term is independent. We now
have

E[{RN)ij — ELRMN); 1] = 0? Y G2,
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Difficulties with the Additive Stationary Gaussian Noise Model Taken liter-
ally, the additive s ationary Gaussian noise model is a poor model of image noise. First, the
model allows posi' ve (and, more alarmingly, negative!) pixel values of arbitrary magnitude.
With appropriate ¢ oices of standard deviation for typical current cameras operating indoors or
in daylight, this dcesn’t present much of a problem because these pixel values are extremely
unlikely to occur i1 practice. In rendering noise images, the problematic pixels that do occur are
fixed at zero or ful output, respectively.

Second, nois > values are completely independent, so this model does not capture the pos-
sibility of groups « pixels that have correlated responses perhaps because of the design of the
camera electronics or because of hot spots in the camera integrated circuit. This problem is harder
to deal with, beca se noise models that do model this effect tend to be difficult to deal with an-
alytically. Finally, this model does not describe dead pixels (pixels that consistently report no
incoming light or e consistently saturated) terribly well. If the standard deviation is quite large
and we threshold - ixel values, then dead pixels will occur, but the standard deviation may be too
large to model the rest of the image well. A crucial advantage of additive Gaussian noise is that
it is easy to estim: te the response of filters to this noise model. In turn, this gives us some idea of
how effective the ilter is at responding to signal and ignoring noise.

8.1.2 Why Fini e Differences Respond to Noise

Our discussion o the response of linear filters to additive stationary Gaussian noise offers some
insight into the - oise behavior of finite differences. Assume we have an image of stationary
Gaussian noise ¢ f zero mean, and consider the variance of the response to a finite difference
filter that estimal :s derivatives of increasing order. We use the kernel

i -1
0

to estimate the 1 rst derivative. Now a second derivative is simply a first derivative applied to a
first derivative, : 0 the kernel is

—
|

oo
o— @

With a li tle thought, you can convince yourself that, under this scheme, the kernel co-
efficients of a . th derivative come from the k + 1th row of Pascal’s triangle with appropriate
flips of sign. Fr each of these derivative filters, the mean response to Gaussian noise is zero,
but the varianc of this response goes up sharply; for the kth derivative, it is the sum of squares
of the k + 1th row of Pascal’s triangle times the standard deviation. Figure 8.2 illustrates this
result.

There is 1 alternative explanation. From Table 7.1, differentiating a function is the same
as multiplying its Fourier transform by a frequency variable; this means that the high spatial
frequency corr onents are heavily emphasized at the expense of the low-frequency components.
This is intuitiv :ly plausible——differentiating a function must set the constant component to 2€r0,
and the amplir :de of the derivative of a sinusoid goes up with its frequency. Furthermore, this
property is the reason we are interested in derivatives; we are discussing the derivative precisely
because fast ¢ anges (which generate high spatial frequencies) have large derivatives.
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Figure 8 2 Finite differences can accentuate additive Gaussian noise substan-
tially foll »wing the argument in Section 8.1.2. On the top left an image of zero
mean Ga 1ssian noise with standard deviation 4/256 of the full range. The top
center fi ure shows a finite difference estimate of the third derivative in the x
direction and the top right shows the sixth derivative in the x direction. In each
case, the mage has been centered by adding half the full range to show both pos-
itive and 1egative deviations. The images are shown using the same gray-level
scale; in he case of the sixth derivative, some values exceed the range of this
scale. Th - graph on the bottom shows the standard deviations of these noise im-
ages for he first eight derivatives (estimated using the argument based around
Pascal’s | iangle).

8.2 ESTIMATING DERIVATIVES

As Figure 7.4 indic ies, simple finite difference filters tend to give strong responses to noise
so that applying tw . finite difference filters (one in each direction) is a poor way to estimate
a gradient. The way to deal with this problem is to smooth the image and then differentiate it
(we could also smo ith the derivative). In practice, the image is almost always smoothed with
a Gaussian filter—i : fact, the finite difference operator is smoothed. We discuss this practice
first, and then for th »se who want more information, we discuss why smoothing helps and why
a Gaussian is a gooc choice of smoothing filter.

8.2.1 Derivative « f Gaussian Filters

E Smoothing an imag¢ and then differentiating it is the same as convolving it with the derivative of

; a smoothing kernel. This fact is most easily seen by thinking about continuous convolution.
First, different ation is linear and shift invariant. This means that there is some kernel—we

dodge the question « f what it looks like—that differentiates. That is, given a function I (x, y),
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Fi; ure 8.3 Smoothing stationary additive Gaussian noise results in signals
wl >re pixel values tend to be increasingly similar to the value of neighboring
pi» :1s. This occurs at about the scale of the filter kernel because the filter ker-
ne causes the correlations. The figures show noise smoothed with increasingly
lar ;e Gaussian smoothing kernels. Gray pixels have zero value, darker values
ar¢ negative, and brighter values are positive. The kernels are shown in the top
rig it-hand corners of the figures to indicate the spatial scale of the kernel (we
ha e scaled the brightness of the kernels, which are Gaussians, so that the center
piy 21 is white and the boundary pixels are black). Smoothed noise tends to look
lik . natural texture as the figures indicate.

~ =

of K I
— = * ],
ax (3/9x)

Now we want the derivative of a smoothed function. We write the convolution kernel for the
smoothing as . Recalling that convolution is associative, we have

as
(K(B/{)x) * *(S * *1)) = (K(a/ax) * *S) * %] = (é}—) * k]

This fact appe urs in its most commonly used form when the smoothing function is a Gaussian;
we can then w ite .

0 (Ggy * xI) G,
—_— = * *x],
ox 0x

that is, we nee 1 only convolve with the derivative of the Gaussian, rather than convolve and then
differentiate. | moothing results in much smaller noise responses from the derivative estimates
(Figure 8.4).

8.2.2 Why € moothing Helps

In general, an ' change of significance to us has effects over a pool of pixels. For example, the
contour of an bject can result in a long chain of points where the image derivative is large. For
many kinds o noise model, large image derivatives due to noise are an essentially local event.
This means tt 1t smoothing a differentiated image tends to pool support for the changes we are
interested in : nd to suppress the effects of noise. An alternative interpretation of the point is
that the chang :s we are interested in will not be suppressed by some smoothing, which tends to
suppress the e fects of noise.

There it an alternative explanation as to why smoothing may help. Assume we smooth a
noisy image : nd then differentiate it. First, the variance of the noise tends to be reduced by a
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Figure 8.4 De ivative of Gaussian filters are less extroverted in their response
to noise than fir te difference filters. The image at top left shows a detail from
a picture of a z¢ ora; top center shows the same image corrupted by zero mean
stationary addit /e Gaussian noise, with 6 = 0.03 (pixel values range from O to
1). Top right st >ws the same image corrupted by zero mean stationary additive
Gaussian noise. with o = 0.09. The second row shows the partial derivative in
the x-direction . f each image, in each case estimated by a derivative of Gaussian
filter with o oni pixel. Notice how the smoothing helps reduce the impact of the

e

s ety eatl

noise.

smoothing kernel. This is because we tend to use smoothing kernels which are positive and for

which
ZGuv =1,

uv

which means that

Y G st 8
uv ;
Second, pixels have a g1 ater tendency to look like neighboring pixels—if we take stationary

additive Gaussian noise ¢ 1d smooth it, the pixel values of the resulting signal are no longer inde- ]
pendent. In some sense, { \is is what smoothing was about— recall that we introduced smoothing 1
as a method to predict a| ixel’s value from the values of its neighbors. However, if pixels tend to
look like their neighbors then derivatives must be smaller (because they measure the tendency
of pixels to look differer from their neighbors).

Another approach (s to reason in terms of spatial frequencies. It is possible to show that
stationary additive Gaus ian noise has uniform energy at each frequency. If we differentiate the
noise, we emphasize the high frequencies. If we do not attempt to ameliorate this situation, the
gradient magnitude maf is likely to have occasional large values due to noise. Filtering with a
Gaussian filter suppresst 5 these high spatial frequencies as it does for resampling (Section 7.4.3).

Smoothed noise I 1s applications. As Figure 8.3 indicates, smoothed noise tends to look
like some kinds of natu al texture, and smoothed noise is widely used as a source of textures
in computer graphics a plications (Ebert, Musgrave, Peachey, Worley and Perlin, 1998, Per-

lin, 1985).

T e it

B

8.2.3 Choosing a Sr 100thing Filter

The smoothing filter ca | be chosen by taking a model of an edge and using some set of criteria
to choose afilter that gi es the best response to that model. It is difficult to pose this problem as a
- two-dimensional proble n because edges in 2D can be curved. Conventionally, the smoothing fil-
ter is chosen by formul: ting a one-dimensional problem and then using a rotationally symmetric

version of the filter in 2 J.
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The one- imensional filter must be obtained from a model of an edge. The usual model is
a step function of unknown height in the presence of stationary additive Gaussian noise and is
given by

edge(x) = AU(x) + n(x),

where

0 ifx <0
U(x)‘{ 1 ifx>0

(the value of 17(0) is irrelevant to our purpose). A is usually referred to as the contrast of the
edge. In the 11" problem, finding the gradient magnitude is the same as finding the square of the
derivative resf onse. For this reason, we usually seek a derivative estimation filter rather than a
smoothing filt r (which can then be reconstructed from the derivative estimation filter).

Canny ( 986) established the practice of choosing a derivative estimation filter by using
the continuou: model to optimize a combination of three criteria:

* Sign: | to noise ratio—the filter should respond more strongly to the edge at x = 0 than
to noi se.

* Loca ization—the filter response should reach a maximum close to x = 0.

* Low alse positives—there should be only one maximum of the response in a reasonable
neigl »orhood of x = 0.

Once a continuous filter has been found, it is discretized. The criteria can be combined
in a variety o 'ways yielding a variety of somewhat different filters. It is a remarkable fact that
the optimal s 100thing filters derived by most combinations of these criteria tend to look a great
deal like Gau sians—this is intuitively reasonable because the smoothing filter must place strong
weight on ce 1ter pixels and less weight on distant pixels rather like a Gaussian. In practice,
optimal smo thing filters are usually replaced by a Gaussian, with no particularly important
degradation i 1 performance.

The ch rice of o used in estimating the derivative is often called the scale of the smoothing.
Scale has a s bstantial effect on the response of a derivative filter. Assume we have a narrow bar
on a constan background, rather like the zebra’s whisker. Smoothing on a scale smaller than the
width of the rar means that the filter responds on each side of the bar, and we are able to resolve
the rising an falling edges of the bar. If the filter width is much greater, the bar is smoothed into
the backgrot nd and the bar generates little or no response (Figure 8.5).

8.2.4 Why Smooth with a Gaussian?
Although a Jaussian is not the only possible blurring kernel, it is convenient because it has a

number of i nportant properties. First, if we convolve a Gaussian with a Gaussian, the result is
another Gat ;sian:

G, *%¥Go, =G 5 73-
o1 o2 (712+a22

This 1 1eans that it is possible to obtain heavily smoothed images by resmoothing smoothed
images. Thi : is a significant property because discrete convolution can be an expensive operation
(particularl if the kernel of the filter is large), and it is common to want versions of an image
smoothed t / different amounts.
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Consider convolving an image with a Gaussian kernel with o one pixel.
ian kernel is nonzero over an infinite domain, for most of that domain it is
ause of the exponential form. For ¢ one pixel, points outside a 5 x 5 integer
»rigin have values less than e=* = 0.0184, and points outside a 7 x 7 integer
yrigin have values less than e~ = 0.0001234. This means that we can ignore
nd represent the discrete Gaussian as a small array (5 x 5 or 7 x 7 according
ber of bits you allocate to represent the kernel).

is 10 pixels, we may need a 50 x 50 array or worse. A back of the envelope
should convince you that convolving a reasonably sized image with a 50 x 50
ive prospect. The alternative—convolving repeatedly with a much smaller
ore efficient because we don’t need to keep every pixel in the interim. This
1ed image is, to some extent, redundant (most pixels contain a significant
ieighbors’ values). As a result, some pixels can be discarded. We then have a
ry: smooth, subsample, smooth, subsample, and so on. The result is an image
formation as a heavily smoothed image, but is much smaller and easier to
he details of this approach in Section 7.7.1.

Limit Theorem Gaussians have another significant property that we do
ite in Figure 8.6. For an important family of functions, convolving any mem-
functions with itself repeatedly eventually yields a Gaussian. With the asso-
ion, this implies that if we choose a different smoothing kernel and apply it
age, the result eventually looks like we smoothed the image with a Gaussian.

ire Separable Finally, an isotropic Gaussian can be factored as
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Figur : 8.6 The central limit theorem states that repeated convolution of a pos-
itive ] ernel with itself eventually limits toward a kernel that is a scaling of a
Gaus: an. The graph illustrates this effect for 1D convolution; the triangle is ob-
tainec by convolving a box function with itself; each succeeding stage is obtained
by co volving the previous stage with itself. i

and this is a prod' ct of two 1D Gaussians. Generally, a function f(x, y) that factors as f(x, y) =
g(x)h(y) is refer ed to as a tensor product. It is common to refer to filter kernels that are tensor
products as sepa. 2ble kernels. Separability is a useful property indeed. In particular, convolving
with a filter kern: | that is separable is the same as convolving with two 1D kernels—one in the x
direction and anc ther in the y direction (exercises).

Many othe kernels are separable. Separable filter kernels result in discrete representations
that factor as wel . In particular, if H is a discretized separable filter kernel, there are some vectors
f and g such tha

H,‘j=f[gj.

It is possible to dentify this property using techniques from numerical linear algebra because
the rank of the mr atrix 7 must be one. Commercial convolution packages often test the kernel to
see whether it is separable before applying it to the image. The cost of this test is easily paid off
by the savings if the kernel does turn out to be separable. Many kernels can be approximated in
a useful way as 1 sum of separable kernels. If the number of kernels is sufficiently small, then
the approximatic n can represent a practical saving in convolution. This is a particularly attractive
strategy if one w ishes to convolve an image with many different filters; in this case, one tries to
obtain a represel tation of each of these filters as a weighted sum of separable kernels, which are
tensor products f a small number of basis elements. It is then possible to convolve the images
with the basis el« ments and then form different weighted sums of the result to obtain convolutions
of the image wit 1 different filters.

Aliasing in Subsampled Gaussians The discussion of aliasing gives us some in-
sight into availal le smoothing parameters. Any Gaussian kernel that we use is a sampled approx-
imation to a Gar ssian sampled on a single pixel grid. This means that, for the original kernel to
be reconstructe« from the sampled approximation, it should contain no components of spatial
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frequency greater thi n 0.5pixel~'. This isn’t possible with a Gaussian because its Fourier trans-
form is also Gaussia ., and hence isn’t bandlimited. The best we can do is insist that the quantity
of energy in the sigr 1l that is aliased is below some threshold—in turn, this implies a minimum
value of o that is av ilable for a smoothing filter on a discrete grid (for values lower than this
minimum, the smoo hing filter is badly aliased; see the exercises).

8.3 DETECTING EDGES

The two main strate zies for detecting edges both model edges as fast changes in brightness. In
the first, we observe that the fastest change occurs when a 2D analogue of the second derivative
vanishes (Section 8. 3.1). Although this approach is historically important, it is no longer popular.
The alternative is tc explicitly search for points where the magnitude of the gradient is extremal

(Section 8.3.2).
8.3.1 Using the | aplacian to Detect Edges

In one dimension, he second derivative of a signal is zero when the derivative magnitude is
extremal. This mez 1s that, if we wish to find large changes, a good place to look is where the
second derivative i zero. This approach extends to two dimensions. We now need a sensible
analogue to the sec »nd derivative. This needs to be rotationally invariant. It is not hard to show
that the Laplacian  as this property. The Laplacian of a function in 2D is defined as

3?f S

VAHOx,y)=—5+—.
(V)@ =35+ 53
It is natural to sm woth the image before applying a Laplacian. Notice that the Laplacian is a
linear operator (if y ou’re not sure about this, you should check), meaning that we could represent
taking the Laplaciz 1 as convolving the image with some kernel (which we write as K 2. Because

convolution is assc :iative, we have that
Koz % #(Go + +1)) = (Kg2 ¥ %Go) % x = (V2Gg) % .

The reason this is important is that, just as for first derivatives, smoothing an image and then
applying the Lapl >ian is the same as convolving the image with the Laplacian of the kernel used
for smoothing. Fig ire 8.7 shows the resulting kernel.

This leads t« a simple and historically important edge detection strategy illustrated in Fig-
ure 8.8. We convo ve an image with a Laplacian of Gaussian at some scale, and mark the points
where the result h 1s value zero—the zero crossings. These points should be checked to ensure
that the gradient n agnitude is large. The method is due to Marr and Hildreth (1980).

The respon: 2 of a Laplacian of Gaussian filter is positive on one side of an edge and
negative on anoth t. This means that adding some percentage of this response back to the original
image yields a pic wre in which edges have been sharpened and detail is more easy to see. This
observation dates ack to a photographic developing technique called unsharp masking, where
a blurred positive is used to increase visibility of detail in bright areas by subtracting a local
average of the br ghtness in that area. This is roughly the same as filtering the image with a
difference of Gau isians, multiplying the result by a small constant, and adding this back to the
original image. N w the difference between two Gaussian kernels looks similar to a Laplacian of
Gaussian kernel, nd it is quite common to replace one with the other. This means that unsharp
masking adds an dge term back to the image.
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Fi; ure 8.7 The Laplacian of Gaussian filter kernel, shown here for o one pixel,
ca be thought of as subtracting the center pixel from a weighted average of the
su round (hence the analogy with unsharp masking described in the text). It is
qu te common to replace this kernel with the difference of two Gaussians—one
wi h a small value of o and the other with a large value of 0.

Laplaci n of Gaussian edge detectors have fallen into some disfavor. Because the Laplacian
of Gaussian fi ter is not oriented, its response is composed of an average across an edge and one
along the eds :. This means that the behavior at corners—where the direction along the edge
changes—is | oor. They mark the boundaries of sharp corners quite inaccurately. Furthermore, at
trihedral or g1 :ater vertices, they have difficulty recording the topology of the corner correctly, as
Figure 8.9 ill strates. Second, the components along the edge tend to contribute to the response
of the filter t noise but not necessarily to an edge; this means that zero crossings may not lie
exactly on an edge.

8.3.2 Grad :nt-Based Edge Detectors

In a gradient- oased edge detector, we compute some estimate of the gradient magnitude—almost
always using a Gaussian as a smoothing filter—and use this estimate to determine the position
of edge poir s. Typically, the gradient magnitude can be large along a thick trail in an image
(Figure 8.10 . Object outlines are curves, however, and we should like to obtain a curve of the
most distinc! ve points on this trail.

A natu -al approach is to look for points where the gradient magnitude is a maximum along
the direction perpendicular to the edge. For this approach, the direction perpendicular to the edge
can be estin ated using the direction of the gradient (Figure 8.11). These considerations yield
Algorithm 8 1. Most current edgefinders follow these lines, but there remain substantial debates
about the pr per execution of the details.
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Figure 8.8 Z¢ o crossings of the Laplacian of Gaussian for various scales and 4
5, :

Algorithm 8.1: Gradier -Based Edge Detection

Form an estimate of the image gradient :
Obtain the gradient ma, nitude from this estimate ;
Identify image points w here the value %

of the gradient magn tude is maximal ;

in the direction perpe ndicular to the edge

Nonmaximum Su jpression  Given estimates of gradient magnitude, we would like ]
to obtain edge points. Aga n, there is clearly no objective definition, and we proceed by reason-
able intvition. The gradier - magnitude can be thought of as a chain of low hills. Marking local 4
extrema would mark isole ed points—the hilltops in the analogy. A better criterion is to slice
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and also large; these joints are edge points
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Figu ¢ 8.9 Zero crossings of Laplacian of Gaussian output can behave
stran_ely at corners. First, at a right angled corner, the zero crossing bulges out
at the corner (but passes through the vertex). This effect is not due to digitiza-
tion 1 r quantization, but can be shown to occur in the continuous case as well.
At ¢ ners where three or more edges meet, contours behave strangely, with the
detai s depending on the structure of the contour marking algorithm—this algo-
rithrr (the one shipped with Matlab) produces curious loops. This effect can be
mitig ited with careful design of the contour marking process, which needs to
incor yorate a fairly detailed vertex model.

Figt re 8.10 The gradient magnitude can be estimated by smoothing an image
and hen differentiating it. This is equivalent to convolving with the derivative of
a s sothing kemel. The extent of the smoothing affects the gradient magnitude;
inth s figure, we show the gradient magnitude for the figure of a zebra at different
scal s. At the center, gradient magnitude estimated using the derivatives of a
Gau sian with o = 1 pixel; and on the right gradient magnitude estimated using
the | erivatives of a Gaussian with & = 2 pixel. Notice that large values of the
grac ent magnitude form thick trails.
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Figure 8.11 The gradient magnitude tends to be large along thick trails in an ‘
image. Typ :ally, we would like to condense these trails into curves of represen- i
tative edge roints. A natural way to do this is to cut the trail perpendicular to its i
direction ar 1look for a peak. We use the gradient direction as an estimate of the
direction ir which to cut. The figure on the teft shows a trail of large gradient
magnitude; the figure at the center shows an appropriate cutting direction; the
figure on tt > right shows the peak in this direction.
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Figure 8. 2 Nonmaximum suppression obtains points where the gradient mag-
nitude is ¢ . a maximum along the direction of the gradient. The figure on the left
shows ho 7 we reconstruct the gradient magnitude. The dots are the pixel grid.
We are at Hixel g, attempting to determine whether the gradient is at a maximum;
the gradie 1t direction through ¢ does not pass through any convenient pixels in
the forwa d or backward direction, so we must interpolate to obtain the values
of the gra fient magnitude at p and r; if the value at ¢ is larger than both, g is an
edge poir . Typically, the magnitude values are reconstructed with a linear inter-
polate, w iich in this case would use the pixels to the left and right of p and r,
respectivi ly, to interpolate values at those points. On the right, we sketch how to
find cand dates for the next edge point given that g is an edge point; an appropri-
ate searc] direction is perpendicular to the gradient, so that points s and ¢ should
be consic 2red for the next edge point. Notice that, in principle, we don’t need
to restric ourselves to pixel points on the image grid because we know where
the predi ted position lies between s and £. Hence, we could again interpolate to
obtain gr dient values for points off the grid.
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the gradient mag itude along the gradient direction, which should be perpendicular to the edge,
and mark the poi its along the slice where the magnitude is maximal. This would get a chain of
points along the rown of the hills in our chain; the process is called nonmaximum suppression
(Figure 8.12).

Edge Fol owing Typically, we expect edge points to occur along curve like chains.

The following a1 : the significant steps 1n nonmaximum suppression:

e determi ing whether a given point is an edge point;
* and,ifi is, finding the next edge point.

Once these step are understood, it is easy to enumerate all edge chains. We find the first edge
point, mark it, € tpand all chains through that point exhaustively, marking all points along those
chains, and con' nue to do this for all unmarked edge points.

Algorithm ¢ .2: Nonmaximum Suppression

While there we points with high gradient
that have no been visited
Find a sta t point that is a local maximum in the
directic n perpendicular to the gradient
erasing points that have been checked
While po sible, expand a chain through
the cut ent point by:
1) p edicting a set of next points, using
tt > direction perpendicular to the gradient
2) fi Wding which (if any) is a local maximum
it the gradient direction
3) t sting if the gradient magnitude at the
1 aximum is sufficiently large
4)1 aving a record that the point and
r xighbors have been visited
rec: rd the next point, which becomes the current point
end
end

The tw - main steps are simple. For the moment, assume that edges are to be marked at
pixel locatior s (rather than, say, at some finer subdivision of the pixel grid). We can determine
whether the | radient magnitude is maximal at any pixel by comparing it with values at points
some way ba kward and forward along the gradient direction (Figure 8.11). Thisis a function of

distance alon : the gradient; typically we step forward to the next row (or column) of pixels and .

backward to " 1¢ previous to determine whether the magnitude at our pixel is larger (Figure 8.12).
The gradient lirection does not usually pass through the next pixel, so we must interpolate to de-
termine the v llue of the gradient magnitude at the points we are interested in; a linear interpolate
is usual.

If the  xel turns out to be an edge point, the next edge point in the curve can be guessed by
taking a step perpendicular to the gradient. In general, this step does not end on a pixel; a natural
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Figure 8. 3 Edge points marked on the pixel grid for the image shown on the
top. The - dge points on the left are obtained using a Gaussian smoothing filter
at o one | ixel, and gradient magnitude has been tested against a high threshold
to determ ne whether a point is an edge point. The edge points on the center
are obtair >d using a Gaussian smoothing filter at o four pixels, and gradient-
magnitud has been tested against a high threshold to determine whether a point
is an edg. point. The edge points on the right are obtained using a Gaussian
smoothiny filter at o four pixels, and gradient magnitude has been tested against
a low thre shold to determine whether a point is an edge point. At a fine scale,
fine detail at high contrast generates edge points, which disappear at the coarser
scale. Wh n the threshold is high, curves of edge points are often broken because
the gradie it magnitude dips below the threshold; for the low threshold, a variety
of new ed e points of dubious significance are introduced.

strategy is to look at ne neighboring pixels that lie close to that direction (see Figure 8.12). This
approach leads to a s 't of curves that can be represented by rendering them in black on a white
background, as in Fig ures 8.13, 8.14 and 8.15.

Hysteresis There are too many of these curves to come close to being a reasonable
representation of obj :ct boundaries. This is, in part, because we have marked maxima of the
gradient magnitude v ithout regard to how large these maxima are. It is more usual to apply a
threshold test to ensu e that the maxima are greater than some lower bound. This in turn leads to
broken edge curves ( ook closely at Figures 8.13 to 8.15). The usual trick for dealing with this
is to use hysteresis; v ¢ have two thresholds and refer to the larger when starting an edge chain
and the smaller while following it. The trick often results in an improvement in edge outputs (see
Exercises).

8.3.3 Technique: ( rientation Representations and Corners

Edge detectors notori >usly fail at corners because the assumption that estimates of the partial
derivatives in the x a1 d y direction suffice to estimate an oriented gradient becomes unsupport-
able. At sharp corner : or unfortunately oriented corners, these partial derivative estimates are
poor because their suj port will cross the corner. There are a variety of specialized corner detec-
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Fi ure 8.14 Edge points marked on the pixel grid for the image shown on the
to .. The edge points on the left are obtained using a Gaussian smoothing filter
at 7 one pixel, and gradient magnitude has been tested against a high threshold
to determine whether a point is an edge point. The edge points on the center
ar obtained using a Gaussian smoothing filter at o four pixels, and gradient
m gnitude has been tested against a high threshold to determine whether a point
is an edge point. The edge points on the right are obtained using a Gaussian
st othing filter at o four pixels, and gradient magnitude has been tested against
a ow threshold to determine whether a point is an edge point. At a fine scale,
fi e detail at high contrast generates edge points, which disappear at the coarser
s ale. When the threshold is high, curves of edge points are often broken because
tl > gradient magnitude dips below the threshold; for the low threshold, a variety
o new edge points of dubious significance are introduced.

tors, which ¢ ok for image neighborhoods where the gradient swings sharply (Figure 8.16). More
generally, the statistics of the gradient in an image neighborhood yields quite a useful description
of the neight orhood. There is a rough taxonomy of four qualitative types of image window:

e con. tant windows, where the gray level is approximately constant;

edg windows, where there is a sharp change in image brightness that runs along a single
dire :tion within the window;

flov windows, where there are several fine parallel stripes—say hair or fur—within the
win low;

e and 2D windows, where there is some form of 2D texture—say Spots or a corner—within

the window.
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Figure .15 Edge points marked on the pixel grid for the image shown on the

. top. Th edge points on the left are obtained using a Gaussian smoothing filter
at o ont pixel, and gradient magnitude has been tested against a high threshold
to deter nine whether a point is an edge point. The edge points on the center
are obt: ned using a Gaussian smoothing filter at o four pixels, and gradient
magnitt le has been tested against a high threshold to determine whether a point
is an ec ze point. The edge points on the right are obtained using a Gaussian
smoothi 1g filter at o four pixels, and gradient magnitude has been tested against
a low t} -eshold to determine whether a point is an edge point. At a fine scale,
fine det: il at high contrast generates edge points, which disappear at the coarser 5
scale. W hen the threshold is high, curves of edge points are often broken because
the grac ent magnitude dips below the threshold; for the low threshold, a variety
of new « dge points of dubious significance are introduced. '

These cases corres) ond to different kinds of behavior on the part of the image gradient. In con-
stant windows, the gradient vector is short; in edge windows, there is a small number of long
gradient vectors al pointing in a single direction; in flow windows, there are many gradient
vectors pointing in wo directions; and in 2D windows, the gradient vector swings.

These distinc ions can be quite easily drawn by looking at variations in orientation within
a window. In partic ilar, the matrix
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Fi rure 8.16 An image of a joshua tree on the left and its orientations shown as
v¢ stors superimposed on the image on the right. The orientation is superimposed
o1 the image as small vectors. Notice that around corners and in textured regions,
th : orientation vector swings sharply.
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gives a good dea of the behavior of the orientation in a window. In a constant window, both
eigenvalues o -this matrix are small because all terms are small. In an edge window, we expect to
see one large ‘igenvalue associated with gradients at the edge and one small eigenvalue because
few gradients run in other directions. In a flow window, we expect the same properties of the
eigenvalues, ¢ <cept that the large eigenvalue is likely to be larger because many edges contribute.
Finally, in a 2 D window, both eigenvalues are large.

The bel avior of this matrix is most easily understood by plotting the ellipses

L NTH x,y) =€

for some sma 1 constant €. These ellipses are superimposed on the image windows. Their major
and minor ax« s are along the eigenvectors of H, and the extent of the ellipses along their major or
minor axes c« rresponds to the size of the eigenvalues; this means that a large circle corresponds
to an edge w: 1dow and a narrow extended ellipse indicates an edge window (as in Figure 8.17
and Figure 8. 8). Thus, corners could be marked by marking points where the area of this ellipse
is extremal a d large. The localization accuracy of this approach is limited by the size of the
window and he behavior of the gradient. More accurate localization can be obtained at the
price of prov ding a more detailed model of the comer sought (see, for example, Harris and
Stephens, 19¢ 8 or Schmid, Mohr and Bauckhage, 2000).
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Figure 8.17 The orientation field for a detail of the Jjoshua tree picture. On the
left, the orien itions shown as vectors and superimposed on the image. Orienta-
tions have be( 1 censored to remove those where the gradient magnitude is too
small. The rig 1t figure shows the ellipses described in the text for a 3x3 window.

Figure 8.18 " he orientation field for a detail of the joshua tree picture. On the
left, the orienta ions shown as vectors and superimposed on the image. Orienta-
tions have beer censored to remove those where the gradient magnitude is too
small. The righ figure shows the ellipses described in the text, for a 5x5 window.

There is a huge edge detec ion literature. The carliest paper of which we are aware is Julez (1959)
(yes, 1959!). Those wishir ; to be acquainted with the early literature in detail should start with a
1975 survey by Davis (197 1); Herskovits and Binford (1970); Horn (1971); and Hueckel (1971,
who models edges and the | detects the model.

Edge detection is a ubject alive with controversy, much of it probably empty. We have
hardly scratched the surfa e. There are many optimality criteria for edge detectors, and rather
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more “optimal” ed e detectors. The key paper in this literature is by Canny (1986); significant
variants are due to Jeriche (1987) and to Spacek (1986). Faugeras’ textbook contains a detailed
and accessible exp sition of the main issues (1993). At the end of the day, most variants boil
down to smoothing the image with something that looks a lot like a Gaussian before measuring
the gradient.

Object boun: aries are not the same as sharp changes in image values. First, objects may
not have a strong - ontrast with their backgrounds through sheer bad luck. Second, objects are
often covered with texture or markings that generate edges of their own—so many that it is often
hard to wade throt gh them to find the relevant pieces of object boundary. Finally, shadows and
the like may gener ite edges that have no relation to object boundaries. There are some strategies
for dealing with th :se difficulties.

First, some : pplications allow management of illumination; if it is possible to choose the
illumination, a ca :ful choice can make a tremendous difference in the contrast and eliminate
shadows. Second, >y setting smoothing parameters large and contrast thresholds high, it is often
possible to ensure hat edges due to texture are smoothed over and not marked. This is a dubious
business, because .t can be hard to choose reliable values of the smoothing and the thresholds,
and because it is [ rverse to regard texture purely as a nuisance, rather than a source of informa-
tion.

There are o her ways to handle the uncomfortable distinction between edges and object
boundaries. First, >ne might work to make better edge detectors. This approach is the root of a
huge literature, de iling with matters like localization, corner topology, and the like. We incline to
the view that retu ns are diminishing rather sharply in this endeavor; we can provide only some
pointers to this (1 1st) literature. The reader could start with Bergholm (1987), Deriche (1990),
Elder and Zucker (1998), Fleck (1992a), Kube and Perona (1996), Olson (1998), Perona and
Malik (1990a,b), rt Torre and Poggio (1986).

Second, on might deny the usefulness of edge detection entirely. This approach is rooted
in the observatio that some stages of edge detection, particularly nonmaximum suppression,
discard informati n that is awfully difficult to retrieve. This is because a hard decision—testing
against a threshol I—has been made. Instead, the argument proceeds, one should keep this infor-
mation around in 1 “soft” (a propaganda term for probabilistic) way. Attactive as these arguments
sound, we are inc ined to discount this view because there are currently no practical mechanisms
for handling the * olumes of soft information so obtained.

Finally, on might regard this as an issue to be dealt with by overall questions of sys-
tem architecture- ~the fatalist view that almost every visual process is going to have obnoxious
features, and the orrect approach to this problem is to understand the integration of visual in-
formation well e :ough to construct vision systems that are tolerant to this. Although it sweeps
a great deal of d st under the carpet (precisely how does one construct such architectures?) we
find this approac : most attractive and discuss i{ again and again. i

All edge d tectors behave badly at corners; only the details vary. In the case of zero cross-
ings of the Lapl cian of Gaussian, the problem is well understood (Berzins, 1984). This bad
behavior has rest lted in two lively strands in the literature (What goes wrong? What to do about
it?). There are a variety of quite sophisticated corner detectors, mainly because corners make
quite good point ‘eatures for correspondence algorithms supporting such activities as stereopsis,
reconstruction, ¢ * structure from motion. This has led to quite detailed practical knowledge of
the localisation | roperties of corner detectors (e.g., Schmid, Mohr and Bauckhage, 2000).

Another 1i ely strand in the literature is to determine how well edge detectors do. One
may study locali zation accuracy (e.g., Kakarala and Hero, 1992, Lyvers and Mitchell, 1988) or
stability (e.g., C 10, Meer and Cabrera, 1997, 1998); one may compare with human preferences
(e.g., Bowyer, K -anenburg and Dougherty, 1999, Dougherty and Bowyer, 1998, Heath, Sarkar,
Sanocki and Bc vyer, 1997) or compare performance in the context of a fixed task, such as
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structure from motion (e.; ., Shin, Goldgof and Bowyer, 1998) or recognition (e.g., Shin, Goldgof
and Bowyer, 1999). All ¢ Ige detectors share some difficulties (e.g., at corners Fleck, 19925).

The edges that our edge detectors respond to are sometimes called step edges because
they consist of a sharp, * liscontinuous” change in value that is sometimes modeled as a step.
A variety of other forms Hf edge have been studied. The most commonly cited example is the
roof edge, which consists f a rising segment meeting a falling segment, rather like some of the
reflexes that can result fr m the effects of interreflections (Figure 5.16). Another example that
also results from interrefl ctions is a composite of a step and a roof. It is possible to find these
phenomena by using esser tially the same steps as outlined before (find an “optimal” filter, and do
nonmaximum suppressior on its outputs) (Canny, 1986, Perona and Malik, 1990, b). In practice,
this is seldom done. There appear to be two reasons. First, there is no comfortable basis in theory
(or practice) for the mode s that are adopted. What particular composite edges are worth looking
for? The easy answer—tt ase for which optimal filters are reasonably easy to derive—is most
unsatisfactory. Second, th semantics of roof edges and more complex composite edges is even
vaguer than that of step ec zes. There is little notion of what one would do with roof edge once it
had been found.

Edges are poorly de ined and usually hard to detect, but one can solve problems with the
output of an edge detector Roof edges are similarly poorly defined and similarty hard to detect;
we have never seen problk ms solved with the output of a roof edge detector. The real difficulty
here is that there seems t¢ be no reliable mechanism for predicting, in advance, what is worth
detecting. We scratch the s irface of this very difficult problem in what follows.

8.1. Each pixel value in 500 < 500 pixel image 7 is an independent, normally distributed random variable
with zero mean and sta dard deviation one. Estimate the number of pixels that, where the absolute
value of the x derivative estimated by forward differences Ge., 4, ; — Ii. D, is greater than 3.

8.2. Each pixel value in 500 : 500 pixel image 7 is an independent, normally distributed random variable
with zero mean and stan fard deviation one. 7 is convolved with the 2k + 1 x 2k + 1 kernel G. What
is the covariance of pixe values in the result? There are two ways to do this; on a case-by-case basis
(e.g., at points that are g eater than 2k + 1 apart in either thé x or y direction, the values are clearly
independent) or in one fi |l swoop. Don’t worry about the pixel values at the boundary.

8.3. We have a camera that ¢z 1 produce output values that are integers in the range from O to 255. Its spatial
resolution is 1024 by 76¢ pixels, and it produces 30 frames a second. We point it at a scene that, in the
absence of noise, would iroduce the constant value 128. The output of the camera is subject to noise
that we model as zero mr :an stationary additive Gaussian noise with a standard deviation of 1. How
long must we wait befor the noise model predicts that we should see a pixel with a negative value?
(Hint: You may find it he >ful to use logarithms to compute the answer as a straightforward evaluation
of exp(—128%/2) will yi 1d 0; the trick is to get the large positive and large negative logarithms to
cancel.)

8.4. We said a sensible 2D a alogue to the 1D second derivative must be rotationally invariant in Sec-
tion 8.3.1. Why is this tr :?

Programming Assi nments

8.5. Why is it necessary to che zk that the gradient magnitude is large at zero crossings of the Laplacian of
an image? Demonstrate a series of edges for which this test is significant.

8.6. The Laplacian of a Gauss in looks similar to the difference between two Gaussians at different scales.
Compare these two kerne 3 for various values of the two scales. Which choices give a good approxi-
mation? How significanti the approximation error in edge finding using a zero-crossing approach?

,
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8.7. Obtain an in plementation of Canny’s edge detector (you could try the vision home page; MATLAB
has an impl¢ nentation in the image processing toolbox, too) and make a series of images indicating
the effects ¢ * scale and contrast thresholds on the edges that are detected. How easy is it to set up
the edge det ctor to mark only object boundaries? Can you think of applications where this would be
easy? )

8.8. Itis quite ez sy to defeat hysteresis in edge detectors that implement it—essentially, one sets the lower
and higher hresholds to have the same value. Use this trick to compare the behavior of an edge
detector wi' 1.and without hysteresis. There are a variety of issues to look at:

(a) What a e you trying to do with the edge detector output? It is sometimes helpful to have linked
chains f edge points. Does hysteresis help significantly here?

(b) Noise uppression: We often wish to force edge detectors to ignore some edge points and mark
others. One diagnostic that an edge is useful is high contrast (it is by no means reliable). How
reliabl can you use hysteresis to suppress jow-contrast edges without breaking high-contrast
edges’
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