/

Linear Filters

Pictures ol zebras and of dalmatians have black and white pixels, and in about the same number,
too. The ¢ ifferences between the two have to do with the characteristic appearance of small
groups of Hdixels, rather than individual pixel values. In this chapter, we introduce methods for
obtaining - lescriptions of the appearance of a small group of pixels.

Our main strategy is to use weighted sums of pixel values using different patterns of
weights tc find different image patterns. Despite its simplicity, this process is extremely useful.
It allows 1 s to smooth noise in images, and to find edges and other image patterns.

7.1 LINEAR FILTERS AND CONVOLUTION

Many imj ortant effects can be modeled with a simple model. Construct a new array, the same
size as the image. Fill each location of this new array with a weighted sum of the pixel values
from the ocations surrounding the corresponding location in the image using the same set of
weights e :ch time: Different sets of weights could be used to represent different processes. One
example ‘s computing a local average taken over a fixed region. We could average all pixels

136

Linear Filters Chap. 7
large at the enter and fell off sharply as the distance from the center increased to model the kind
of smoothir g that occurs in a defocused lens system.

What ver the weights chosen, the output of this procedure is shift-invariant—meaning that
the value of the output depends on the pattern in an image neighborhood, rather than the position
of the neigh sorhood—and /inear—meaning that the output for the sum of two images is the same
as the sum « f the outputs obtained for the images separately. The procedure is known as linear
filtering. '

7.1.1 Con rolution

We introduc > some notation at this point. The pattern of weights used for a linear filter is usually
referred to ¢ s the kernel of the filter. The process of applying the filter is usually referred to as
convolution There is a catch: For reasons that will appear later (Section 7.2.1), it is convenient
to write the jrocess in a non-obvious way. In particular, given a filter kernel H, the convalution
of the kerne with image F is an image R. The i. jth component of R is given by

Rij = Z Hi—u,j—vFu,v-
u,v

This proces: defines convolution—we say that has been convolved with F to yield R. You
should look closely at this expression—the “direction” of the dummy variable u (resp. v) has
been reverse 1 compared with correlation. This is important, because if you forget that it is there
you comput - the wrong answer. The reason for the reversal emerges from the derivation of Sec-
tion 7.2.1. Ve carefully avoid inserting the range of the sum; in effect, we assume that the sum is
over a large :nough range of u and v that all nonzero values are taken into account. Furthemmore,
we assume hat any values that haven’t been specified are zero; this means that we can model
the kernel as a small block of nonzero values in a sea of zeros. We use this convention, which is
common, re; ularly in what follows.

Example 7.1 Smoothing by Averaging.

Images typically have the property that the value of a pixel is usually similar to that of its neighbor.
Assum that the image is affected by noise of a form where we can reasonably expect that this
propert / is preserved. For example, there might be occasional dead pixels, or small random numbers
with z¢ -0 mean might have been added to the pixel values. It is natural to attempt to reduce the
effects Hf this noise by replacing each pixel with a wei ghted average of its neighbors, a process often
referrec to as smoothing ot blurring.

1 eplacing each pixel with an unweighted average computed over some fixed region centered
at the p xel is the same as convolution with a kernel that is a block of ones multiplied by a constant.
You ca: (and should) establish this point by close attention to the range of the sum. This process is
a poor 1 10del of blurring—its output does not look like that of a defocused camera (Figure 7.1). The
reason s clear. Assume that we have an image in which every point but the center point was zero,
and the center point was one. If we blur this image by forming an unweighted average at each point,
the resu t looks like a small bright box, but this is not what defocused cameras do. We want a blurring
process that takes a small bright dot to a circularly symmetric region of blur, brighter at the center
than at he edges and fading slowly to darkness. As Figure 7.1 suggests, a set of weights of this form
produce s a much more convincing defocus model.

Example 7.2 Smoothing with a Gaussian,

A good formal model for this fuzzy blob is the symmetric Gaussian kernel

1 (x*+ %)
Golx, y) = 202 P (_T)

Sec. 7.1 Linear Filters and Convolut on - 137

Figur« 7.1 = Although a uniform local average may seem to give a good blurring
model it generates effects not usually seen in defocusing a lens. The images
above sompare the effects of a uniform local average with weighted average.
The in age on the left shows a view of grass. In the center, the result of blurring
this in age using a uniform local model and on the right, the result of blurring
this in age using a set of Gaussian weights. The degree of blurring in each case
is abor t the same, but the uniform average produces a set of narrow vertical and
horizc ital bars—an effect often known as ringing. The bottom row shows the
weigh s used to blur the image, themselves rendered as an image; bright points
repres nt large values and dark points represent small values (in this example,
the sir allest values are zero).

illustrated in Figure 7.2. o is referred to as the standard deviation of the Gaussian (or its “sigma!”);
the units are nterpixel spaces, usually referred to as pixels. The constant term makes the integral over
the whole pl :ne equal to one and is often ignored in smoothing applications. The name comes from
the fact that nis kernel has the form of the probability density for a 2D normal (or Gaussian) random
variable witl a particular covariance.

This « noothing kernel forms a weighted average that weights pixels at its center much more
strongly tha at its boundaries. One can justify this approach qualitatively: Smoothing suppresses
noise by enf »cing the requirement that pixels should look like their neighbors. By downweighting
distant neigl Jors in the average, we can ensure that the requirement thata pixel took like its neighbors

- is less strony ly imposed for distant neighbors. A qualitative analysis gives the following:

* If { 1e standard deviation of the Gaussian is very small—say smaller than one pixel—the
sm othing will have little effect because the weights for all pixels off the center will be
ver y small;

* Fo a larger standard deviation, the neighboring pixets will have larger weights in the
we ghted average, which means in turn that the average will be strongly biased toward a
col sensus of the neighbors—this will be a good estimate of a pixel’s value, and the noise
wi | largely disappear at the cost of some blurring;

* Fii ally, a kernel that has a large standard deviation wiil cause much of the image detail to
dis 1ppear along with the noise.

138

Linear Filters Chap. 7

Figire 7.2 The symmetric Gaussian kernel in 2D. This view shows a kernel
scali d so that its sum is equal to one; this scaling is quite often omitted. The
kern :1 shown has o = 1. Convolution with this kernel forms a weighted average
that itresses the point at the center of the convolution window and incorporates
little contribution from those at the boundary. Notice how the Gaussian is qual-
itati- ely similar to our description of the point spread function of image blur; it
is ci cularly symmetric, has strongest response in the center, and dies away near
the t oundaries.

Notice thal some care must be exercised with o; if o is too small, then only one element of the
array will | ave a nonzero value. If o is large, then k must be large, too, otherwise we are ignoring
contributio s from pixels that should contribute with substantial weight.

Example 7.3 Derivatives and Finite Differences.

Image deri' atives can be approximated using another example of a convolution process. Because

O i G en - fey)
dx €0 €

we might e timate a partial derivative as a symmetric finite difference:

oh
T X b —hioy.

dx

This is the ; ame as a convolution, where the convolution kernel is

6 0 o
H=31 0 -1
00 o0

Sec. 7.1

Linear Filters and Convolution 139

6=0.05 c=0.1

Figure 7.3 ' he top row shows images of a constant mid-gray level corrupted
by additive G .ussian noise. In this noise model, each pixel has a zero-mean nor-
mal random \ ariable added to it. The range of pixel values is from zero to one,
so that the st: ndard deviation of the noise in the first column is about 1/20 of
full range. Th : center row shows the effect of smoothing the corresponding im-
age in the to} row with a Gaussian filter of ¢ one pixel. Notice the annoying
overloading ¢ ~ notation here; there is Gaussian noise and Gaussian filters, and
both have o’s One uses context to keep these two straight, although this is not
always as hel' ful as it could be because Gaussian filters are particularly good at
suppressing C aussian noise. This is because the noise values at each pixel are
independent, neaning that the expected value of their average is going to be the
noise mean. 7 he bottom row shows the effect of smoothing the corresponding
image in the t »p row with a Gaussian filter of o two pixels.

no
smoothing

£ 6=1 pixel

o=2 pixels

Notice that this kern« I could be interpreted as a template: It gives a large positive response to an image
configuration that is positive on one side and negative on the other, and a large negative response to
the mirror image.

As Figure 7.4 suggests, finite differences give a most unsatisfactory estimate of the derivative.
This is because finit: differences respond strongly (i.e., have an output with large magnitude) at fast
changes, and fast ch inges are characteristic of noise. Roughly, this is because image pixels tend to
look like one anothe . For example, if we had bought a discount camera with some pixels that were
stuck at either black Hr white, the output of the finite difference process would be large at those pixels

140

Linear Filters

Chap. 7

Fig ire 7.4 The top row shows estimates of derivatives obtained by fini

fer nces. The image
ce1 ter image Shows

te dif-
at the left shows a detail from a picture of a zebra. The
the partial derivative in the y-direction— which responds

st ngly to horizontal stripes and weakly to vertical stripes—and the right im-

ag shows the partial

derivative in the x-direction— which responds strongly to

ve lical stripes and weakly to horizontal stripes. However, finite differences re-
sp nd strongly to poise. The image at center left shows a detail from a picture
of a zebra; the next image in the row is obtained by adding a random number

w h zero mean and

normal distribution (0 = 0.03—the darkest value in the

in age is 0, and the lightest 1) to each pixel; and the third image is obtained by
ac Jing a random number with zero mean and normal distribution (¢ = 0.09)
tc each pixel. The bottom row shows the partial derivative in the x-direction of
tt > image at the head of the row. Notice how strongly the differentiation process
¢ 1phasizes image noise—the derivative figures look increasingly grainy. In the
d rivative figures, a mid-gray level is a zero value, a dark gray level is a negative
v llue, and a light gray level is a positive value.

becaus¢ they are, in general, substantially different from their neighbors. All this suggests that some
form of smoothing is appropriate before differentiation; the details appear in Sections 8.1 and 8.2.

7.2 SHIFT INVARIANT LINE/ R SYSTEMS

Convolutior represents the effect of a large class of system. In particular, most imaging systems

have, to a god approximation,

three significant properties:

* Sujerposition: We expect that

the . is, the response 1o

R(f +g) = R(f) + R(@®):

the sum of stimuli is the sum of the individual responses.

Sec. 7.2 Shift invariant linear systems . 141

* Scaling: The 1esponse to a zero input is zero. Taken with superposition, we have that
the response t> a scaled stimulus is a scaled version of the response to the original
stimulus—thar is,

R(kf) =kR(f).

A device that >xhibits superposition and scaling is linear.

* Shift invariar ce: In a shift invariant system, the response to a translated stimulus is just
a translation o * the response to the stimulus. This means that, for example, if a view of
a small light a med at the center of the camera is a small bright blob, then if the light is
moved to the | eriphery, we should see the same small bright blob, only translated.

A device that is linear nd shift invariant is known as a shift invariant linear system, or often just
as a system. ¢

The response of 1 shift invariant linear system to a stimulus is obtained by convolution. We
demonstrate this first 1 or systems that take discrete inputs—say vectors or arrays—and produce
discrete outputs. We tt en use this to describe the behavior of systems that operate on continuous
functions of the line Hr the plane, and from this analysis we obtain some useful facts about
convolution.

7.2.1 Discrete Con rolution

In the 1D case, we he ve a shift invariant linear system that takes a vector and responds with a
vector. This case is tt 2 easiest to handle because there are fewer indices to look after. The 2D
case, a system that ta :es an array and responds with an array, follows easily. In each case, we
assume that the input and output are infinite dimensional. This allows us to ignore some minor
issues that arise at the boundaries of the input. We deal with these in Section 7.2.3.

Discrete Con 'olution in One Dimension We have an input vector, f. For conve-
nience, we assume th it the vector is infinite, and its elements are indexed by the integers (i.e.,
there is an element v ith index —1, say). The ith component of this vector is f;. Now f is a
weighted sum of bas s elements. A convenient basis is a set of elements that have a one in a
single component and zeros elsewhere. We write

e =...0,0,0,1,0,0,0,...

This is a data vector tl at has a 1 in the zeroth place, and zeros elsewhere. Define a shift operation,
which takes a vector (> a shifted version of that vector. In particular, the vector Shift(f,) has,
as its jth component, the j — ith component of f. For example, Shift(eo, 1) has a zero in the
first component. Now we can write

f=)_ fishift(eo, i).

We write the responst of our system to a vector f as

; R(f).

Now because the syst 2m is shift invariant, we have

R(Shift(f, k)) = Shift(R(f), k).

Furthermore, because it is linear, we have

R(kf) =kR(). .

142

Linear Filters Chap. 7

This me ins that

R(f) =R (Z fi Shift(eo, i))
= Z R(f; Shift(eo,)
= Z f;R(Shift(eg, i))
= Z f; Shift(R(eo), i))-

This m :ans that, to obtain the system’s response to any data vector, we need to know only its
respon: 2 to eg. This is usually called the system’s impulse response. Assume that the impulse
respon: : can be written as g. We have

R() = Zf,- Shift(g,i) =g* f.

This de fines an operation—the 1D, discrete version of convolution—which we write with a *.
7 his is all very well, but it doesn’t give us a particularly easy expression for the output. If
we cor sider the jth element of R(f), which we write as R;, we must have

R =Y gj-ifis
which :onforms to (and explains the origin of) the form used in Section 7.1.1.
I iscrete Convolution in Two Dimensions We now use an array of values and write

the i, th element of the array D as D;;. The appropriate analogy to an impulse response is the
respon se to a stimulus that looks like

0O 0

0
o= ... O 1 0
0 0 O

f G is the response of the system to this stimulus, the same considerations as for 1D
convo ution yield a response to a stimulus F—that is, :

Rij - ZGi—u,j—vFuvy
u,v

which we write as

R =G *xH.

7.2.2 Continuous Convolution

There are shift invariant linear systems that produce a continuous response to a continuous input;
for ex imple, a camera lens takes a set of radiances and produces another set, and many lenses are
appro :imately shift invariant. A brief study of these systems allows us to study the information

Sec. 7.2 Shift invariant linear systems 143

lost by approximating a continuous function—the incoming radiance values across an image
plane—by a discrete f inction—the value at each pixel.

The natural des :ription is in terms of the system’s response to a rather unnatural func-
tion, the §-function, v hich is not a function in formal terms. We do the derivation first in one
dimension to make th¢ notation easier.

Convolution il One Dimension We obtain an expression for the response of a con-
tinuous shift invariant linear system from our expression for a discrete system. We can take a
discrete input and rep ace each value with a box straddling the value; this gives a continuous
input function. We the | make the boxes narrower and consider what happens in the limit.

Our system take s a function of one dimension and returns a function of one dimension.
Again, we write the 1 :sponse of the system to some input f(x) as R(f); when we need to
emphasize that f is a { inction, we write R(f(x)). The response is also a Junction; occasionally,
when we need to empl iasize this fact, we write R(f)(u). We can express the linearity property
in this notation by writ ng

R(kf) = kR(f)

(for k£ some constant) : nd the shift invariance property by introducing a Shift operat;)r, which
takes functions to func ions:

Shift(f,¢c) = f(u - c).
With this Shift operat >, we can write the shift invariance property as
R(Shift(f, c)) = Shift(R(f), c).
We define the box func ion as:

_J 0 absix) >
boxe(x) = { 1 abs(x) <

BHMNDIIM

The value of box,(€/2) does not matter for our purposes. The input function is f(x). We con- T
struct an even grid of f»ints x;, where Xi+1 — X; = €. We now construct a vector f whose ith
component (written f;) is f(x;). This vector can be used to represent the function.
We obtain an apy roximate representation of f by X, fiShift(box,., x;). We apply this
input to a shift invarian linear system; the response is a weighted sum of shifted responses to
box functions. This me: ns that

R()_ i shift(box,, x;)) = > R(f; Shift(box,, x;))

=" fiR(Shift(box,, x;))

i
=Y fishift (R (bzx‘ e) ,x,-) |
=Y fishift (R (bzx‘) ,x,~> c. ‘;

“So far, everything has fi lowed our derivation for discrete functions. We now have something
that Iooks like an approx mate integral if e — 0.

144

Linear Filters Chap. 7

We introduc = a new device, called a §-function, to deal with the term box, /€. Define

d.(x) = box.(x) '

The §-function is:

8(x) = lim de (x).

We don’t attempt o evaluate this limit, so we need not discuss the value of §(0). One interesting

feature of this fu ction is that, for practical shift invariant linear systems, the response of the.

system to a 8-fun tion exists and has compact support (i.e., is zero except on a finite number of
intervals of finite zngth). For example, a good model of a §-function in 2D is an extremely small,
extremely bright * ight. If we make the light smaller and brighter while ensuring the total energy
is constant, we ex >ect to see a small but finite spot due to the defocus of the lens. The é-function
is the natural anal »gue for eg in the continuous case.

This means that the expression for the response of the system,

> fishift (R (bixe) ,xi) €,

turns into an intey ral as € limits to zero. We obtain

R(f) = f [RG)w — x)) fx')dx’

= fg(u —xYf(x)dx',

where we have w ‘itten R(8)—which is usually called the impulse response of the system—as
g and have omitt« d the limits of the integral. These integrals could be from —o0 to oo, but more
stringent limits cc uld apply if g and h have compact support. This operation is called convolution
(again), and we v rite the foregoing expression as

R(f)=(g*[).

Convolution is s° mmetric, meaning

(g *h)(x) = (hx g)x).

Convolution is as jociative, meaning that

(f*(g*xh)=(f=*g)*h).

This latter proper y means that we can find a single shift invariant linear system that behaves like
the composition « f two different systems. This comes in useful when we discuss sampling.

Convoluti>n in Two Dimensions The derivation of convolution in two dimensions
requires more no ation. A box function is now given by box2(x, y) = box.(x)box.(y); we now
have

box_ 2 (x,
de(x,y)z——i(2 y).

The 8-function is the limit of d.(x, y) function as € — 0. Finally, there are more terms in the
sum. All this acti "ity results in the expression

[

Spatial Frequency and Fou ier Transforms 145

R(h)(x,y) = //g(x —x',y = yHh(x', y")dx dy

= (g *xh)(x, y),

where we have us «d two #s to indicate a two-dimensional convolution. Convolution in 2D is
symmetric, meanin 3 that

(g % #h) = (h % xg)
and associative, m :aning that

((f * %) * xh) = (f * *(g * xh)).

A natural model fc r the impulse response of a two-dimensional system is to think of the pattern
seen in a camera v ewing a very small, distant light source (which subtends a very small viewing
angle). In practice lenses, this view results in some form of fuzzy blob, justifying the name
point spread func tion, which is often used for the impulse response of a 2D system. The point
spread function of a linear system is often known as its kernel.

7.2.3 Edge Effe :ts in Discrete Convolutions

In practical syster s, we cannot have infinite arrays of data. This means that when we compute
the convolution, v e need to contend with the edges of the image; at the edges, there are pixel
locations where ¢ mputing the value of the convolved image requires image values that don’t
exist. There are a -ariety of strategies we can adopt:

* Ignore th :se locations—this means that we report only values for which every required
image loc ation exists. This has the advantage of probity, but the disadvantage that the
output is ;maller than the input. Repeated convolutions can cause the image to shrink
quite dras ically.

* Pad the mage with constant values—this means that, as we look at output values
closer to 1 1e edge of the image, the extent to which the output of the convolution depends
on the im ge goes down. This is a convenient trick because we can ensure that the image
doesn’t sl rink, but it has the disadvantage that it can create the appearance of substantial
gradients near the boundary.

* Pad the mage in some other way—for example, we might think of the image as a
doubly p riodic function so that if we have an n x m image, then column m + 1—
required 1 or the purposes of convolution—would be the same as column m — 1. This can
create the appearance of substantial second derivative values near the boundary.

7.3 SPATIAL FREQUENCY AND | ‘'OURIER TRANSFORMS

We have used the trick of thinking of a signal g(x, y) as a weighted sum of a large (or infinite)
number of small or infinitely small) box functions. This model emphasizes that a signal is an
element of a vect rr space—the box functions form a convenient basis, and the weights are co-
efficients on this asis. We need a new technique to deal with two related problems so far left
open:

* Althougt it is clear that a discrete image version cannot represent the full information in
a signal, ve have not yet indicated what is lost;

146

Linear Filters Chap. 7

e Itis clea that we cannot shrink an image simply by taking every kth pixel—this could '
turn a ch :ckerboard image all white or all black—and we should like to know how to
shrink ar image safely.

All of these prol lems are related to the presence of fast changes in an image. For example,
shrinking an ima e is most likely to miss fast effects because they could slip between samples;
similarly, the der vative is large at fast changes.

These effe ts can be studied by a change of basis. We change the basis to be a set of
sinusoids and ref resent the signal as an infinite weighted sum of an infinite number of sinusoids.
This means that 1 1st changes in the signal are obvious, because they correspond to large amounts
of high-frequenc - sinusoids in the new basis.

7.3.1 Fourier " ransforms

The change of t 1sis is effected by a Fourier transform. We define the Fourier transform of a
signal g(x, y) to be '

Fglx, y)u,v) = // glx, y)e et gx dy.

Assume that ap ropriate technical conditions are true to make this integral exist. It is suffi-
cient for all mc nents of g to be finite; a variety of other possible conditions are available
(Bracewell, 199). The process takes a complex valued function of x, y and returns a complex
valued function Hf u, v (images are complex valued functions with zero imaginary component).

For the m« ment, fix # and v, and let us consider the meaning of the value of the transform
at that point. Th . exponential can be rewritten

eItV — cos(2m (ux + vy)) + i sin(2w (ux + vy)).

These terms are sinusoids on the x, y plane, whose orientation and frequency are given by u, v.
For example, cc nsider the real term, which is constant when ux + vy is constant (i.e., along a
straight line in (1€ x, y plane whose orientation is given by tan6 = v/u). The gradient of this
term is perpend cular to lines where ux + vy is constant, and the frequency of the sinusoid is
uZ + v2. Thes : sinusoids are often referred to as spatial frequency components; a variety are
illustrated in Fij ure 7.5.

The integ al should be seen as a dot product. If we fix « and v, the value of the integral is
the dot product retween a sinusoid in x and y and the original function. This is a useful analogy
because dot pro lucts measure the amount of one vector in the direction of another.

In the san ¢ way, the value of the transform at a particular « and v can be seen as measuring
the amount of tt 2 sinusoid with given frequency and orientation in the signal. The transform takes
a function of x : nd y to the function of u and v whose value at any particular (1, v} is the amount
of that particul: r sinusoid in the original function. This view justifies the model of a Fourier
transform as a ¢ 1ange of basis.

Linearitt The Fourier transform is linear:

F(g(x,y)+h(x,y)) = F(gx, y) + F(hix,y))

and

Fkg(x,y)) = kF(g(x,).

Sec. 7.3 Spatial Frequency and Fouri¢ r Transforms 147

\

Figure 7 5 The real component of Fourier basis elements shown as intensity
images. 1 he brightest point has value one, and the darkest point has value zero.

The dom in is [—1, 1] x [—1, 1], with the origin at the center of the image.
On the Ie ft, (1, v) = (0,0.4); in the center, (4, v) = (1, 2) and on the right
(u, v) = (10, —5). These are sinusoids of various frequencies and orientations

describec in the text.

The Inverse -“ourier Transform It is useful to recover a signal from its Fourier trans-
form. This is anothe change of basis with the form

o

glx,y)= f/ F(gx, y)(u,)@+ gy dy.

—00

Fourier Tran sform Pairs Fourier transforms are known in closed form for a variety
of useful cases; a lar; e set of examples appears in Bracewell (1995). We list a few in Table 7.1 for
reference. The last 1 ne of Table 7.1 contains the convolution theorem; convolution in the signal
domain is the same 1s multiplication in the Fourier domain. We use this important fact several
times in what follow ; (Section 9.2.2).

Phase and N lagnitude The Fourier transform consists of a real and a complex com- L;
ponent:

F(gx,y))(u,v) = // g(x, y)cos(2m(ux + vy))dx dy

+if/ g(x, y)sin(2mw(ux + vy))dxdy

=RF(@) +i *I(F(g)
= Fr(g) +i x Fr(g).

It is usually inconve ient to draw complex functions of the plane. One solution is to plot Fr(g)
and F;(g) separatel; ; another is to consider the magnitude and phase of the complex functions,
and to plot these in: tead. These are then called the magnitude spectrum and phase spectrum,
respectively.

The value of t e Fourier transform of a function at a particular u, v point depends on the
whole function. Thi is obvious from the definition because the domain of the integral is the
whole domain of the function. It leads to some subtle properties, however. First, a local change
in the function (e.g.. zeroing out a block of points) is going to lead to a change at every point
in the Fourier transi orm. This means that the Fourier transform is quite difficult to use as a

148

Linear Filters

Chap. 7

TABLE 7.1 A\ ariety of functions of two dimensions and their Fourier transforms. This table can
be used in two directions (with appropriate substitutions for u, v and x, y) because the Fourier
transform of th : Fourier transform of a function is the function. Observant readers may suspect
that the results on infinite sums of & functions contradict the linearity of Fourier transforms. By
careful inspect on of limits, it is possible to show that they do not (see, e.g., Bracewell, 1995).
Observant rea lers may also have noted that an expression for (%) can be obtained by

combining twc lines of this table.

[" Function

Fourier transform

]

g(x, y)

o
j‘f g(x‘ y)e—iZn(ux+vy) dx dy

[e0]
[f 7 (gx, M) (u, v)e?™“+ dudv
—o0

Fglx, y) (. v)

8(x,y) 1
Ly uF (), v)
0.8(x+a,y)+058(x—a,y) cos 2mwau
e—n(x2+y2) e—n(u2+v2)
box, (x. y) sinu siny
u v
F(fHw/a,v/b)
f(ax, by) _f__a/!_)__/_

IR e el —iy =)

Zio:—-oc Z?:—ooa(u -, v— J)

(f *xg)(x,y)

F(HF(g)(u,v)

fGx—a,y—b

e—iln (au+bv) }‘(f)

f(x 088 — ysinf, x sinf + ycosf)

F(f)Yucosh — vsinf, usind + vcosH)

representatio 1 (e.g., it might be very difficult to tell if a pattern was present in an image just by
looking at th : Fourier transform). Second, the magnitude spectra of images tends to be similar.
This appears to be a fact of nature, rather than something that can be proven axiomatically. As a
result, the m \gnitude spectrum of an image is surprisingly uninformative (see Figure 7.6 for an

example).

7.4 SAMPLING AND ALIASIIIG

The crucial 1 :ason to discuss Fourier transforms is to get some insight into the difference between
discrete and :ontinuous images. In particular, it is clear that some information has been lost when
we work on 1 discrete pixel grid, but what? A good, simple example to think about comes from
an image of 1 checkerboard, and is given in Figure 7.7. The problem has to do with the number
of samples 1:lative to the function; we can formalize this rather precisely given a sufficiently

powerful mc del.

Sampling and Aliasing

149

Figure” .6 The second image in each row shows the log of the magnitude spec-
trum for the first image in the row; the third image shows the phase spectrum
scaled s that —m is dark and 7 is light. The final images are obtained by swap-
ping the magnitude spectra. Although this swap leads to substantial image noise,
it doesn : substantially affect the interpretation of the image, suggesting that the
phase s >ctrum is more important for perception than the magnitude spectrum.

Figure .7 The two checkerboards on the top illustrate a sampling procedure
that apy :ars to be successful (whether it is or not depends on some details that
we will ieal with later). The grey circles represent the samples; if there are suf-
ficient s imples, then the samples represent the detail in the underlying function.
The sar pling procedures shown on the bottom is unequivocally unsuccessful;
the sam les suggest that there are fewer checks than there are. This illustrates
two imy Jrtant phenomena: First, successful sampling schemes sample data often
enough second, unsuccessful sampling schemes cause high-frequency informa-
tion to ¢ opear as lower frequency information.

150

Linear Filters Chap. 7
7.4.1 Samplig

Passing from a continuous function—Tlike the irradiance at the back of a camera system—to a
collection of v: lues on a discrete grid—like the pixel values reported by a camera—is referred
to as sampling. We construct a model that allows us to obtain a precise notion of what is lost in
sampling.

Samplir g in One Dimension Sampling in one dimension takes a function and re-
turns a discrete set of values. The most important case involves sampling on a uniform discrete
grid, and we as ume that the samples are defined at integer points. This means we have a process
that takes some function and returns a vector of values:

sample, ,(f(x)) = f.

We model this sampling process by assuming that the elements of this vector are the values of
the function fix) at the sample points and allowing negative indices to the vector (Figure 7.8).
This means tha the ith component of f is f(x;).

Samplit g in Two Dimensions Sampling in 2D is very similar to sampling in 1D.
Although samy ling can occur on nonregular grids (the best example being the human retina), we
proceed on the 1ssumption that samples are drawn at points with integer coordinates. This yields
a uniform rect ngular grid, which is a good model of most cameras. Our sampled images are
then rectangul: r arrays of finite size (all values outside the grid being zero).

In the fo: mal model, we sample a function of two dimensions, instead of one, yielding an
array (Figure 7 9). This array we allow to have negative indices in both dimensions, and can then
write

sample,,(F(x,y)) = F,

where the i, j h element of the array F is F(x;, y;) = F(, j).

Samples are not always evenly spaced in practical systems. This is quite often due to the
pervasive effec - of television; television screens have an aspect ratio of 4:3 (width:height). Cam-
eras quite ofte1 accommodate this effect by spacing sample points slightly farther apart horizon-
tally than verti -ally (in jargon, they have non-square pixels).

A Conti 'uous Model of a Sampled Signal We need a continuous model of a sam-
pled signal. G nerally, this model is used to evaluate integrals—in particular, taking a Fourier

Samplep

Fij ure 7.8 Sampling in 1D takes a function and returns a vector whose ele-
me 1its are values of that function at the sample points, as the top figures show.
Fo our purposes, it is enough that the sample points be integer values of the
arg 1ment. We allow the vector to be infinite dimensional and have negative as
we | as positive indices.

Lo
el

Sec. 7.4 Sampling and Aliasing 151

Sample,p,
h
®
S)
: A S A B
: P e
: I O R
oo |7 0L b i
> & I P S R N B
[1 i I T T T =7 v
R o b T S
Y RV % IR R
: i e e R A
i [[V 4
\ ‘7 i 7 1 '
2~ ——— L K ke
7 Ve e
e v 4 e
7 e 7z e

Figure 7.¢ Sampling in 2D takes a function and returns an array; again, we
allow the ¢ Tay to be infinite dimensional and to have negative as well as positive
indices.

transform involves in egrating the product of our model with a complex exponential. It is clear
how this integral shot Id behave—the value of the integral should be obtained by adding up val-

ues at each integer po
everywhere except at
has a zero integral.

An appropriate
the § function:

L.

aé

Here we have used th

nt. This means we cannot model a sampled signal as a function that is zero
integer points (where it takes the value of the signal) because this model

sontinuous model of a sampled signal relies on an important property of

o0

d(x;e)f(x)dx

x)f(x)dx =a ling)/
. bar(x; ¢€)

=a lim —T-(f'(x)) dx

00
‘_’Ov/:oo

. X bar(x;e)
=a lim —_—
€—0 .

1==00

= af(0).

(f(ie)bar(x —ie€; €))e

»idea of an integral as the limit of a sum of small strips.

152

Linear Filters Chap. 7

An apy -opriate continuous model of a sampled signal consists of a §-function at each
sample point weighted by the value of the sample at that point. We can obtain this model by
multiplying t 1e sampled signal by a set of s-functions, one at each sample point. In one dimen-
sion, a functi n of this form is called a comb function (because that’s what the graph looks like).
In two dimer sions, a function of this form is called a bed-of-nails function (for the same reason).

Workir g in 2D and assuming that the samples are at integer points, this procedure gets

sample,p(f) = . »_ S DG —i.y=))

i=—00 j=~00

=f(x,y){2 Y 6<x—i,y—j>].

i=—00 j=—00

This functic n is zero except at integer points (because the s-function is zero except at integer
points), and its integral is the sum of the function values at the integer points.

7.4.2 Alia iing

Sampling i volves a loss of information. As this section shows, 2 signal sampled too slowly 1s
misreprese! ted by the samples; high spatial frequency components of the original signal appear
as low spat al frequency components in the sampled signal-—an effect known as aliasing.

The “ourier Transform of a Sampled Signal A sampled signal is given by a prod-
uct of the « riginal signal with a bed-of-nails function. By the convolution theorem, the Fourier
transform « f this product is the convolution of the Fourier transforms of the two functions. This
means that the Fourier transform of a sampled signal is obtained by convolving the Fourier trans-
form of the signal with another bed-of-nails function.

Now convolving a function with a shifted 8-function merely shifts the function (see exer-
cises). Thi : means that the Fourier transform of the sampled signal is the sum of a collection of
shifted ver sions of the Fourier transforms of the signal, that is,

F(s mple,p(f(x,) =F (f(x, ») [Yo 3 sa-iy- j)D

i=—00 j=—00
= F(f(x, y) **F ({ Yooy s-iy- ,-)})
i=—00 j=—00
=3 Fu-iv—),

where we have written the Fourier transform of f(x,y)as F(u,v).

If 11e support of these shifted versions of the Fourier transform of the signal does not
intersect, we can easily reconstruct the signal from the sampled version. We take the sampled
signal, F wurier transform it, and cut out one copy of the Fourier transform of the signal and
Fourier t ansform this back (Figure 7.10).

Hc wever, if the support regions do overlap, we are not able to reconstruct the signal because
we can’t Jetermine the Fourier transform of the signal in the regions of overlap, where different
copies o the Fourier transform will add. This results in a characteristic effect, usually called
aliasing. where high spatial frequencies appear to be low spatial frequencies (see Figure 7.12

Sec. 7.4

Sampling and Aliasing 153

Fourier '
Transform Magnitude
Sign: | > Spectrum
e ——
S mple Copy and
Shift
ampled Fourier .
iignal Transform Magnitude
—_— Spectrum

.

Cut out by
multiplication
with box filter

Accu ately Inverse
Reco: structed Fourier
Signa Transform
- Magnitude
Spectrum
\

——— S -
1

Figure 7.1 The Fourier iransform of the sampled signal consists of a sum
of copies ¢ ' the Fourier transform of the original signal, shifted with respect
to each oth r by the sampling frequency. Two possibilities occur. If the shifted
copies do n it intersect with each other (as in this case), the original signal can be
reconstruct d from the sampled signal (we just cut out one copy of the Fourier
transform : 1d inverse transform it). If they do intersect (as in Figure 7.11), the
intersectiol region is added, and so we cannot obtain a separate copy of the
Fourier tra: sform, and the signal has aliased.

and exercises). Our a1 jument also yields Nyquist’s theorem—the sampling frequency must be at
least twice the highes frequency present for a signal to be reconstructed from a sampled version.

7.4.3 Smoothing ¢ nd Resampling

Nyquist’s theorem m :ans it is dangerous to shrink an image by simply taking every kth pixel
(as Figure 7.12 confi ms). Instead, we need to filter the image so that spatial frequencies above
the new sampling frc quency are removed. We could do this exactly by multiplying the image
Fourier transform by 1 scaled 2D bar function, which would act as a low-pass filter. Equivalently,
we would convolve he image with a kernel of the form (sin x sin y)/(xy). This is a difficult
and expensive (a pol e way of saying impossible) convolution because this function has infinite
support. :

The most inter sting case occurs when we want to halve the width and height of the image.
We assume that the s impled image has no aliasing (because if it did, there would be nothing we

154

Linear Filters Chap. 7

Fourier .
Transform Magnitude
Signal —_— Spectrum
— — - T —>
Sample Copy and
Shift
Sampled Fourier :
Signal Transform Magnitude
— Spectrum
-)
Cut out by
multiplication
with box filter
Inaccurately Inverse
Reconstructed Fourier
Signal Transform -
- Magnitude
Spectrum

—

o) 1

Figure 7.11 The Fourier transform of the sampled signal consists of a sum
of copies of the Fourier transform of the original signal, shifted with respect
to each other by the sampling frequency. Two possibilities occur. If the shifted
copies do not intersect with each other (as in Figure 7.10), the original signal
can be reconstructed from the sampled signal (we just cut out one copy of the
Fourier transform and inverse transform it). If they do intersect (as in this figure),
the intersection region is added, and so we cannot obtain a separate copy of the
Fourier transform, and the signal has aliased. This also explains the tendency of
high spatial frequencies to alias to lower spatial frequencies.

coulc do about it anyway; once an image has been sampled, any aliasing that is going to occur
has I ippened, and there’s not much we can do about it without an image model). This means that
the T >urier transform of the sampled image is going to consist of a set of copies of some Fourier
trans ‘orm, with centers shifted to integer points in u, v space.

If we resample this signal, the copies now have centers on the half-integer points in u,
v sp ce. This means that, to avoid aliasing, we need to apply a filter that strongly reduces the
cont :nt of the original Fourier transform outside the range |u| < 1/2, v < 1/2. Of course, if we
redu e the content of the signal inside this range, we may lose information, too. Now the Fourier
tran: form of a Gaussian is a Gaussian, and Gaussians die away fairly quickly. Thus, if we were
to o nvolve the image with a Gaussian—or multiply its Fourier transform by a Gaussian, which
is th > same thing—we could achieve what we want.

The choice of Gaussian depends on the application; if o is large, there is less aliasing
{bec ause the value of the kernel outside our range is very small), but information is lost because
the ernel is not flat within our range; similarly, if o is small, less information is lost within the

Figure ' .12 The top row shows sampled versions of an image of a grid ob-
tained b multiplying two sinusoids with linearly increasing frequency—one in
x and or :in y. The other images in the series are obtained by resampling by fac-
tors of t ‘o without smoothing (i.c., the next is a 128x 128, then a 64x64, etc., all
scaled tc the same size). Note the substantial aliasing; high spatial frequencies
alias do' 'n to low spatial frequencies, and the smallest image is an extremely
poor rep esentation of the large image. The bottom row shows the magnitude of
the Four 2r transform of each image displayed as a log to compress the intensity
scale. Tt = constant component is at the center. Notice that the Fourier transform
of a resa npled image is obtained by scaling the Fourier transform of the origi-
nal imag : and then tiling the plane. Interference between copies of the original
Fourier t ansform means that we cannot recover its value at some points; this is
the mect anism underlying aliasing.

256 X 256 128 X 128 64 X 64 32 x32 16 X 16

Figure 7. (3 Top: Resampled versions of the image of Figure 7.12, again by
factors of two, but this time each image is smoothed with a Gaussian of o one
pixel befi re resampling. This filter is a low-pass filter, and so suppresses high
spatial fre juency components, reducing aliasing. Bottom: The effect of the low-
pass filter is easily seen in these log-magnitude images; the Jow-pass filter sup-

presses th : high spatial frequency components so that components interfere less
to reduce iliasing.

156 ' Linear Filters ~ Chap. 7

128 % 128 64 X 64 32X 32 16 X 16

Figure 7.14 Top: Resampled versions of the image of Figure 7.12, again by
factors of two, but this time each image is smoothed with a Gaussian of o two
pixels before resampling. This filter suppresses high spatial frequency compo-
nents more aggressively than that of Figure 7.13. Bottom: The effect of the
low-pass filter is easily seen in these log-magnitude images; the low-pass filter
suppresses the high spatial frequency components so that components interfere
less, to reduce aliasing.

range, but aliasing can be more substantial. Figures 7.13 and 7.14 illustrate the effects of different
choices ol 0.

We nave been using a Gaussian as a low-pass filter because its response at high spatial
frequenci s is low and at low spatial frequencies is high. In fact, the Gaussian is nota particularly
good low pass filter. What one wants is 2 filter whose response is pretty close to constant for
some ran ¢ of low spatial frequencies— the pass band—and whose 1esponse is also pretty close
to consta 1t—and zero—for higher spatial frequencies—the stop band. It is possible to design
Jlow-pass filters that are significantly better than Gaussians. The design process involves detailed ‘
compron ise between criteria of ripple—how flat is the respnse in the pass band and the stop
band?— nd roll-off—how quickly does the response fall to zero and stay there? The basic steps .
for resar (pling an image are given in Algorithm 7.1.

Factor of Two

Alggo -ithm 7.1: Subsampling an Image by a

App y a low-pass filter to the original image
(a Gaussian with a o of between one
ar 4 two pixels is usually an acceptable choice).
Cre: le a new image whose dimensions on edge are half
tt »se of the old image
Set he value of the i, jth pixel of the new image to the value
o the 2i, 2jth pixel of the filtered image

Sec. 7.5, Filters as Templates 157
7.5 FILTERS AS TEMPLATES |

It turns out that filters of ‘er a natural mechanism for finding simple patterns because filters re-
spond most strongly to f itern elements that look like the filter. For example, smoothed deriva-
tive filters are intended t« give a strong response at a point where the derivative is large. At these
points, the kernel of the 1 lter looks like the effect it is intended to detect. The x-derivative filters
look like a vertical light Hlob next to a vertical dark blob (an arrangement where there is a large
x-derivative), and so on.

It is generally the ase that filters intended to give a strong response to a patern look like
that pattern (Figure 7.15 . This is a simple geometric result.

7.5.1 Convolution as a Dot Product

Recall from Section 7.1. | that, for G the kernel of some linear filter, the response of this filter to
an image H is given by:

Rij = Z Gi—u,j—vHuv-

v

Now consider the respo: se of a filter at the point where i and j are zero. This is

R = Z G—u,—vHu.v~

78]

This response is ¢ dtained by associating image elements with filter kernel elements, multi-

plying the associated ele ments, and summing. We could scan the image into a vector, and the filter i :
kernel into another vect i, in such a way that associated elements are in the same component. By ,
- inserting zeros as need¢ 4, we can ensure that these two vectors have the same dimension. Once " :
this is done, the proces: of multiplying associated elements and summing is precisely the same
as taking a dot product. i

This is a powerfi | analogy because this dot product, like any other, achieves its largest
value when the vector representing the image is parallel to the vector representing the filter

Figure 7.1¢ Filter kernels look like the effects they are intended to detect. On
the left, a s 100thed derivative of Gaussian filter that looks for large changes in
the x-direct on (such as a dark blob next to alight blob); on the right, a smoothed
derivative o 'Gaussian filter that looks for large changes in the y-direction.

158

7.6 TECHNIQUE:

Linear Filters Chap. 7

kernel. This mez ns that a filter responds most strongly when it encounters an image pattern that
looks like the fil er. The response of a filter gets stronger as a region gets brighter, too.

Now cons der the response of the image to a filter at some other point. Nothing significant
about our mode has changed. Again, we can scan the image into one vector and the filter kernel
into another vec of, such that associated elements lie in the same components. Again, the result
of applying this filter is 2 dot product. There are two useful ways to think about this dot product.

7.5.2 Changi 1g Basis

We can think o *convolution as a dot product between the image and a different vector at each
point (because ve have moved the filter kernel to lie over some other point in the image). The
new vector is ¢ btained by rearranging the old one so that the elements lie in the right compo-
nents to make ne sum work out. This means that, by convolving an image with a filter, we are
representing th > image on a new basis of the vector space of images—the basis given by the
different shifte | versions of the filter. The original basis elements were vectors with a zero in all
slots except on :. The new basis elements are shifted versions of a single pattern.

For man s of the kernels discussed, we expect that this process will lose information—
for the same r ason that smoothing suppresses noise—so that the coefficients on this basis are
redundant. W1 ile the coefficients may be redundant, they expose image structure in a useful
way. This basis transformation is valuable in texture analysis. Typically, we choose a basis that
consists of sm ill, useful pattern components. Large values of the basis coefficients suggest that
a pattern com| onent is present, and texture can be represented by representing the relationships
between these pattern components, usually with some form of probability model.

NORMALIZ! D CORRELATION AND FINDING PATTERNS

We can think of convolution as comparing a filter with a patch of image centered at the point
whose respor se we are looking at. In this view, the image neighborhood corresponding to the
filter kernel i . scanned into a vector that is compared with the filter kernel. By itself, this dot
product is a [oor way to find features because the value may be large simply because the image
region is brig nt. By analogy with vectors, we are interested in the cosine of the angle between
the filter vec or and the image neighborhood vector; this suggests computing the root sum of
squares of th : relevant image region (the image clements that would lie under the filter kernel)
and dividing he response by that value.

This y zlds a value that is large and positive when the image region looks like the filter
kernel, and s nall and negative when the image region looks like a contrast-reversed version of
the filter ker el. This value could be squared if contrast reversal doesn’t matter. This is a cheap
and effective method for finding patterns, often called normalized correlation.

7.6.1 Conl olling the Television by Finding Hands by Normalized Correlation

It would be iice to have systems that could respond to human gestures. For example, you might
wave at the | ght to get the room illuminated, point at the air conditioning to get the room temper-
ature chang d, or make an appropriate gesture at an annoying politician on television and get a
change in c! annel. In typical consumer applications, there are quite strict limits to the amount of
computatio available, meaning that it is essential that the gesture recognition system be simple.
However, st ch systems are usually quite limited in what they need to do, too.

Coni ‘olling the Television Typically, a user interface is in some state—perhaps a
menu is dis Nlayed—and an event occurs—perhaps a button is pressed on a remote control. This

e . |

Sec. 7.7 Technique: Scale and Image F /ramids ' 159

event causes the inter! ice to change state—a new menu item 1s highlighted, say—and the whole
process continues. In some states, some events cause the system to perform some action—the
channel might change All this means that a state machine is a natural model for a user interface.

One way for vit ion to fit into this model is to provide events. This is good because there
are generally few diff rent kinds of event, and we know what kinds of event the system should
care about in any part; cular state. As a result, the vision system needs only to determine whether
either nothing or one H»f a small number of known kinds of event has occurred. It is quite often
possible to build syste ns that meet these constraints.

A relatively sm: Il set of events is required to simulate a remote control; one needs events
that look like button pi zsses (e.g., to turn the television on or off}, and events that look like pointer
motion (e.g., to increa e the volume; it is possible to do this with buttons, too). With these events,
the television can be t irned on, and an on-screen menu system navigated.

Finding Hands Freeman, Anderson and et al. (1998) produced an interface where an
open hand turns the =zlevision on. This can be robust because all the system needs to do is
determine whether the re is a hand in view. Furthermore, the user will cooperate by holding their
hand up and open. Be« ause the user is expected to be a fairly constant distance from the camera—
so the size of the hand is roughly known, and there is no need to search over scales—and in front
of the television, the i 1age region that needs to be searched to determine whether there is a hand
is quite small.
The hand is hel | up in a fairly standard configuration and orientation to turn the televi-
sion set on, and it ust ally appears at about the same distance from the television (so we know
what it looks like). Tt is means that a normalized correlation score is sufficient to find the hand.
Any points in the cor elation image where the score is high enough correspond to hands. This
approach can be used to control volume and so on, as well as turn the television on and off. To
do so, we need some | otion of where the hand is going—to one side turns the volume up, to the
other turns it down— ind this can be obtained by comparing the position in the previous frame
with that in the currer | frame. The system displays an iconic representation of its interpretation
of hand position so thi user has some feedback as to what the system is doing (Figure 7.16). No-
tice that an attractive i :ature of this approach is that it could be self-calibrating. In this approach,
when you install yow television set, you sit in front of it and show it your hand a few times to :
allow it to get an estin ate of the scale at which the hand appears. ;

7.7 TECHNIQUE: SCALE AND IMAG : PYRAMIDS

Images look quite dif erent at different scales. For example, the zebra’s muzzle in Figure 7.17
can be described in te: ms of individual hairs—which might be coded in terms of the response of
oriented filters that of >rate at a scale of a small number of pixels—or in terms of the stripes on
the zebra. In the case of the zebra, we would not want to apply large filters to find the stripes.
This is because these flters are inclined to spurious precision—we don’t wish to represent the
disposition of each ha r on the stripe—inconvenient to build, and slow to apply. A more practical

approach than applyin ; large filters is to apply smaller filters to smoothed and resampled versions
of the image.

7.7.1 The Gaussia | Pyramid

An image pyramid is ; collection of representations of an image. The name comes from a visual
analogy. Typically, ea h layer of the pyramid is half the width and half the height of the previous
layer; if we were to st ck the layers on top of each other, a pyramid would result. In a Gaussian

160

Linear Filters Chap. 7

Figu e 7.16 Examples of Freeman et al.’s system controlling a television set.
Each state is illustrated with what the television sees on the left and what the
user ees on the right. In (a), the television is asleep, but a process is watching
the u er. An open hand causes the television to come on and show its user inter-
face ranel (b). Focus on the panel tracks the movement of the user’s open hand
in (c , and the user can change channel by using this tracking to move an icon
on tt : screen in (d). Finally, the user displays a closed hand in (e) to turn off
the s t. Reprinted from “Computer Vision for Interactive Computer Graphics,”
by W Freeman et al., IEEE Computer Graphics and Applications, 1998 © 1998
IEEI

Algorithm 7 2: Forming a Gaussian Pyramid

Set the finest scale layer to the image

For each layt t, going from next to finest to coarsest
Obtain thi; layer by smoothing the next finest
layer with 1 Gaussian, and then subsampling it

end

pyramid, each ayer is smoothed by a symmetric Gaussian kernel and resampled to get the next
layer (Figure 7. 7). These pyramids are most convenient if the image dimensions are a power of
two or a multip. 3 of a power of two. The smallest image is the most heavily smoothed; the layers
are often referrc d to as coarse scale versions of the image.

With a lit e notation, we can write simple expressions for the layers of a Gaussian pyramid.
The operator S downsamples an image; in particular, the j, kth element of § Y(T) is the 2, 2kth
element of Z. T 1e nth level of a pyramid P(Z) is denoted P(Z),. With this notation, we have

Sec. 7.7 Teéhnique: Scale and Image Pyramids 161

512 256 128 64 32 16 8

Figure ' .17 A Gaussian pyramid of images running from 512x512 to 8x8. On
the top ow, we have shown each image at the same size (so that some have

. bigger 1 xels than others), and the lower part of the figure shows the images to
scale. N itice that if we convolve each image with a fixed size filter, it responds to
quite dii ‘erent phenomena. An 8x8 pixel block at the finest scale might contain a
few hair 5; at a coarser scale, it might contain an entire stripe; and at the coarsest
scale, it -ontains the animal’s muzzle.

PGaus;ian(I)n+l = Sl(Ga * *PGaussian(I)n)
= SlGn(PGaussian(I)n)

(where we have wi tten G, for the linear operator that takes an image to the convolution of that
image with a Gaus ian). The finest scale layer is the original image:

PGaussian(I)] =17.

7.7.2 Applicatio 1s of Scaled Representations

. Gaussian pyramids are useful because they make it possible to extract representations of different
types of structure i 1 an image. There are three standard applications.

Search ove r Scale Numerous objects can be represented as small image patterns. A
standard example i ; a frontal view of a face. Typically, at low resolution, frontal views of faces
have a quite distir ctive pattern: The eyes form dark pools, under a dark bar (the eyebrows),

162

7.8 NOTES

Linear Filters Chap. 7

separated by a ighter bar (specular reflections from the nose), and above a dark bar (the mouth).
There are varic us methods for finding faces that exploit these properties (see chapter 22). These
methods all as sume that the face lies in a small range of scales. All other faces are found by
searching a py -amid. To find bigger faces, we look at coarser scale layers, and to find smaller
faces we look i finer scale layers. This useful trick applies to many different kinds of feature, as
we see in the ¢ hapters that follow.

Spatial Search One application is spatial search, a common theme in computer vision.
Typically, we have a point in one image and are trying to find a point in a second image that
corresponds t » it. This problem occurs in stereopsis—where the point has moved because the
two images a e obtained from different viewing positions—and in motion analysis—where the
image point h 1s moved cither because the camera moved or because it is on a moving object.

Searchi 1g for a match in the original pairs of images is inefficient because we may have
to wade throt gh a great deal of detail. A better approach, which is now pretty much universal,
is to look for 1 match in a heavily smoothed and resampled image and then refine that match by
looking at inc easingly detailed versions of the image. For example, we might reduce 1024 x 1024
images down to 4 X 4 versions, match those, and then ook at 8 x 8 versions (because we know
a rough matc 1, it is easy to refine it)§ we then look at 16 x 16 versions, and so on, all the way up
to 1024 x 1(24. This gives an extremely efficient search because a step of a single pixel in the
4 x 4 versio | is equivalent to a step of 256 pixels in the 1024 x 1024 version. This strategy is
known as co. ‘rse-to-fine matching.

Featu ‘e Tracking Most features found at coarse levels of smoothing are associated
with large, | igh-contrast image events because for a feature to be marked at a coarse scale a
large pool ¢~ pixels need to agree that it is there. Typically, finding coarse scale phenomena
misestimate both the size and location of a feature. For example, a single pixel error in a coarse-
scale image -epresents a multiple pixel error in a fine-scale image.

At fin : scales, there are many features, some of which are associated with smaller, low-
contrast eve 1ts. One strategy for improving a set of features obtained at a fine scale is to track
features acr ss scales to a coarser scale and accept only the fine scale features that have identifi-
able parents at a coarser scale. This strategy, known as feature tracking in principle, can suppress
features res tlting from textured regions (often referred to as noise) and features resulting from
real noise.

We don’t ¢ aim to be exhaustive in our treatment of linear systems, but it wouldn’t be possible to
read the lit rature on filters in vision without a grasp of the ideas in this chapter. We have given
a fairly str: ightforward account here; more details on these topics can be found in the excellent
books by F racewell (1995), (2000). '

Real ima jing Systems versus Shift Invariant Linear Systems

Imaging s; stems are only approximately linear. Film is not linear—it does not respond to weak
stimuli, ar 1 it saturates for bright stimuli—but one can usually get away with a linear model
within a r asonable range. CCD cameras are linear within a working range. They give a small,
but non ze ‘0 response to a Zero input as a result of thermal noise (which is why astronomers cool
their came ras) and they saturate for very bright stimuli. CCD cameras often contain electronics
that transf >rms their output to make them behave more like film because consumers are used to

Sec. 7.8

Notes

163

film. Shift invariance is approximate as well because lenses tend to distort responses near the
image boundary. Somr : lenses—fish-eye lenses are a good example—are not shift invariant.

Scale

There is a large body of work on scale space and scaled representations. The origins appear to
lie with Witkin (1987 and the idea was developed by Koenderink and van Doorn (1986). Since
then, a huge literature has sprung up (one might start with ter Haar Romeny, Florack, Koenderink
and Viergever, 1997 ir Nielsen, Johansen, Olsen and Weickert, 1999). We have given only the
briefest picture here t :cause the analysis tends to be quite tricky. The usefulness of the techniques
is currently hotly deb ited, too.

Anisotropic Scalii g

One important diffict Ity with scale space models is that the symmetric Gaussian smoothing pro-
cess tends to blur out :dges rather too aggressively for comfort. For example, if we have two trees
near one another on @ skyline, the large-scale blobs corresponding to each tree may start merging
before all the small-« zale blobs have finished. This suggests that we should smooth differently
at edge points than a other points. For example, we might make an estimate of the magnitude
and orientation of th : gradient: For large gradients, we would then use an oriented smoothing
operator that smooth :d aggressively perpendicular to the gradient and little along the gradient;
for small gradients, 1 ‘e might use a symmetric smoothing operator. This idea used to be known
as edge-preserving si wothing.

In the modern more formal version, due to Perona and Malik (1990a,b), we notice the
scale space represent wion family is a solution to the diffusion equation

ad 3’d %P
%0 a2y
= Vo,
with the initial condi ion
O(x,y,0)=TI(x,y)
If this equation is m¢ dified to have the form

P
— =V (clx,y,0)VD)
do

=c(x,y,0)V2® + (Ve(x, y,0)) - (VO)

with the same initial :ondition, then if c(x, ¥,) = 1, we have the diffusion equation we started
with, and if ¢(x, y, ¢) = O there is no smoothing. We assume that ¢ does not depend on o. If
we knew where the ¢ iges were in the image, we could construct a mask that consisted of regions
where c(x, ¥) = 1, i olated by patches along the edges where c(x, ¥) = 0; in this case, a solution
would smooth inside each separate region, but not over the edge. Although we do not know where
the edges are — the exercise would be empty if we did—we can obtain reasonable choices of
c(x, y) from the may nitude of the image gradient. If the gradient is large, then ¢ should be small
and vice versa. Ther : is a substantial literature dealing with this approach; a good place to start
is ter Haar Romeny ' 1994).

164

ASSIGNMENTS

PROBLEMS

7.1.

. 7.2

7.3.

7.4.

7.5.

7.6

by

7.7.

7.8.
7.9.

Linear Filters Chap. 7

Show that ‘orming unweighted local averages, which yields an operation of the form

u=i+k v=j+k
1

R.‘jv= k17 Z Z Fu

u=i—k v=j—k

is a convo ution. What is the kernel of this convolution?

Write £ * or an image that consists of all zeros with a single one at the center. Show that convolving
this image with the kernel

1 ((i—k-—l)2+(j—k—l)2)
H;j=mexp(—)

20?

(which is 1 discretised Gaussian) yields a circularly symmetric fuzzy blob.

Show tha convolving an image with a discrete, separable 2D filter kernel is equivalent to convolving
with two 1D filter kernels. Estimate the number of operations saved for an NxN image and a 2k +
1 x 2k + 1 kernel.

Show tha convolving a function with a § function simply reproduces the original function. Now show
that conv lving a function with a shifted § function shifts the function.

We said 1 1at convolving the image with a kernel of the form (sinx sin y)/(xy) is impossible because

this func! on has infinite support. Why would it be impossible to Fourier transformi the image, multiply

the Four »r transform by a box function, and then inverse-Fourier transform the result? Hint: Think
support.

Aliasing akes high spatial frequencies to low spatial frequencies. Explain why the following effects

occur:

(a) In 0! 1 cowboy films that show wagons moving, the wheel often seems to be stationary or moving
in th : wrong direction (i.e., the wagon moves from left to right and the wheel seems to be turning
cow lerclockwise).

(b) Whi e shirts with thin dark pinstripes often generate a shimmering array of colors on television.

(¢) In ¢ y-traced pictures, soft shadows generated by area sources look blocky.

Progr: mming Assignments

One wa! to obtain a Gaussian kernel is to convolve a constant kernel with itself many times. Compare

this stra :gy with evaluating a Gaussian kernel.

(a) Hov many repeated convolutions do you need to get a reasonable approximation? (You need to
esta lish what a reasonable approximation is; you might plot the quality of the approximation
aga 1st the number of repeated convolutions).

(b) Are there any benefits that can be obtained like this? (Hint: Not every computer comes with an
FPLU)

Write a srogram that produces a Gaussian pyramid from an image.

A samp 3d Gaussian kernel must alias because the kernel contains components at arbitrarily high spa-
tial freq iencies. Assume that the kernel is sampled on an infinite grid. As the standard deviation gets
smaller. the aliased energy must increase. Plot the energy that aliases against the standard deviation
of the aussian kernel in pixels. Now assume that the Gaussian kernel is given on a 7x7 grid. If the
aliased ‘nergy must be of the same order of magnitude as the error due to truncating the Gaussian,
what is he smallest standard deviation that can be expressed on this grid?

	HP_Sende1.pdf
	HP_Sende2

