
Theorem 1 Suppose algorithm A finds a hypothesis hA ∈ H that is consistent with all N
training examples (i.e., has training error zero). Then with probability at least 1 − δ

err(hA) ≤
ln |H| + ln(1/δ)

N
.

Proof: Let

ε =
ln |H| + ln(1/δ)

N
,

and let us say that a hypothesis h is ε-bad if err(h) > ε. The goal is to show that hA is not
ε-bad (with probability at least 1 − δ). That is, we want to show that

Pr [hA not ε-bad] ≥ 1 − δ

or equivalently
Pr [hA is ε-bad] ≤ δ.

We know that hA is consistent with the training data. Thus,

Pr [hA is ε-bad] = Pr [hA is consistent and ε-bad]

≤ Pr [∃h ∈ H : h is consistent and ε-bad]

= Pr [∃h ∈ B : h is consistent]

= Pr
[

h1 consistent ∨ · · · ∨ h|B| consistent
]

≤ Pr [h1 consistent] + · · · + Pr
[

h|B| consistent
]

.

Here, B is the set of all ε-bad hypotheses, which we list explicitly as h1, . . . , h|B|. That is,

B = {h ∈ H : h is ε-bad}

= {h1, . . . , h|B|}.

Let h be any hypothesis in B. Then

Pr [h consistent] = Pr [h(x1) = f(x1) ∧ · · · ∧ h(xN ) = f(xN )]

= Pr [h(x1) = f(x1)] · · · · · Pr [h(xN ) = f(xN)]

≤ (1 − ε)N .

So, continuing the derivation above,

Pr [hA is ε-bad] ≤ |B| · (1 − ε)N

≤ |H| · (1 − ε)N

≤ |H| · e−εm

= δ.


