
COS 340: Reasoning About Computation∗

Hashing

Speaker: Moses Charikar, Scribe(s): Moses Charikar

October 17, 2007

Summary: In these notes, we analyze hashing, construct hash functions with good
properties and discuss some novel applications of hash functions.

1 Introduction

A hash table is a commonly used data structure to store a set of items, allowing fast inserts, lookups
and deletes. Every item consists of a unique identifier called a key and a piece of information. For
example, the key might be a Social Security Number, a driver’s licence number, or an employee ID
number. For our purposes, we focus only on the key.

Recall that the operations we would like to support are:

1. Insert(k): Insert key k into the hash table.

2. Lookup(k): Check if key k is present in the table.

3. Delete(k): Delete the key k from the table.

Let U be the universe of all keys. For example, U could be the set of all 64 bit strings. In this
case |U | = 264. Consider a hash table of size n. The keys are mapped to locations (also called
buckets) in the hash table by a hash function h : U → [n]. Multiple keys could map to the same
hash bucket. For every bucket in the table, we maintain a linked list of all the keys that map to
that bucket. Note that the actual subset of keys stored in the hash table is much smaller than the
size of the universe. The hash table size is usually chosen so that the size of the hash table is at
least as large as the maximum number of keys we will need to store at any point of time. (If this
condition is violated and the number of keys stored grows much larger than the size of the hash
table, an implementation will usually increase the size of the table, and recompute the new table
from scratch by mapping all keys to the bigger table. Our analyis ignores these complications and
assumes that the number of keys is at most the hash table size).

The time required to perform an Insert, Lookup or Delete operation on key k is linear in
the length of the linked list for the bucket that key k maps to. (Note that an Insert could be
performed in constant time by always inserting at the head of the list, but we first need to check
if key k is already present).

∗ Princeton University, Fall 2007.

1

In order for the operations to be implemented efficiently, we would like the keys to be distributed
uniformly amongst the buckets in the hash table. We might hope that all buckets have at most a
constant number of keys mapped to them, so that all operations could be performed in constant
time. What hash function should we pick and what kind of guarantees can we give for running
times of the hash table operations ? For any fixed choice hash function h, one can always produce
a subset of keys S such that all keys in S are mapped to the same location in the hash table. In
this case, the running times of all operations will be linear in the number of keys – far from the
constant we were hoping for. Thus, for a fixed hash function h, it is impossible to give worst case
guarantees running times on hash table operations.

There are two styles of analysis that we could use to circumvent this problem:

1. Assume that the set of keys stored in the hash table is random, or

2. Assume that the hash function h is random.

Both are plausible alternatives. The problem with the first alternative is that it is hard to
justify that the set of keys stored in the hash table is truly random. It would be more satisfying to
have an analysis that works for any subset of keys currently in the hash table. In these notes, we
will explore the second alternative, i.e assume that the hash function h is random.

What does it mean for h to be random ? One possibility is that h is chosen uniformly and
at random from amongst the set of all hash functions h : U → [n]. In fact picking such a hash
function is not really practical. Note that there are n|U | possible hash functions. Representing one
of these hash functions requires log n|U | = |U | log n bits. In fact, this means we need to write down
h(x) for every x ∈ U in order to represent h. That’s a lot of storage space ! Much more than the
size of the set we are trying to store in the hash table. One could optimize this somewhat by only
recording h(x) for all keys x seen so far (and generating h(x) randomly on the fly when a new x
is encountered), but this is impractical too. How would we check if a particular key x has already
been encountered ? Looks like we would need a hash table for that. But wait, isn’t that we set out
to implement ? Overall, it is clear that picking a completely random hash function is completely
impractical.

Despite this, we will analyze hashing assuming that we have a completely random hash function
and then explain how this assumption can be replaced by something that is practical.

1.1 Balls and Bins

A useful abstraction in thinking about hashing with random hash functions is the following exper-
iment: Throw m balls randomly into n bins. (The connection to hashing should be clear: the balls
represent the keys and the bins represent the hash buckets). The balls into bins experiment arises
in several other problems as well, e.g. analysis of load balacing). In the context of hashing, the
following questions arise about the balls and bins experiment:

• How large does m have to be so that with probability greater than 1/2, we have (at least)
two balls in the same bin ? This tells us how large our hash table needs to be to avoid any
collisions.

• Suppose m = n, What is the maximum number of balls that fall into a bin ? This tells us the
size of the largest bucket in the hash table when the number of keys is equal to the number
of buckets in the table.

2

No collisions

The first question is related to the so called birthday paradox: Suppose you have 23 people in a
room. Then the probability that there exists some pair with the same birthday is greater than 1/2
! (This assumes that birthdays are randomly distributed.) 23 seems like an awfully small number
to get a pair with the same birthday. There are 365 days in a year ! How do we explain this
? Consider throwing m balls into n bins. The expected number of pairs that fall into the same
bucket is m(m − 1)/2n. (This follows from linearity of expectation. Note that the probability that
a fixed pair falls into the same bucket is 1/n). Thus the probability that there is a collision is upper
bounded by the expected number of collisions which is m(m − 1)/2n. On the other hand, we can
also show that the probability that all m balls fall into distinct bins is at most e−m(m−1)/2n. For
m about

√
(2 ln 2)n ≈ 1.18

√
n this probability is less than 1/2, i.e. the probability of a collision is

greater than 1/2.
This is a useful principle of keep in mind: If we want to design a hash table with no collisions,

then the size of the hash table should be larger than the square of the number of elements we need
to store in it.

Here is an application of this birthday problem calculation: Suppose we assign random b bit
IDs to m users. How large does b have to be to ensure that all users have distinct IDs with
probability 1 − δ. Here δ > 0 is a given error tolerance. Assigning b bit IDs is identical to mapping
to n = 2bbuckets. The birthday calculation shows us that the probability of a collision is at most
m2/2n = m2/2b+1. We should set b large enough such that this bound is at most δ. Thus b should
be at least 2 log m − 1 + log(1/δ).

Maximum bin size

Now lets consider the balls and bins experiment with m = n. For a fixed bin B, the expected
load on B (i.e the number of balls that map to B) is 1. (This is easy to compute by linearity of
expectation. Note that the probability that the ith ball maps to B is 1/n).

By Chernoff bounds, the probability that the load on B exceeds c is at most ec ln c−c+1. We would
like to pick c large enough such that with high probability, none of the n bins have load exceeding
c. What does high probability mean ? Let’s say we would like this event (no bin with large load)
to happen with probability at least 1−1/n. In order to do this, we set ec ln c−c+1 ≤ 1/n2. Applying
union bound over the n bins, we see that the probability that some bin hash load exceeding c is at
most nec ln c−c+1 ≤ 1/n. How large does c need to be ? c = ln n certainly works (for large enough
n), but this is overkill. It turns out that c = e ln n

ln ln n suffices. We conclude that with probability
1 − 1/n, no bin has load exceeding e ln n

ln ln n .

1.2 Expected cost for hashing

Let’s return to the analysis of hashing, continuing with the (impractical) assumption that the hash
function h is completely random. What is the expected cost of performing any of the operations
Insert, Lookup or Delete ? Suppose that the keys currently in the hash table are k1, . . . , kn.
Consider an operation involving key ki. The cost of the operation is linear in the size of the hash
bucket that ki maps to. Let X be the size of the hash bucket that ki maps to. X is a random

3

variable and

E[X] =
n∑

j=1

Pr[h(xi) = h(xj)]

= 1 +
∑
j 6=i

Pr[h(xi) = h(xj)]

= 1 + (n − 1)/n ≤ 2

Here the last step follows from the fact that Pr[h(xi) = h(xj)] = 1/n when h is random.
Thus the expected cost of any hashing operation is a constant.

1.3 A small random like family

Can we retain the expected cost guarantee of the previous section with a much simpler (i.e. practi-
cal) family of hash functions ? Let’s think about what property of random hash functions we used
in the analysis. It turns out that the only fact we used was that Pr[h(xi) = h(xj)] = 1/n. Is it
possible to construct simpler hash functions with this property ?

Thinking along these lines, in 1978, Carter and Wegman introduced the notion of universal
hashing: Consider a family F of hash functions from U to [n]. We say that F is universal if, for a
h chosen randomly from F , Pr[h(xi) = h(xj)] ≤ 1/n.

Clearly the analysis of the previous section shows that for any niversal family, the constant
expected time guarantee applies. The family of al hash functions is clearly universal. Is there a
simpler one ?

It turns out that there is such a family. In order to construct it, we first introduce a clever
construction of a pairwise independent hash function. Recall that U denotes the universe of keys (or
elements) we want to map to locations in the table. Suppose that the elements of the U are encoded
as non-negative integers in the range {0, . . . |U |− 1}. Pick a prime p ≥ |U |. For a, b ∈ {0, . . . p− 1},
consider the family of hash functions ha,b(x) = ax+ b mod p. Note that these hash functions have
domain and range {0, . . . p − 1}.

Consider a hash function h drawn uniformly and at random from this family. We claim that, for
any x1 6= x2, h(x1) and h(x2) are independent. This seems like an amazing property! This implies
that for a set of distinct elements x1, . . . xn, the values h(x1), . . . h(xn) are pairwise independent.

The proof of this claim is not hard. Consider the pair (h(xi), h(xj)). For any (y1, y2) we will
show that there is exactly one h in the family such that h(x1) = y1 and h(x2) = y2.

ax1 + b = y1 mod p

ax2 + b = y2 mod p

We can solve these equations to find a and b, similar to solving linear equations over the reals.
Subtracting the second equation from the first, we get that

a(x1 − x2) = y1 − y2 mod p

This determines a uniquely. Note that x1 −x2 6= 0 is required to ensure that there exists a solution
to the above equation. Now we can substitute this value of a in any of the two equations to get
the value of b. Convince yourself that the values of a, b thus obtained satisfy both the original
congruences modulo p.

4

Note that here are p2 choices of a and b and consequently p2 hash functions h in the family.
Also we argued that the pair (h(x1), h(x2)) ranges over all p2 possible pairs of values (y1, y2). For
any pair (y1, y2), y1, y2 ∈ {0, . . . , p − 1}, Pr[h(x1) = y1, h(x2) = y2] = 1/p2. Thus h(x1) and h(x2)
are independent. Knowing the value of one reveals no information about the other. Although note
that knowing both of them allows us to compute a and b and this determines h completely.

This is a useful family of pairwise independent hash functions to keep in mind and arises in
a number of different settings. We will use it to construct a universal hash family. First a slight
tweak of this family we just introduced: Notice that the choice of a = 0 gives a rather uninteresting
family of hash functions ha,b. For a = 0, ha,b maps all elements to b. Consider instead the family
of hash functions ha,b defined before with the additional restriction a = 0. There are p(p − 1) such
hash functions in this new family. What can we say about the pair (h(x1), h(x2)) as h ranges over
all hash functions in the family ? Similar to the claim we proved before, we can show that, for the
new family, the pair (h(x1), h(x2)) ranges over all p(p − 1) pairs (y1, y2) such that y1 6= y2. In the
proof of the claim before, a = 0 only when y1 = y2.

We aren’t quite done yet, since the new family maps numbers in {0, . . . , p−1} to {0, . . . , p−1},
but we want to map to one of n buckets. Our final hash family is the following:

fa,b(x) = (ax + b mod p)(mod n)

where a, b ∈ {0, . . . , p − 1}, a 6= 0.
We claim that for any x1 6= x2, for f chosen randomly from this family, Pr[f(x1) = f(x2)] ≤ 1/n.

In other words, this is a universal family of hash functions, and clearly much simpler than the family
of all hash functions !

The proof of the above claim appears in the solutions to Precept 4.
Wrapping up the discussion on hashing, if we pick a random hash function from this family,

then the expected cost of any hashing operation is constant. Note that picking a random hash
function simply involves picking a, b – significantly simpler than picking a completely random hash
function.

5

