Example In the next assignment, we may want to find the expected price of oil in December, given an assumption that we know its probability density function \(p(x) \). That's

\[
E[\text{price}] = \int_{-\infty}^{\infty} x \cdot p(x) \, dx
\]

or, say, the probability that the price exceeds a given value \(V \)

\[
\text{prob. \{price exceeds } V \} = \int_{V}^{\infty} p(x) \, dx
\]

If \(p(x) \) is something we can't integrate analytically (Freshman calculus), then we must resort to numerical methods.

Problem goes back 200 years to the masters, Newton, Gauss, Euler!

References used

[Acton 96] "Real Computing Made Real"

- lots of wisdom

[Press et al.] "Numerical Recipes"

[Atkinson 85]

[Ralston & Rabinowitz 78]

Classical Stuff

[Acton 70]
- Numerical integration and interpolation are perhaps the two earliest goals of numerical computation.

- Generally speaking, integration is a smoothing operation, & is relatively insensitive to noise, and forgiving.

- Interpolation is less forgiving
- Differentiation is least forgiving, ... etc.

Our path for the next three assignments is through three central applications of integration:

quadrature \rightarrow ode's \rightarrow pde's

Strategy for Numerical Integration:

\[\int_a^b f(x)\,dx = \text{area under curve} \ f(x) \]

1. Break up interval into pieces of width h

2. Approximate $f(x)$ by a polynomial over a few intervals (degree n, $n+1$ points, n intervals)

3. Integrate these polynomial approximations & add up.

[4. Repeat for smaller h until convergence]
Standard Simple Method: degree 1 polynomials

Trapezoidal Rule

2 points, 1 interval

\[\int_a^b f(x) \, dx \approx \text{area under trapezoid} \]
\[\lambda = \frac{h}{2} (f_a + f_b) \]

"Extended" Version:

\[\begin{align*}
\int_a^b f(x) \, dx &= \frac{h}{2} \left(\frac{1}{2} f_a + \frac{1}{2} f_{a+1} \right) + \frac{h}{2} \left(\frac{1}{2} f_{a+1} + \frac{1}{2} f_{a+2} \right) + \cdots \\
&= h \cdot \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \cdots \frac{1}{2} \right) \left[\text{weights} \right]
\end{align*} \]

→ Don't recompute old ordinates when \(h \) is halved

\[h \text{ sum}_i = \text{solid values, endpoints weighted by } \frac{1}{2} \]
\[\frac{h}{2} \text{ sum}_{i+1} = \text{sum}_i + \text{dotted values} \]

\[\text{save } \frac{h}{2} \]
What's wrong with

\[
\pi_{i+1} = \pi_i + h
\]

Do

\[
\pi_k = (\text{Interval length}) \times k/N \quad k = 0, \ldots, N
\]

Simpson's Rule

the next higher order polynomial

quadratic, 3 points, 2 intervals

\[
\int_{a}^{a+2h} f(x) \, dx \approx \text{area under quadratic}
\]

\[
= \frac{h}{3} \left[f(a) + 4f(a+h) + f(2a+2h) \right]
\]

Composite ("extended") Version:

\[
\frac{h}{3} \begin{bmatrix}
1 & 4 & 1 \\
4 & 1 & 4 \\
1 & 4 & 1 \\
\end{bmatrix}
\]

\[
\frac{h}{3} \begin{bmatrix}
1 & 4 & 2 & 4 & 2 & 4 & \cdots & 4 & 1 \\
\end{bmatrix}
\]

Weights
Re-using points in Simpson's Rule is slightly trickier:

\[\frac{3}{h} A_n = 1 \quad 4 \quad 2 \quad 4 \quad 2 \quad 4 \quad \ldots \quad 4 \quad 1 \]

\[= \frac{1}{B_n} \left(\sum \frac{C_n}{2} \right) + 4 \cdot \text{sum of new ordinates} \]

\[\frac{3}{(h/2)} A_{n+1} = \left[B_n + \frac{C_n}{2} \right] + 4 \cdot \text{sum of new ordinates} \]

Start with

\[\frac{3}{(b-a)/2} A_1 = \frac{1}{B_1} \quad 4 \quad C_1 \quad a \quad b \]

Note that Numerical Recipes [Press et al.] shows how to implement Simpson's Rule using Trapezoidal Rule. (E.g. 4.2.4, etc.)

Additional Refinement: Romberg quadratures: [Acton 96]

<table>
<thead>
<tr>
<th>(k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h/2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h/4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h/8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | \(T_{00} \) | \(R_{11} \) | \(R_{12} \) | \(R_{13} \) | \(R_{22} \) | \(R_{23} \) | \(R_{33} \) |

Computed from \(T_5 \)’s

\[d = \frac{4 \cdot c - 5}{4 \cdot b - 1} \]

Very accurate & efficient if integral reasonably well behaved.
Classical Error Analysis

In one interval:

\[\int_{a}^{b} f(t) \, dt = \frac{h}{2} (f_a + f_b) + E \quad \text{sum} \]

Use Taylor's Series with remainder:

\[f_t = f_a + (t-a) f'_a + \frac{(t-a)^2}{2!} f''_a \]

for some \(a \leq \theta \leq b \)

\[\text{LHS} = \int_{a}^{b} \left[1 \, dt = (b-a) f_a + \frac{(b-a)^2}{2} f'_a + \frac{(b-a)^3}{3!} f''_a \right] \]

\[= \text{RHS} = \frac{h}{2} \left[f_a + f_a + (b-a) f'_a + \frac{(b-a)^2}{2} f''_a \right] + E \]

\[\frac{h}{2} f_a + \frac{h^2}{6} f'_a + \frac{h^3}{4} f''_a = \frac{h^3}{6} f_a + \frac{h^2}{2} f'_a + \frac{h^3}{4} f''_a + E \]

\[\Rightarrow \quad E = - \frac{h^3}{12} f''_a \quad \theta \in [a,b] \]

Extended Rule

\[E_{\text{TOTAL}} = - \frac{h^2}{12} \left[\sum_{i} h f_{\theta_i}'' \right] = - \frac{h^2}{12} (b-a) f''_a \quad \theta \in [a,b] \]

(Uses mean value theorem, see [Atkinson 85])
this predicts that as we continue to halve h,

$$E_{\text{new}} \approx \frac{1}{4} E_{\text{old}}$$

* The derivation assumes f is sufficiently smooth, that higher derivatives used are continuous.

Estimate [Atkinson 85]:

$$E_{\text{TOTAL}} = -\frac{h^2}{12} \left[\sum_{i=1}^{\text{intervals}} h f' \theta_i \right]$$

$$\xrightarrow{h \to 0} \int_a^b f''(x) dx = f'(b) - f'(a)$$

$$E_{\text{TOTAL}} \approx -\frac{h^2}{12} \left[f'(b) - f'(a) \right]$$

Two implications:

1) can be much better if $f'(b) = f'(a)$

2) Suggests correcting result by this estimate.
Corresponding Result for Simpson's Rule

\[E_{\text{TOTAL}} = -\frac{h^4}{90} (b-a) f^{(iv)}(\theta) \quad \theta \in [a, b] \]

\[\approx -\frac{h^4}{90} \left[f''(b) - f''(a) \right] \]

For smooth enough functions, the error is decreased by about \(\frac{1}{2^4} = \frac{1}{16} \) each halving of \(h \).

More Advanced Techniques:

- **Gauss quadrature** uses non-equispaced points.
 - Much more complicated!
 - Much more accurate in appropriate cases.

- **"Open formulas"**
 - Uses only internal points.
Common Problems that require some thought:

\[\int_{A}^{\infty} p(x) \, dx \quad \text{infinite limit} \]

\[\implies \text{I want you to deal with this in Assignment 2. Think!} \]

"Sick" integrals (strongly recommend [Acton 96])

E.g.,

\[I = \int_{0}^{\pi/2} \frac{\cos x}{\sqrt{x}} \, dx \]

But nothing really bad is happening near \(x = 0 \), because

\[\int_{0}^{\pi/2} \frac{1}{\sqrt{x}} \, dx \text{ is finite.} \]

The infinity can be removed; let \(x = u^2 \), \(dx = 2u \, du \)

\[I = \int_{0}^{\pi/2} \frac{\cos(u^2)}{u} \cdot 2u \, du = 2 \int_{0}^{\pi/2} \cos(u^2) \, du \]

\(\sqrt{\text{& logs}} \) can often be fixed this way if they produce an infinity.
Examples of error behavior (Atkinson 85)

\[I^{(1)} = \int_0^1 e^{-x^2} \, dx \approx 0.74682413281234 \]

<table>
<thead>
<tr>
<th># pts.</th>
<th>Error - Trapezoidal</th>
<th>Ratio</th>
<th>Error - Simpson's</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.55E-2</td>
<td></td>
<td>-8.56E-4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.84E-3</td>
<td>4.02</td>
<td>-3.12E-5</td>
<td>11.4</td>
</tr>
<tr>
<td>8</td>
<td>9.59E-4</td>
<td>4.01</td>
<td>-1.99E-6</td>
<td>15.7</td>
</tr>
<tr>
<td>16</td>
<td>2.40E-4</td>
<td>4.00</td>
<td>-1.25E-7</td>
<td>15.9</td>
</tr>
<tr>
<td>32</td>
<td>5.99E-5</td>
<td>4.00</td>
<td>-7.79E-9</td>
<td>16.0</td>
</tr>
</tbody>
</table>

\[I^{(3)} = \int_0^{2\pi} \frac{dx}{2 + \cos(x)} = \frac{2\pi}{\sqrt{3}} \approx 3.6275987284684 \]

<table>
<thead>
<tr>
<th># pts.</th>
<th>Error - Trapezoidal</th>
<th>Ratio</th>
<th>Error - Simpson's</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-5.61E-1</td>
<td></td>
<td>-1.26</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-3.76E-2</td>
<td>14.9</td>
<td>1.77E-1</td>
<td>-9.2</td>
</tr>
<tr>
<td>8</td>
<td>-1.93E-4</td>
<td>195</td>
<td>1.23E-2</td>
<td>11.2</td>
</tr>
<tr>
<td>16</td>
<td>-5.17E-9</td>
<td>37600</td>
<td>6.43E-5</td>
<td>191</td>
</tr>
<tr>
<td>32</td>
<td>* (machine limit)</td>
<td></td>
<td>1.71E-9</td>
<td>37600</td>
</tr>
<tr>
<td>64</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

\[I = \int_0^1 \sqrt{x} \, dx = 2/3 \]

<table>
<thead>
<tr>
<th># pts.</th>
<th>Error - Simpson's</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.860E-2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.012E-2</td>
<td>2.82</td>
</tr>
<tr>
<td>8</td>
<td>3.587E-3</td>
<td>2.83</td>
</tr>
<tr>
<td>16</td>
<td>1.268E-3</td>
<td>2.83</td>
</tr>
</tbody>
</table>
| 32 | 4.485E-4 | 2.83 | ~ bad accuracy...

\[\text{why? so bad} \]