
COS 318 Project 2
Non-Preemptive Scheduling

Precept 2

Agenda

Questions from design review / emails

Miscellaneous

Grading criteria

GDB on bochs (CJ Bell)

Blocking Semantics

When a thread required a LOCKED lock, it gets
blocked, not coming back to ready queue

when a thread releases a lock, it unlocks the first
waiting thread

lock_release() does not imply do_yield()

When a thread is unblocked, it is not executed
until all unblocked tasks at the time have yielded

Example Code
Thread 1:
lock_init(&lock);
lock_acquire(&lock);
do_yield();
lock_release(&lock);
do_exit()

Thread 4:
lock_acquire(&lock);
lock_release(&lock);
do_exit();

Thread 2:
while(TRUE) {
 do_yield();
}

Thread 3:
do_yield();
lock_acquire(&lock);
lock_release(&lock);
do_exit();

Example Code
Thread 1:
lock_init(&lock);
lock_acquire(&lock);
do_yield();
lock_release(&lock);
do_exit()

Thread 4:
lock_acquire(&lock);
lock_release(&lock);
do_exit();

Thread 2:
while(TRUE) {
 do_yield();
}

Thread 3:
do_yield();
lock_acquire(&lock);
lock_release(&lock);
do_exit();

T1 acquires

T4 blocked

Example Code
Thread 1:
lock_init(&lock);
lock_acquire(&lock);
do_yield();
lock_release(&lock);
do_exit()

Thread 4:
lock_acquire(&lock);
lock_release(&lock);
do_exit();

Thread 2:
while(TRUE) {
 do_yield();
}

Thread 3:
do_yield();
lock_acquire(&lock);
lock_release(&lock);
do_exit();

T1 releases
unblocked T4

T3 blocked

T4 releases
unblocked T3

Lock Implementation

Simple lock implementation: LOCKED, UNLOCKED

Do not have to handle deadlock

Think what you should do when:

two threads are blocked waiting for the
same lock? Follow FIFO rule

Some other process tries to acquire the lock
before the unblocked process starts running

PCB

PCBs are statically allocated in memory for
this project

No recycling of memory space of any kind

stack, pcb, locks.....

You may add whatever you feel necessary

start address of a program

kernel thread or user process

Context Switching

kernel_entry()

Used to switch between user process and the kernel for system calls

saves and restores user registers

scheduler_entry()

used to switch between kernel threads and user processes that are in
kernel

saves and restores system registers

yield() system call (in syslib)

goes through kernel_entry() to switch to kernel mode

goes through scheduler_entry() to switch to another process/thread

Example
Process P -> Thread T

yield() system call -> kernel_entry

save registers, load kernel stack (working on kernel stack now)

do_yield()

load user stack, restore user registers

do_yield()

enqueue P to ready queue

scheduler_entry()

save P’s kernel registers

scheduler()

load T’s kernel registers

ret

First time to switch to a task

There is no return address on stack

How do you find where to return to?

ask scheduler to jump to the entry point
of the program if it is the first time to
run

what else?

Inline Assembly

General format:

volatile : _ _asm_ _ volatile

flags: refer to the resource page provided on
project website

_ _asm_ _ (
“instruction”
“instruction”
....
“instruction”
:”=flags”
:”=flags”
:”=flags”
) ;

Grading Criteria
Total: 10 points + 1 extra credit point

Kernel threads and scheduling: 3 points

Processes and system calls: 3 points

Mutual exclusion: 2 points

Timing a context switch: 1 point

Coding style, comments, and README: 1 point

If your program runs on bochs, but does not run on
fishbowl, 1 point penalty at most

GDB for bochs

Thanks, CJ

