COS 318 Project 2
Non-Preemptive Scheduling

Precept 2

Agenda

@ Questions from design review / emails
@ Miscellaneous
@ Grading criteria

® GDB on bochs (CT Bell)

Blocking Semantics

@ When a thread required a LOCKED lock, it gets
blocked, not coming back to ready queue

® when a thread releases a lock, it unlocks the first
waiting thread

@ lock_release() does not imply do_vyield()

® When a thread is unblocked, it is not executed
until all unblocked tasks at the time have yielded

Example Code

Thread 2:
while(TRUE) {
do_vyield();

Thread 1:
lock_init(&lock);

lock_acquire(&lock);

do_vyield();
lock__release(&lock);
do_exit()

Thread 4:
lock_acquire(&lock);

lock__release(&lock);
do__exit();

;

Thread 3:
do_vyield();
lock__acquire(&lock);
lock_release(&lock);
do_exit();

Example Code

Thread 1: Thread 2:

lock_init(&lock); L acqures 7 While(TRUE) {
lock_acquire(&lock); / | do_vyield();
do_yield(); '

lock_release(&lock); |

;

do_exit()

Thread 3:

Thread 4: *do_vield();
lock_acquire(&lock); i lock_acquire(&lock);
lock__release(&lock); lock__release(&lock);
do__exit(); do__exit();

T4 blocked

Example Code

Thread 1: Thread 2:
lock_init(&lock); while(TRUE) {
lock__acquire(&lock); do_yield();
do_yield(); i A
lock_release(&lock); [

do_exit()

Thread 3:
Thread 4: do_vyield();
lock__acquire(&lock);« = blOCkedvlock_acquire(&lock);
lock_release(&lock); |4 reeases lock_release(&lock);

do—ex”_(); unblocked T3 do_ex”_();

Lock Implementation

@ Simple lock implementation: LOCKED, UNLOCKED
@ Do not have to handle deadlock
@ Think what you should do when:

@ two threads are blocked waiting for the
same lock? Follow FIFO rule

@ Some other process tries to acquire the lock
before the unblocked process starts running

PCB

@ PCBs are statically allocated in memory for
this project

@ No recycling of memory space of any kind
@ stack, pcb, locks

@ You may add whatever you feel necessary
@ start address of a program

@ kernel thread or user process

Context Switching

@& kernel_entry()
@ Used to switch between user process and the kernel for system calls
@ saves and restores user registers

@ scheduler_entry()

@ llised ’lro switch between kernel threads and user processes that are in
erne

@ saves and restores system registers
o vyield() system call (in syslib)
@ goes through kernel_entry() to switch to kernel mode

@ goes through scheduler_entry() to switch to another process/thread

Example

@ Process P -> Thread T

o vyield() system call -> kernel_entry
@ save registers, load kernel stack (working on kernel stack now)
@ do_yield()
@ load user stack, restore user registers

@& do_yield()
@ enqueue P fo ready queue
® scheduler_entry()

@ save Ps kernel registers

® scheduler()

@ load T's kernel registers

@ ret

First time to switch to a task

@ There is no return address on stack
@ How do you find where to return to?

@ ask scheduler to jump fo the entry point
of the program if it is the first time to
run

® what else?

Inline Assembly

__asm_ _(
“instruction”
“instruction”

® General format:

“instruction”
:"=flags”
:"=flags”
:"=flags”

)

@ volatile : _ _asm_ _ volatile

@ flags: refer to the resource page provided on
project website

Grading Criferia

@ Total: 10 points + 1 extra credit point

@ Kernel threads and scheduling: 3 points
@ Processes and system calls: 3 points

@ Mutual exclusion: 2 pointfs

@ Timing a context switch: 1 point

@ Coding style, comments, and README: 1 point

@ If your program runs on bochs, but does not run on
fishbowl, 1 point penalty at most

GDB for bochs

@ Thanks, CJ

