
COS 318 PROJECT 2
NON-PREEMPTIVE SCHEDULING

Outline

Project is due at 23:59 on October 13

Design reviews are 19:00 - 22:00 on Oct 6. Sign up !

Today: go through the project, get you started

Next time: design review summary, Q/A

Overview

Target: Building a kernel that can switch between executing
different tasks (task = process or kernel thread)

Read the spec on course website

Your grade will be determined partly on whether you handle
subtle issues correctly. So don’t overlook any aspect.

What you need to deal with?

Process Control Block (PCB)

Context switching procedure

System call mechanism

Stacks

Mutual Exclusion

Process Control Block

kernel.h

What should be in PCB?

pid, stack?

next, previous?

What else?

Processes Example

LifeCOS 318
go_to_class ();

yield();

go_to_precept();

yield();

design_review();

yield();

coding();

exit();

have_fun();

yield();

play();

yield();

do_stuff();

yield();

......

Control Flow

Real lifeCOS 318
go_to_class ();

yield();

go_to_precept();

yield();

design_review();

yield();

coding();

exit();

have_fun();

yield();

play();

yield();

do_stuff();

yield();

......

What is yield()?

yield(): switch to another task

For a task itself, it is a normal function call:

Push a return address on the stack

transfer control to yield()

yield():

do_stuff();

return

Task calling yield() has no knowledge of what do_stuff() is

Isolation

Task must have their own:

registers

stack

...... (for future assignments)

Two techniques to achieve isolation

Division in space: allocate separate resources

Division in time: save and restore contexts

Which one apply here?

Stack and Registers

Allocate separate stacks in _start()

yield():

save registers, including %esp

do_stuff()

restore registers

return

Where are registers stored?

In the process control block (PCB)

The Secret Business Plan
Real lifeCOS 318

go_to_class ();

yield();

.......

yield returns

design_review();

yield();

..........

........

yield returns

have_fun();

yield();

...........

yield returns

do_stuff();

yield();

overlapped calls?

No, they are not

yield() calls appear to be overlapped

Yet yield returns immediately to a different task, not the one that
calls it

Secret plan of yield()?

save registers

find the next task T

restore that task T’s saved registers

return to task T

Find the Next Task

The kernel must keep track of which tasks have not exited yet

The kernel should run the task that has been inactive for long

What is the natural data structure?

Please explain your design in the design review

Threads and Processes

To yield, requires access to the scheduler’s data structures

Kernel threads have access

scheduler.c : do_yield()

User processes should not, but do for this project temporarily

How should they get access?

System Calls

To make a system call, a process:

pushes the call number and arguments onto its stack

interrupt/trap mechanism (later assignment), which
elevates privileges and jumps into the kernel in a controlled
manner

In his project, processes have elevated privileges all the time

Two system calls : yield() and exit()

entry.s: kernel_entry()

kernel.c :

_start() stores the address of kernel_entry() at
ENTRY_POINT (0xf00)

Processes make system calls by:

loading the address of kernel_entry from 0xf00

passing the system call number to kernel_entry

kernel_entry must save the registers and switch to the kernel
stack, and reverse the process on the way out

Kernel and User Stack

Processes have two stacks

user stack : for process to use

kernel stack : for kernel to use when executing system calls on
behalf of the process

Kernel thread has only one: kernel stack

Suggestion: put them in memory 0x10000 - 0x20000

4kb stack should be enough

upper limit = 640k (0xa000)

Memory Layout

Entry
Point
0xf00

kernel
0x1000

PCBs

Proc 1
0x4000

Proc2
0x7000

kernel
stack

0x9000

Proc 1’s
kernel
stack

0x10000

Proc 1’s
user
stack

0x11000

Proc 2’s
kernel
stack

0x12000

Proc 2’s
user
stack

0x13000

Mutual Exclusion

The calls available to threads are

lock_init(lock_t *)

lock_acquire(lock_t *) : check lock, block itself if cannot get it

lock_release(lock_t *)

The precise semantics we want are described in the project spec

There is exactly one correct trace

Timing a Context Switch

util.c : get_timer() returns the number of cycles since boot

There is only one process for your timing code, but it is given
twice in tasks.c

use a global variable to distinguish the first execution from the
second

Design Review Requirement

Sign up for 10 minutes meeting with TA on project website

Data structure design

Context switching

system calls design

mutual exclusion design

Please draw pictures and write your idea down (1 piece of paper)

See project website for more details

QUESTIONS?

