COS 318 PROJECT 2 NON-PREEMPTIVE SCHEDULING

Outline

* Project is due at 23:59 on October 13
* Design reviews are 19:00 - 22:00 on Oct 6. Sign up !
* Today: go through the project, get you started
* Next time: design review summary, Q/A

Overview

* Target: Building a kernel that can switch between executing different tasks (task = process or kernel thread)

* Read the spec on course website

* Your grade will be determined partly on whether you handle subtle issues correctly. So don't overlook any aspect.

What you need to deal with?

- * Process Control Block (PCB)
- * Context switching procedure
- * System call mechanism
- * Stacks
- * Mutual Exclusion

Process Control Block

* kernel.h

* What should be in PCB?

* pid, stack?

* next, previous?

***** What else?

Processes Example

COS 318 go_to_class (); yield(); go_to_precept(); yield(); design_review(); yield(); coding(); exit();

 \diamond

Life have_fun(); yield(); play(); yield(); do_stuff(); yield();

What is yield()?

* yield(): switch to another task
* For a task itself, it is a normal function call:
* Push a return address on the stack
* transfer control to yield()
* yield():

* do_stuff();

* return

* Task calling yield() has no knowledge of what do_stuff() is

Isolation

* Task must have their own:
* registers
* stack
* (for future assignments)
* Two techniques to achieve isolation
* Division in space: allocate separate resources
* Division in time: save and restore contexts
* Which one apply here?

Stack and Registers

* Allocate separate stacks in _start()
* yield():

* save registers, including %esp
* do_stuff()

* restore registers

* return

* Where are registers stored?* In the process control block (PCB)

The Secret Business Plan

COS 318 go_to_class ();

 $\langle \bullet \rangle$

yield();

overlapped calls? yield returns

have_fun();

Real life

yield();

yield returns design_review(); yield();

yield returns do_stuff(); yield();

No, they are not

* yield() calls appear to be overlapped

* Yet yield returns immediately to a different task, not the one that calls it

* Secret plan of yield()?

* save registers

* find the next task T

* restore that task T's saved registers

* return to task T

Find the Next Task

* The kernel must keep track of which tasks have not exited yet
* The kernel should run the task that has been inactive for long
* What is the natural data structure?

* Please explain your design in the design review

Threads and Processes

* To yield, requires access to the scheduler's data structures

* Kernel threads have access

* scheduler.c : do_yield()

* User processes should not, but do for this project temporarily

* How should they get access?

System Calls

* To make a system call, a process:

* pushes the call number and arguments onto its stack

* interrupt/trap mechanism (later assignment), which elevates privileges and jumps into the kernel in a controlled manner

* In his project, processes have elevated privileges all the time* Two system calls : yield() and exit()

entry.s: kernel_entry()

* kernel.c :

* _start() stores the address of kernel_entry() at ENTRY_POINT (0xf00)

* Processes make system calls by:

* loading the address of kernel_entry from 0xf00

* passing the system call number to kernel_entry

* kernel_entry must save the registers and switch to the kernel stack, and reverse the process on the way out

Kernel and User Stack

* Processes have two stacks

* user stack : for process to use

* kernel stack : for kernel to use when executing system calls on behalf of the process

* Kernel thread has only one: kernel stack

* Suggestion: put them in memory 0x10000 - 0x20000

* 4kb stack should be enough

* upper limit = 640k (0xa000)

Mutual Exclusion

* The calls available to threads are

* lock_init(lock_t *)

* lock_acquire(lock_t *) : check lock, block itself if cannot get it * lock_release(lock_t *)

* The precise semantics we want are described in the project spec* There is exactly one correct trace

Timing a Context Switch

- * util.c : get_timer() returns the number of cycles since boot
- * There is only one process for your timing code, but it is given twice in tasks.c
 - * use a global variable to distinguish the first execution from the second

Design Review Requirement

- * Sign up for 10 minutes meeting with TA on project website
- * Data structure design
- * Context switching
- * system calls design
- * mutual exclusion design
- * Please draw pictures and write your idea down (1 piece of paper)
- * See project website for more details

