C0S318 PROJECT 2
NON-PREEMPTIVE SCHEDULING




Outline

*k Projectis due at 23:59 on October 13
& Design reviews are 19:00 -22:00 on Oct 6. Sign up !
*t Today: go through the project, get you started

*¢ Next time: design review summary, Q/A




Overview

*¢ Target: Building a kernel that can switch between executing
different tasks (task = process or kernel thread)

*¢ Read the spec on course website

*¢ Your grade will be determined partly on whether you handle
subtle issues correctly. So don’t overlook any aspect.




©

Whatyou need to deal with?

Q

¢ Process Control Block (PCB)

*t Context switching procedure

*k System call mechanism

% Stacks

% Mutual Exclusion




Process Control Block

* kernel.h

*¢ What should be in PCB?
% pid, stack?
*k next, previous?

% What else?




Processes Example

| | O
COS 318 ! Life
go_to_class (); have_fun();
yield(); yield();
go_to_precept(); play():
yield(); | yield();
design_review(); do_stuff();
yield(); yield();

coding();

exit();




Control Flow

COS 318
go_to_class ();

yield();
go_to_precept();
yield();
design_review();
yield();
coding();

exit();

_
-
-
-
‘f
-
v.-""
e -=Y
——__
PR e il
’,W
-
-
’f
’f
-
|
_______
=R
-
-
-
-
"
-
v.-""~
I e
=
-
-
"
"

Real life

have_fun();
yield();
play();
yield();

yield();




Whatisvield()?

* yield(): switch to another task

*¢ For a task itself, it is a normal function call:
*¢ Push a return address on the stack
*k transfer control to yield()

seyield():
< do_stuff();

*X return

% Task calling yield() has no knowledge of what do_stuff() is




Isolation

*k Task must have their own:
°k registers
%k stack
. (for future assignments)
*& Two techniques to achieve isolation
*k Division in space: allocate separate resources
*& Division in time: save and restore contexts

*¢ Which one apply here?




Stack and Registers

*¢ Allocate separate stacks in _start()
%k yield():
*k save registers, including %esp

*k do_stuff()

°F restore registers
¥ return

*t Where are registers stored?

% In the process Contrbl block (PCB)




The Secret Business Plan

COS 318
go_to_class ();

yield();
overlapp

yield returns

design_review();

yield();

oooooooooo

Real life

ed calls?yield returns

have_fun();

yield();

yield returns

do_ stuff();
yield();




No, they are not

* yield() calls appear to be overlapped

*¢ Yetyield returns immediately to a different task, not the one that
calls it

*k Secret plan of yield()?
°F save registers
*¢ find the next task T
*k restore that task T°s saved registers

¢ return to task T




Find the Next Task

*t The kernel must keep track of which tasks have not exited yet
*t The kernel should run the task that has been inactive for long
*t What is the natural data structure?

*k Please explain your design in the design review




Threads and Processes

*t To yield, requires access to the scheduler’s data structures
*t Kernel threads have access
*k scheduler.c : do_yield()
*k User processes should not, but do for this project temporarily

*t How should they get access?




System Calls

*t To make a system call, a process:
& pushes the call number and arguments onto its stack

*¢ interrupt/trap mechanism (later assignment), which
elevates privileges and jumps into the kernel in a controlled
manner

*& In his project, processes have elevated privileges all the time

*k Two system calls : yield() and exit()




entry.s: kernel_entry()

%k kernel.c:

*k _start() stores the address of kernel _entry() at
ENTRY_POINT (0xf00)

*k Processes make system calls by:
*k loading the address of kernel _entry from 0xf00
*k passing the system call number to kernel_entry

*k kernel_entry must save the registers and switch to the kernel
stack, and reverse the process on the way out




Kernel and User Stack

*k Processes have two stacks
*k user stack : for process to use

* kernel stack : for kernel to use when executing system calls on

behalf of the process
¢ Kernel thread has only one: kernel stack
*k Suggestion: put them in memory Ox10000 - 0x20000
*k 4kb stack should be enough
% upper limit - 640k (0xa000)




Memory Layout

<® <@
p ™
ke g%l Proc |
Ox| 0x4000
\§ % T ﬁj
ET ' : T I Proc I’s
ntry erne k I :
Point PCBs OF)’(r7ooc:020 stack s?cglgﬁ Pigfnés
0xf00 0x9000 0x 10000 stack
0x 12000
Proc I’s i
T Proc 2’s
stack ~ user
0x1 1000 stack

Ox 13000




Mutual Exclusion

*& The calls available to threads are
% lock_init(lock _t *)
*¢ lock_acquire(lock_t *) : check lock, block itself if cannot get it
ok lock_reiease(lock_t ) ‘

*k The precise semantics we want are described in the project spec

*k There is exactly one correct trace




Timing a Context Switch

*¢ util.c : get_timer() returns the number of cycles since boot

*t There is only one process for your timing code, butitis given
twice in tasks.c

*k use a global variable to distinguish the first execution from the
second




©

Design Review Requirement

*& Sign up for 10 minutes meeting with TA on project website
*¢ Data structure design

* Context switching

*k system calls design

*¢ mutual exclusion design

*k Please draw pictures and write your idea down (1 piece of paper)

*k See project website for more details

Q




QUESTIONS?




