
COS 318: Operating Systems

Deadlocks

2

Today’s Topics

! Conditions for a deadlock

! Strategies to deal with deadlocks

! Announcement
" Last year’s midterm and solution is on the course web page

3

Definitions

! Use processes and threads interchangeably

! Resources
" Preemptable: CPU (can be taken away)

" Non-preemptable: Disk, files, mutex, ... (can’t be taken away)

! Use a resource
" Request, Use, Release

! Starvation
" Processes wait indefinitely

! Deadlocks
" A set of processes have a deadlock if each process is waiting

for an event that only another process in the set can cause

4

Resource Allocation Graph

! Process A is holding
resource R

! Process B requests
resource S

! A cycle in resource allocation
graph ! deadlock

! If A requests for S while
holding R, and B requests for
R while holding S, then

A R

B S

A S

BR

How do you deal with multiple instances of a resource?

5

An Example

! A utility program
" Copy a file from tape to disk

" Print the file to printer

! Resources
" Tape

" Disk

" Printer

! A deadlock
" A holds tape and disk, then

requests for a printer

" B holds printer, then requests
for tape and disk

A

B

Tape

6

Conditions for Deadlock

! Mutual exclusion condition
" Each resource is assigned to exactly one process

! Hold and Wait
" Processes holding resources can request new resources

! No preemption
" Resources cannot be taken away

! Circular chain of requests
" One process waits for another in a circular fashion

! Question
" Are all conditions necessary?

7

Eliminate Competition for Resources?

! If running A to completion and
then running B, there will be no
deadlock

! Generalize this idea for all
processes?

! Is it a good idea to develop a
CPU scheduling algorithm that
causes no deadlock?

A S

BR

Previous example

S

RR

S

8

Strategies

! Ignore the problem
" It is user’s fault

! Detection and recovery
" Fix the problem afterwards

! Dynamic avoidance
" Careful allocation

! Prevention
" Negate one of the four conditions

9

Ignore the Problem

! The OS kernel locks up
" Reboot

! Device driver locks up
" Remove the device

" Restart

! An application hangs (“not responding”)
" Kill the application and restart

" Familiar with this?

! An application ran for a while and then hang
" Checkpoint the application

" Change the environment (reboot OS)

" Restart from the previous checkpoint

10

Detection and Recovery

! Detection
" Scan resource graph

" Detect cycles

! Recovery (difficult)
" Kill process/threads (can you always do this?)

" Roll back actions of deadlocked threads

! What about the tape-disk-printer example?

11

Avoidance

! Safety Condition:
" It is not deadlocked

" There is some scheduling order in which every process can
run to completion (even if all request their max resources)

! Banker’s algorithm (Dijkstra 65)
" Single resource

• Each process has a credit

• Total resources may not satisfy all credits

• Track resources assigned and needed

• Check on each allocation for safety

" Multiple resources

• Two matrices: allocated and needed

• See textbook for details

12

Examples (Single Resource)

Has Max

P1 2 6

P2 2 3

P3 3 5

Total: 8

Free: 1

Has Max

P1 4 6

P2 1 3

P3 2 5

Free: 1

Free: 0 Free: 3 Free: 1

Has Max

P1 2 6

P2 3 3

P3 3 5

Has Max

P1 2 6

P2 0 0

P3 3 5

Has Max

P1 2 6

P2 0 0

P3 5 5

Has Max

P1 2 6

P2 0 0

P3 0 0

Free: 6

?

13

Prevention: Avoid Mutual Exclusion

! Some resources are not physically
sharable
" Printer, tape, etc

! Some can be made sharable
" Read-only files, memory, etc

" Read/write locks

! Some can be virtualized by spooling
" Use storage to virtualize a resource into

multiple resources

" Use a queue to schedule

" Does this apply to all resources?

! What about the tape-disk-printer
example?

A B

Spooling

14

Prevention: Avoid Hold and Wait

! Two-phase locking

Phase I:

" Try to lock all resources at the beginning

Phase II:

" If successful, use the resources and release them

" Otherwise, release all resources and start over

! Application
" Telephone company’s circuit switching

! What about the tape-disk-printer example?

15

Prevention: No Preemption

! Make the scheduler be aware of resource allocation

! Method
" If the system cannot satisfy a request from a process holding

resources, preempt the process and release all resources

" Schedule it only if the system satisfies all resources

! Alternative
" Preempt the process holding the requested resource

! Copying
" Copying to a buffer to release the resource?

! What about the tape-disk-printer example?

16

Prevention: No Circular Wait

! Impose an order of requests for all resources

! Method
" Assign a unique id to each resource

" All requests must be in an ascending order of the ids

! A variation
" Assign a unique id to each resource

" No process requests a resource lower than what it is holding

! What about the tape-disk-printer example?

! Can we prove that this method has no circular wait?

17

Which Is Your Favorite?

! Ignore the problem
" It is user’s fault

! Detection and recovery
" Fix the problem afterwards

! Dynamic avoidance
" Careful allocation

! Prevention (Negate one of the four conditions)
" Avoid mutual exclusion

" Avoid hold and wait

" No preemption

" No circular wait

18

Tradeoffs and Applications

! Ignore the problem for applications
" It is application developers’ job to deal with their deadlocks

" OS provides mechanisms to break applications’ deadlocks

! Kernel should not have any deadlocks
" Use prevention methods

" Most popular is to apply no-circular-wait principle everywhere

! Other application examples
" Routers for a parallel machine (typically use the no-circular-

wait principle)

" Process control in manufacturing

OpenLDAP deadlock, bug #3494

{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 lock(A)
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

19

OpenLDAP deadlock, fix #1

{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 lock(A)
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 if (! try_lock(A)) break;
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

20

Changes the

algorithm, but

maybe that’s

OK

OpenLDAP deadlock, fix #2

{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 lock(A)
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

{
 lock(A)
 ...
 lock(B)
 ...
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...

 ...

 ...
 }
 }
 unlock(A)

 unlock(B)
}

21

Apache bug #42031

http://issues.apache.org/bugzilla/show_bug.cgi?id=42031

Summary: EventMPM child process freeze

Product: Apache httpd-2 Version: 2.3-HEAD

Platform: PC

OS/Version: Linux

Status: NEW

Severity: critical

Priority: P2

Component: Event MPM

AssignedTo: bugs@httpd.apache.org

ReportedBy: serai@lans-tv.com

Child process freezes with many downloading against MaxClients.

How to reproduce:

(1) configuration to httpd.conf StartServers 1 MaxClients 3 MinSpareThreads 1
MaxSpareThreads 3 ThreadsPerChild 3 MaxRequestsPerChild 0 Timeout 10 KeepAlive On
MaxKeepAliveRequests 0 KeepAliveTimeout 5

(2) put a large file "test.mpg" (about 200MB) on DocumentRoot

(3) apachectl start

(4) execute many downloading simultaneously. e.g. bash and wget:

 $ for ((i=0 ; i<20 ; i++)); do wget -b http://localhost/test.mpg; done;

 Then the child process often freezes. If not, try to download more.

(5) terminate downloading e.g. bash and wget: $ killall wget

(6) access to any file from web browser. However long you wait, server won't response.

22

Apache deadlock, bug #42031

listener_thread(...) {
 lock(timeout)
 ...
 lock(idlers)
 ...
 cond_wait (wait_for_idler, idlers)
 ...
 unlock(idlers)
 ...
 unlock(timeout)
}

worker_thread(...) {
 lock(timeout)
 ...
 unlock(timeout)
 ...
 lock (idlers)
 ...
 signal (wait_for_idler)
 ...
 unlock(idler)
 ...
}

23

24

Non-Resource Deadlock

Guns don’t cause deadlocks – people do

25

Summary

! Deadlock conditions
" Mutual exclusion

" Hold and wait

" No preemption

" Circular chain of requests

! Strategies to deal with deadlocks
" Simpler ways are to negate one of the four conditions

