
COS 318: Operating Systems

Processes and Threads

Jaswinder Pal Singh

Computer Science Department

Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

! Concurrency

! Processes

! Threads

! Reminder:
" Hope you’re all busy implementing your assignment

3

Concurrency and Process

! Concurrency
" Hundreds of jobs going on in a system

" CPU is shared, so are I/O devices

" Each job would like to have its own computer

! Process concurrency
" Decompose complex problems into simple ones

" Make each simple one a process

" Deal with one at a time

" Each process feels like it has its own computer

! Example: gcc (via “gcc –pipe –v”) launches
" /usr/libexec/cpp | /usr/libexec/cc1 | /usr/libexec/as | /usr/libexec/elf/ld

" Each instance is a process

4

Process Parallelism

! Virtualization
" Each process runs for a while
" Each virtually has its own CPU
" Make one CPU seem like many

! I/O parallelism
" CPU process overlaps with I/O
" Each runs almost as fast as if it

had its own computer
" Reduce total completion time

for all processes

! CPU parallelism
" Multiple CPUs (such as SMP)
" Processes running in parallel
" Speedup

emacs emacs

gcc

CPU CPUI/O

CPU I/O

3s 2s 3s

3s 2s

9s

CPU

3s

CPU

3s

3s

5

More on Process Parallelism

! Process parallelism is common in real life
" Each sales person sell $1M annually

" Hire 100 sales people to generate $100M revenue

! Speedup
" Ideal speedup is factor of N

" Reality: bottlenecks + coordination overhead

! Question
" Can you speed up by working with a partner?

" Can you speed up by working with 20 partners?

" Can you get super-linear (more than a factor of N) speedup?

6

Simplest Process

! Sequential execution
" No concurrency inside a process

" Everything happens sequentially

" Some coordination may be required

! Process state
" Registers

" Main memory

" I/O devices

• File system

• Communication ports

" …

7

Program and Process

main()

{

...

foo()

...

}

bar()

{

 ...

}

 Program

main()

{

...

foo()

...

}

bar()

{

 ...

}

 Process

heap

stack

registers

PC

8

Process vs. Program

! Process > program
" Program is just part of process state

" Example: many users can run the same program

• Even though the program has a single set of variable names,
the same variable in different instances may have different
values

• The different processes running the program have different
address spaces

! Process < program
" A program can invoke more than one process

" Example: Fork off processes

9

Process Control Block (PCB)

! Process management info
" State

• Ready: ready to run

• Running: currently running

• Blocked: waiting for resources
" Registers, EFLAGS, and other CPU state
" Stack, code and data segment
" Parents, etc

! Memory management info
" Segments, page table, stats, etc

! I/O and file management
" Communication ports, directories, file descriptors, etc.

! How OS takes care of processes
" Resource allocation and process state transition

! Question: why is some information indirect?

10

Primitives of Processes

! Creation and termination
" Exec, Fork, Wait, Kill

! Signals
" Action, Return, Handler

! Operations
" Block, Yield

! Synchronization
" We will talk about this later

11

Make A Process

! Creation
" Load code and data into memory

" Create an empty call stack

" Initialize state to same as after a process switch

" Make the process ready to run

! Clone
" Stop current process and save state

" Make copy of current code, data, stack and OS state

" Make the process ready to run

12

Example: Unix

! How to make processes:
" fork clones a process

" exec overlays the current process

If ((pid = fork()) == 0) {
 /* child process */
 exec(“foo”); /* does not return */
else
 /* parent */
 wait(pid); /* wait for child to die */

13

Process Context Switch

! Save a context (everything that a process may damage)
" All registers (general purpose and floating point)
" All co-processor state
" Save all memory to disk?
" What about cache and TLB stuff?

! Start a context
" Does the reverse

! Challenge
" OS code must save state without changing any state
" How to run without touching any registers?

• CISC machines have a special instruction to save and restore all
registers on stack

• RISC: reserve registers for kernel or have way to carefully save
one and then continue

14

Process State Transition

Running

BlockedReady

Sc
he

du
le

r

di
sp

at
ch

W
ait for

resource

Resource becomes

available

Create

Terminate

15

Threads

! Thread
" A sequential execution stream within a process (also called

lightweight process)

" Threads in a process share the same address space

! Thread concurrency
" Easier to program I/O overlapping with threads than signals

" Users often like to do several things at a time: Web browser

" A server (e.g. file server) serves multiple requests

" Multiple CPUs sharing the same memory

16

Thread Control Block (TCB)

" State

• Ready: ready to run

• Running: currently running

• Blocked: waiting for resources

" Registers

" Status (EFLAGS)

" Program counter (EIP)

" Stack

" Code

17

Typical Thread API

! Creation
" Fork, Join

! Mutual exclusion
" Acquire (lock), Release (unlock)

! Condition variables
" Wait, Signal, Broadcast

! Alert
" Alert, AlertWait, TestAlert

18

Revisit Process

! Process
" Threads

" Address space

" Environment for the threads to run on OS (open files, etc)

! Simplest process has 1 thread

Process

19

Thread Context Switch

! Save a context (everything that a thread may damage)
" All registers (general purpose and floating point)

" All co-processor state

" Need to save stack?

" What about cache and TLB stuff?

! Start a context
" Does the reverse

! May trigger a process context switch

20

Procedure Call

! Caller or callee save some context (same stack)
! Caller saved example:

save active caller registers
call foo

restore caller regs

foo() {
 do stuff
}

21

Threads vs. Procedures

! Threads may resume out of order
" Cannot use LIFO stack to save state

" Each thread has its own stack

! Threads switch less often
" Do not partition registers

" Each thread “has” its own CPU

! Threads can be asynchronous
" Procedure call can use compiler to save state synchronously

" Threads can run asynchronously

! Multiple threads
" Multiple threads can run on multiple CPUs in parallel

" Procedure calls are sequential

22

Process vs. Threads

! Address space
" Processes do not usually share memory

" Process context switch page table and other memory
mechanisms

" Threads in a process share the entire address space

! Privileges
" Processes have their own privileges (file accesses, e.g.)

" Threads in a process share all privileges

! Question
" Do you really want to share the “entire” address space?

23

Real Operating Systems

! One or many address spaces

! One or many threads per address space

1 address space Many address spaces

1 thread per
address space

MSDOS

Macintosh
Traditional Unix

Many threads per
address spaces

Embedded OS,

Pilot

VMS, Mach (OS-X), OS/2,
Windows NT/XP/Vista,

Solaris, HP-UX, Linux

24

Summary

! Concurrency
" CPU and I/O

" Among applications

" Within an application

! Processes
" Abstraction for application concurrency

! Threads
" Abstraction for concurrency within an application

