COS 318: Operating Systems

¢ NSF, Snapshot, Dedup and
Review

Topics

NFS

Case Study: NetApp File System
Deduplication storage system
Course review

Network File System

Sun introduced NFS v2 in early 80s
NFS server exports directories to clients

Clients mount NFS server’s exported directories
(auto-mount is possible)

Multiple clients share a NFS server

da
NFS server ‘ ““\“\\llﬂ&“]i? Clients
&

NFS Protocol (v3)

NULL: Do nothing

GETATTR: Get file attributes

SETATTR: Set file attributes

LOOKUP: Lookup filename

ACCESS: Check Access Permission
READLINK: Read from symbolic link

READ: Read From file

WRITE: Write to file

CREATE: Create a file

MKDIR: Create a directory

SYMLINK: Create a symbolic link

MKNOD: Create a special device

REMOVE: Remove a File

RMDIR: Remove a Directory

RENAME: Rename a File or Directory

LINK: Create Link to an object

READDIR: Read From Directory
READDIRPLUS: Extended read from directory
FSSTAT: Get dynamic file system information
FSINFO: Get static file system Information
PATHCONF: Retrieve POSIX information
COMMIT: Commit cached data on a server to

NFS Protocol

No open and close

e Server doesn’t really know what clients are doing, who has
files open, etc

Use a global handle in the protocol
® Read some bytes
® \Write some bytes

Questions
® \What is stateless?

® |s NFS stateless?
® \What is the tradeoffs of stateless vs. stateful?

NFS Implementation

NFS Server

Client kernel

NFS Client Caching Issues

Client caching

e Read-only file and directory data (expire in 60 seconds)
e Data written by the client machine (write back in 30 seconds)

Consistency issues
® Multiple client machines can perform writes to their caches

® Some cache file data only and disable client caching of a file if
it is opened by multiple clients

® Some implement a network lock manager

NFS Protocol Development

Version 2 issues
® 18 operations
e Size: limit to 4GB file size
e \Write performance: server writes data synchronously
® Several other issues

Version 3 changes (most products still use this one)
22 operations

Size: increase to 64 bit

Write performance: WRITE and COMMIT

Fixed several other issues

Still stateless

Version 4 changes
® 42 operations
® Solve the consistency issues
[
[

Security issues
Stateful

Case Study: NetApp’'s NFS File Server

WAFL: Write Anywhere File Layout
® The basic NetApp’s file system

Design goals

® Fast services (fast means more operations/sec and higher
bandwidth)

® Support large file systems and allow growing smoothly
e High-performance software RAID
e Restart quickly after a crash

Special features
® |ntroduce snapshots
¢ Use NVRAM to reduce latency and maintain consistency

Snapshots

A snapshot is a read-only copy of the file system
® |ntroduced in 1993

® |t has become a standard feature of today’s file server
Use snapshots

e System administrator configures the number and frequency of snapshots
® An initial system can keep up to 20 snapshots
e Use snapshots to recover individual files

An example

arizonas cd .snapshot
arizona% 1s

hourly.0 hourly.Z2 hourly.4 nightly.0 nightly.2 weekly.1

hourly.l hourly.3 hourly.5 nightly.1l weekly.O
arizonas

How much space does a snapshot consume?
® 10-20% space per week

10

I-node, Indirect and Data Blocks

WAFL uses 4KB blocks

® i-nodes (evolved from UNIX’s)
e Data blocks

File size < 64 bytes
® |-node stores data directly

Data

File size < 64K bytes

® -node stores 16 pointers to data \\

Data

File size < 64M bytes

® |-node stores 16 pointers to

Indirect blocks

e Each indirect pointer block stores
1K pointers to data S

Data

Data

Data

11

WAFL Layout

A WAFL file system has

® Aroot i-node: root of everything

® An i-node file: contains all i-nodes
® A block map file: indicates free blocks
® An i-node map file: indicates free i-nodes

Root
I-node

Metadata
in files

I-node
file

Other |
files

Block
map file

B
a8

R e

I-node
map file

Other files in the file system

12

Why Keeping Metadata in Files

Allow meta-data blocks to be written anywhere on disk
® This is the origin of “Write Anywhere File Layout”
® Any performance advantage?

Easy to increase the size of the file system dynamically
® Adding a disk can lead to adding i-nodes

Enable copy-on-write to create snapshots
® Fixed metadata locations are cumbersome

e Copy-on-write new data and metadata to any new disk
locations

13

Snapshot Implementation

WAFL file system is a tree of
blocks

Snapshot step 1
® Replicate the root i-node

® New root i-node is the active file
system

® Qld root i-node is the snapshot

Snapshot step 2...n
e Copy-on-write blocks to the root

® Active root i-node points to the new
blocks

® \Vrites to the new block

Root

Root

1’

e [uture writes into the new blocks will

not trigger copy-on-write A

o
O 1

C’

14

File System Consistency

Create a snapshot
e Create a consistency point or snapshot every 10 seconds
® On a crash, revert the file system to this snapshot
® Not visible by users

Many requests between consistency points
® Consistency point i

® Many writes

e Consistency point i+1 (advanced atomically)

® Many writes

Question
® Any relationships with transactions?

15

Non-Volatile RAM

Non-Volatile RAM

® Flash memory (slower)
e Battery-backed DRAM (fast but battery lasts for only days)

Use an NVRAM to buffer writes

e Buffer all write requests since the last consistency point

® A clean shutdown empties NVRAM, creates one more
snapshot, and turns off NVRAM

® A crash recovery needs to recover data from NVRAM to the
most recent snapshot and turn on the system

Use two logs
e Buffer one while writing another

Issues

® \What is the main disadvantage of NVRAM?
® How large should the NVRAM be?

16

Write Allocation

WAFL can write to any blocks on disk

® File metadata (i-node file, block map file and i-node map file)
IS in the file system

WAFL can write blocks in any order

® Rely on consistency points to enforce file consistency
e NVRAM to buffer writes to implement ordering

17

Snapshot Data Structure

©e0
WAFL uses 32-bit
: . : Block map ..
entries in the block Time entry Description
map fll_e T1 |00000000O0 |Block is free
® 32-bit for each 4KB T2 |0000000 1 |Active FS uses it
disk block T3 [000000 11 |Create snapshot 1
® 32-bit entry = 0: the T4 |00000111 |Create snapshot 2
block is free T5 |00000110 |Active FS deletes it
Bit0=1: 76 [00000 100 |Delete snapshot 1
_ . T7 |0000000O0 |Delete snapshot 2
active file system

references the block 1] L .

. Set for active FS
Bit 1 =1: Set f hot 1
the most recent snapshot SLIOTShapsho

references the block — Set for snapshot 2

— Set for snapshot 3

18

Snapshot Creation

Problem

® Many NFS requests may arrive while creating a snapshot
® File cache may need replacements

® Undesirable to suspend the NFS request stream

WAFL solution

e Before a creation, mark dirty cache data “in-snapshot” and
suspend NFS request stream

e Defer all modifications to “in-snapshot” data
® Modify cache data not marked “in-snapshot”
® Do not flush cache data not marked “in-snapshot”

19

Algorithm

Steps
® Allocate disk space for “in-snapshot” cached i-nodes
« Copy these i-nodes to disk buffer
» Clear “in-snapshot” bit of all cached i-nodes

e Update the block-map file
« For each entry, copy the bit for active FS to the new snapshot

® Flush

« Write all “in-snapshot” disk buffers to their new disk locations
» Restart NFS request stream

e Duplicate the root i-node

Performance
¢ Typically it takes less than a second

20

Snapshot Deletion

Delete a snapshot’s root i-node
Clear bits in block-map file

® For each entry in block-map file, clear the bit representing the

snapshot

21

Performance

O 00
¢ SPEC SFS benchmark shows 8X faster than others

S0 s FAServer BX Cluster
T 45+ Auspex NS 6000
g w—Sun SPARCcIuster 1
E 4T | == sunSPARCenter 2000
‘;' a5 4 | ==Sun SPARCserver 1000
E
—— m ™~
o
& 25+
a
w20 =
o
[~
m 1 5 e
on
10+
2
‘ 5 -
0 %
0 S00 1000 1500 2000 2500 3000 3500

NFS operations/second

22

B
a8

Iiﬁlmﬁuﬁ

Progress on Data Protection

Deduplication
for capacity
optimization

Deduplication
for bandwidth
optimization

Continuous

Data Protection

111001010100

100101010110
101010111010
101010010101

111001010100
100101010110
101010111010
101010010101

- EEm -

Snapshot A e

B
a8

E@hnm@mﬁ

10111110101

111001010100
100101010110
101010111010
101010010101
111010101018

~10-50X
Traffic & storage
reduction

~10X
Traffic reduction

~3X
Traffic reduction

~5X
Traffic reduction

23

Global Compression or “Deduplication”

Then, apply “Local Compression” on unique segments

‘i‘? 24
E

“De-duplicated” Replication

25

One Method (used by Data Domain)

Afile is divided into segments
® Use secure hashes as references to segments

Read a file
e Use the hashes to fetch data segments

Write a file

® Anchor the write data stream into segments

® For each segment
« Compute its secure hash and lookup database

* If the hash is new,
output the segment and insert the hash into database

 |f it is a duplicate, output hash
® Apply local compression to each unique segment
e Bundle many segments before writing to disk

26

Why Challenging?

High read throughput

e Prefetch the right segments

e Coarse-grained segments are better

High write throughput

® Avoid disk I/Os to check redundancy

e Coarse-grained segments are better

High global compression ratio

e Handle data shifts by content-based anchoring (Manber 94)
® Fine-grained segments are better

Data Domain’s performance

® Throughput (~250MB/sec on 2x dual Xeon server)
® Compression ratios: 10-30x (~8KB segments)

27

