
COS 318: Operating Systems

NSF, Snapshot, Dedup and
Review

2

Topics

! NFS

! Case Study: NetApp File System

! Deduplication storage system

! Course review

3

Network File System

! Sun introduced NFS v2 in early 80s

! NFS server exports directories to clients

! Clients mount NFS server’s exported directories
(auto-mount is possible)

! Multiple clients share a NFS server

NetworkNFS server Clients

4

NFS Protocol (v3)

1. NULL: Do nothing

2. GETATTR: Get file attributes

3. SETATTR: Set file attributes

4. LOOKUP: Lookup filename

5. ACCESS: Check Access Permission

6. READLINK: Read from symbolic link

7. READ: Read From file

8. WRITE: Write to file

9. CREATE: Create a file

10. MKDIR: Create a directory

11. SYMLINK: Create a symbolic link

12. MKNOD: Create a special device

13. REMOVE: Remove a File

14. RMDIR: Remove a Directory

15. RENAME: Rename a File or Directory

16. LINK: Create Link to an object

17. READDIR: Read From Directory

18. READDIRPLUS: Extended read from directory

19. FSSTAT: Get dynamic file system information

20. FSINFO: Get static file system Information

21. PATHCONF: Retrieve POSIX information

22. COMMIT: Commit cached data on a server to

5

NFS Protocol

! No open and close
" Server doesn’t really know what clients are doing, who has

files open, etc

! Use a global handle in the protocol
" Read some bytes

" Write some bytes

! Questions
" What is stateless?

" Is NFS stateless?

" What is the tradeoffs of stateless vs. stateful?

6

NFS Implementation

Virtual file system

Client kernel

Local

FS

Local

FS

NFS

client

Buffer cache

Virtual file system

Local

FS

Local

FS

NFS

server

Buffer cache

NFS Server

Network

7

NFS Client Caching Issues

! Client caching
" Read-only file and directory data (expire in 60 seconds)

" Data written by the client machine (write back in 30 seconds)

! Consistency issues
" Multiple client machines can perform writes to their caches

" Some cache file data only and disable client caching of a file if
it is opened by multiple clients

" Some implement a network lock manager

8

NFS Protocol Development

! Version 2 issues
" 18 operations

" Size: limit to 4GB file size

" Write performance: server writes data synchronously

" Several other issues

! Version 3 changes (most products still use this one)
" 22 operations

" Size: increase to 64 bit

" Write performance: WRITE and COMMIT

" Fixed several other issues

" Still stateless

! Version 4 changes
" 42 operations

" Solve the consistency issues

" Security issues

" Stateful

9

Case Study: NetApp’s NFS File Server

! WAFL: Write Anywhere File Layout
" The basic NetApp’s file system

! Design goals
" Fast services (fast means more operations/sec and higher

bandwidth)

" Support large file systems and allow growing smoothly

" High-performance software RAID

" Restart quickly after a crash

! Special features
" Introduce snapshots

" Use NVRAM to reduce latency and maintain consistency

10

Snapshots

! A snapshot is a read-only copy of the file system
" Introduced in 1993

" It has become a standard feature of today’s file server

! Use snapshots
" System administrator configures the number and frequency of snapshots

" An initial system can keep up to 20 snapshots

" Use snapshots to recover individual files

! An example
arizona% cd .snapshot

arizona% ls

hourly.0 hourly.2 hourly.4 nightly.0 nightly.2 weekly.1

hourly.1 hourly.3 hourly.5 nightly.1 weekly.0

arizona%

! How much space does a snapshot consume?
" 10-20% space per week

11

i-node, Indirect and Data Blocks

! WAFL uses 4KB blocks
" i-nodes (evolved from UNIX’s)

" Data blocks

! File size < 64 bytes
" i-node stores data directly

! File size < 64K bytes
" i-node stores 16 pointers to data

! File size < 64M bytes
" i-node stores 16 pointers to

indirect blocks

" Each indirect pointer block stores
1K pointers to data

Data Data Data

Data Data

Data

12

WAFL Layout

! A WAFL file system has
" A root i-node: root of everything

" An i-node file: contains all i-nodes

" A block map file: indicates free blocks

" An i-node map file: indicates free i-nodes

" Data files: real files that users can see

Metadata

in files

13

Why Keeping Metadata in Files

! Allow meta-data blocks to be written anywhere on disk
" This is the origin of “Write Anywhere File Layout”

" Any performance advantage?

! Easy to increase the size of the file system dynamically
" Adding a disk can lead to adding i-nodes

! Enable copy-on-write to create snapshots
" Fixed metadata locations are cumbersome

" Copy-on-write new data and metadata to any new disk
locations

14

Snapshot Implementation

! WAFL file system is a tree of
blocks

! Snapshot step 1
" Replicate the root i-node

" New root i-node is the active file
system

" Old root i-node is the snapshot

! Snapshot step 2…n
" Copy-on-write blocks to the root

" Active root i-node points to the new
blocks

" Writes to the new block

" Future writes into the new blocks will
not trigger copy-on-write C

1

RootRoot

A FDB C

1 2

Modify

C’

Modify

1’

15

File System Consistency

! Create a snapshot
" Create a consistency point or snapshot every 10 seconds

" On a crash, revert the file system to this snapshot

" Not visible by users

! Many requests between consistency points
" Consistency point i

" Many writes

" Consistency point i+1 (advanced atomically)

" Many writes

" …

! Question
" Any relationships with transactions?

16

Non-Volatile RAM

! Non-Volatile RAM
" Flash memory (slower)

" Battery-backed DRAM (fast but battery lasts for only days)

! Use an NVRAM to buffer writes
" Buffer all write requests since the last consistency point
" A clean shutdown empties NVRAM, creates one more

snapshot, and turns off NVRAM

" A crash recovery needs to recover data from NVRAM to the
most recent snapshot and turn on the system

! Use two logs
" Buffer one while writing another

! Issues
" What is the main disadvantage of NVRAM?

" How large should the NVRAM be?

17

Write Allocation

! WAFL can write to any blocks on disk
" File metadata (i-node file, block map file and i-node map file)

is in the file system

! WAFL can write blocks in any order
" Rely on consistency points to enforce file consistency

" NVRAM to buffer writes to implement ordering

18

Snapshot Data Structure

! WAFL uses 32-bit
entries in the block
map file
" 32-bit for each 4KB

disk block

" 32-bit entry = 0: the
block is free

! Bit 0 = 1:

active file system
references the block

! Bit 1 = 1:

the most recent snapshot
references the block

19

Snapshot Creation

! Problem
" Many NFS requests may arrive while creating a snapshot

" File cache may need replacements

" Undesirable to suspend the NFS request stream

! WAFL solution
" Before a creation, mark dirty cache data “in-snapshot” and

suspend NFS request stream

" Defer all modifications to “in-snapshot” data

" Modify cache data not marked “in-snapshot”

" Do not flush cache data not marked “in-snapshot”

20

Algorithm

! Steps
" Allocate disk space for “in-snapshot” cached i-nodes

• Copy these i-nodes to disk buffer

• Clear “in-snapshot” bit of all cached i-nodes

" Update the block-map file

• For each entry, copy the bit for active FS to the new snapshot

" Flush

• Write all “in-snapshot” disk buffers to their new disk locations

• Restart NFS request stream

" Duplicate the root i-node

! Performance
" Typically it takes less than a second

21

Snapshot Deletion

! Delete a snapshot’s root i-node

! Clear bits in block-map file
" For each entry in block-map file, clear the bit representing the

snapshot

22

Performance

! SPEC SFS benchmark shows 8X faster than others

23

Progress on Data Protection

Snapshot
~5x

Traffic reduction

Continuous
Data Protection

~3x

Traffic reduction

Deduplication

for bandwidth

optimization

111001010100

100101010110

101010111010

101010010101

111010101010

10101010111

111001010100

100101010110

101010111010

101010010101

111010101010

~10X

Traffic reduction

10111110101 10111110101

Deduplication

for capacity

optimization

111001010100

100101010110

101010111010

101010010101

111010101010

~10-50X

Traffic & storage

reduction

24

Global Compression or “Deduplication”

Then, apply “Local Compression” on unique segments

25

“De-duplicated” Replication

26

One Method (used by Data Domain)

! A file is divided into segments
" Use secure hashes as references to segments

! Read a file
" Use the hashes to fetch data segments

! Write a file
" Anchor the write data stream into segments

" For each segment

• Compute its secure hash and lookup database

• If the hash is new,
output the segment and insert the hash into database

• If it is a duplicate, output hash

" Apply local compression to each unique segment

" Bundle many segments before writing to disk

27

Why Challenging?

! High read throughput
" Prefetch the right segments

" Coarse-grained segments are better

! High write throughput
" Avoid disk I/Os to check redundancy

" Coarse-grained segments are better

! High global compression ratio
" Handle data shifts by content-based anchoring (Manber 94)

" Fine-grained segments are better

! Data Domain’s performance
" Throughput (~250MB/sec on 2x dual Xeon server)

" Compression ratios: 10-30x (~8KB segments)

