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Network File System

Sun introduced NFS v2 in early 80s
NFS server exports directories to clients

Clients mount NFS server’s exported directories
(auto-mount is possible)

Multiple clients share a NFS server
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NFS Protocol (v3)

NULL: Do nothing

GETATTR: Get file attributes

SETATTR: Set file attributes

LOOKUP: Lookup filename

ACCESS: Check Access Permission
READLINK: Read from symbolic link

READ: Read From file

WRITE: Write to file

CREATE: Create a file

MKDIR: Create a directory

SYMLINK: Create a symbolic link

MKNOD: Create a special device

REMOVE: Remove a File

RMDIR: Remove a Directory

RENAME: Rename a File or Directory

LINK: Create Link to an object

READDIR: Read From Directory
READDIRPLUS: Extended read from directory
FSSTAT: Get dynamic file system information
FSINFO: Get static file system Information
PATHCONF: Retrieve POSIX information
COMMIT: Commit cached data on a server to




NFS Protocol

No open and close

e Server doesn’t really know what clients are doing, who has
files open, etc

Use a global handle in the protocol
® Read some bytes
® \Write some bytes

Questions
® \What is stateless?

® |s NFS stateless?
® \What is the tradeoffs of stateless vs. stateful?




NFS Implementation

NFS Server

Client kernel




NFS Client Caching Issues

Client caching

e Read-only file and directory data (expire in 60 seconds)
e Data written by the client machine (write back in 30 seconds)

Consistency issues
® Multiple client machines can perform writes to their caches

® Some cache file data only and disable client caching of a file if
it is opened by multiple clients

® Some implement a network lock manager




NFS Protocol Development

Version 2 issues
® 18 operations
e Size: limit to 4GB file size
e \Write performance: server writes data synchronously
® Several other issues

Version 3 changes (most products still use this one)
22 operations

Size: increase to 64 bit

Write performance: WRITE and COMMIT

Fixed several other issues

Still stateless

Version 4 changes
® 42 operations
® Solve the consistency issues
[
[

Security issues
Stateful




Case Study: NetApp’'s NFS File Server

WAFL: Write Anywhere File Layout
® The basic NetApp’s file system

Design goals

® Fast services (fast means more operations/sec and higher
bandwidth)

® Support large file systems and allow growing smoothly
e High-performance software RAID
e Restart quickly after a crash

Special features
® |ntroduce snapshots
¢ Use NVRAM to reduce latency and maintain consistency




Snapshots

A snapshot is a read-only copy of the file system
® |ntroduced in 1993

® |t has become a standard feature of today’s file server
Use snapshots

e System administrator configures the number and frequency of snapshots
® An initial system can keep up to 20 snapshots
e Use snapshots to recover individual files

An example

arizonas cd .snapshot
arizona% 1s

hourly.0 hourly.Z2 hourly.4 nightly.0 nightly.2 weekly.1

hourly.l hourly.3 hourly.5 nightly.1l weekly.O
arizonas

How much space does a snapshot consume?
® 10-20% space per week

10




I-node, Indirect and Data Blocks

WAFL uses 4KB blocks

® i-nodes (evolved from UNIX’s)
e Data blocks

File size < 64 bytes
® |-node stores data directly

Data

File size < 64K bytes

® -node stores 16 pointers to data \\

Data

File size < 64M bytes

® |-node stores 16 pointers to

Indirect blocks

e Each indirect pointer block stores
1K pointers to data S

Data

Data

Data

11




WAFL Layout

A WAFL file system has

® Aroot i-node: root of everything

® An i-node file: contains all i-nodes
® A block map file: indicates free blocks
® An i-node map file: indicates free i-nodes

Root
I-node

Metadata
in files

I-node
file

Other |
files

Block
map file
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Why Keeping Metadata in Files

Allow meta-data blocks to be written anywhere on disk
® This is the origin of “Write Anywhere File Layout”
® Any performance advantage?

Easy to increase the size of the file system dynamically
® Adding a disk can lead to adding i-nodes

Enable copy-on-write to create snapshots
® Fixed metadata locations are cumbersome

e Copy-on-write new data and metadata to any new disk
locations
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Snapshot Implementation

WAFL file system is a tree of
blocks

Snapshot step 1
® Replicate the root i-node

® New root i-node is the active file
system

® Qld root i-node is the snapshot

Snapshot step 2...n
e Copy-on-write blocks to the root

® Active root i-node points to the new
blocks

® \Vrites to the new block

Root

Root

1’

e [uture writes into the new blocks will

not trigger copy-on-write A

o
O 1

C’
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File System Consistency

Create a snapshot
e Create a consistency point or snapshot every 10 seconds
® On a crash, revert the file system to this snapshot
® Not visible by users

Many requests between consistency points
® Consistency point i

® Many writes

e Consistency point i+1 (advanced atomically)

® Many writes

Question
® Any relationships with transactions?
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Non-Volatile RAM

Non-Volatile RAM

® Flash memory (slower)
e Battery-backed DRAM (fast but battery lasts for only days)

Use an NVRAM to buffer writes

e Buffer all write requests since the last consistency point

® A clean shutdown empties NVRAM, creates one more
snapshot, and turns off NVRAM

® A crash recovery needs to recover data from NVRAM to the
most recent snapshot and turn on the system

Use two logs
e Buffer one while writing another

Issues

® \What is the main disadvantage of NVRAM?
® How large should the NVRAM be?
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Write Allocation

WAFL can write to any blocks on disk

® File metadata (i-node file, block map file and i-node map file)
IS in the file system

WAFL can write blocks in any order

® Rely on consistency points to enforce file consistency
e NVRAM to buffer writes to implement ordering
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Snapshot Data Structure

©e0
WAFL uses 32-bit
: . : Block map ..
entries in the block Time entry Description
map fll_e T1 |00000000O0 |Block is free
® 32-bit for each 4KB T2 |0000000 1 |Active FS uses it
disk block T3 [000000 11 |Create snapshot 1
® 32-bit entry = 0: the T4 |00000111 |Create snapshot 2
block is free T5 |00000110 |Active FS deletes it
Bit0=1: 76 [00000 100 |Delete snapshot 1
_ . T7 |0000000O0 |Delete snapshot 2
active file system

references the block 1] L .

. Set for active FS
Bit 1 =1: Set f hot 1
the most recent snapshot SLIOTShapsho

references the block — Set for snapshot 2

— Set for snapshot 3
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Snapshot Creation

Problem

® Many NFS requests may arrive while creating a snapshot
® File cache may need replacements

® Undesirable to suspend the NFS request stream

WAFL solution

e Before a creation, mark dirty cache data “in-snapshot” and
suspend NFS request stream

e Defer all modifications to “in-snapshot” data
® Modify cache data not marked “in-snapshot”
® Do not flush cache data not marked “in-snapshot”
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Algorithm

Steps
® Allocate disk space for “in-snapshot” cached i-nodes
« Copy these i-nodes to disk buffer
» Clear “in-snapshot” bit of all cached i-nodes

e Update the block-map file
« For each entry, copy the bit for active FS to the new snapshot

® Flush

« Write all “in-snapshot” disk buffers to their new disk locations
» Restart NFS request stream

e Duplicate the root i-node

Performance
¢ Typically it takes less than a second
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Snapshot Deletion

Delete a snapshot’s root i-node
Clear bits in block-map file

® For each entry in block-map file, clear the bit representing the

snapshot

21




Performance
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Progress on Data Protection

Deduplication
for capacity
optimization

Deduplication
for bandwidth
optimization

Continuous

Data Protection

111001010100

100101010110
101010111010
101010010101

111001010100
100101010110
101010111010
101010010101

- EEm -

Snapshot A e

B
a8

E@hnm@mﬁ

10111110101

111001010100
100101010110
101010111010
101010010101
111010101018

~10-50X
Traffic & storage
reduction

~10X
Traffic reduction

~3X
Traffic reduction
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Global Compression or “Deduplication”

Then, apply “Local Compression” on unique segments
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“De-duplicated” Replication
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One Method (used by Data Domain)

Afile is divided into segments
® Use secure hashes as references to segments

Read a file
e Use the hashes to fetch data segments

Write a file

® Anchor the write data stream into segments

® For each segment
« Compute its secure hash and lookup database

* If the hash is new,
output the segment and insert the hash into database

 |f it is a duplicate, output hash
® Apply local compression to each unique segment
e Bundle many segments before writing to disk
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Why Challenging?

High read throughput

e Prefetch the right segments

e Coarse-grained segments are better

High write throughput

® Avoid disk I/Os to check redundancy

e Coarse-grained segments are better

High global compression ratio

e Handle data shifts by content-based anchoring (Manber 94)
® Fine-grained segments are better

Data Domain’s performance

® Throughput (~250MB/sec on 2x dual Xeon server)
® Compression ratios: 10-30x (~8KB segments)
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