COS 318: Operating Systems

| Lecture 2:

Continuation of Introduction
Overview of Operating Systems

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)




Logistics

Precepts:
e \Wed: 8:30-9:30pm, 105 CS building

Please check times for Design review and Assignment
1 due date on the Web site

Reminder:
® Register for the cos318 mailing list today!




Today

Overview of OS structure
Overview of OS components




Previous Lecture

¢ Course Staff and Logistics

¢ What is an operating system?

¢ Evolution of computing and operating systems
¢ Why study operating systems?

¢ What's in COS 3187




Today

Evolution of computing and operating systems
Why study operating systems?

What's in COS 3187

Overview of Operating Systems




A Typical Academic Computer (1986 v. 2007)

1986 2007 Ratio
CPU clock 4Mhz 4x3Ghz 3000x
$/machine $60k $600 1/100x
DRAM 1MB 2GB 2000x
Disk 50MB 0.5-1TB 10K-20KXx
Network BW 10Mbits/sec 1GBits/sec 100x
Address bits 32 64 2X
Users/machine 10s <1 >10x
$/Performance $60k $600/3000 1/200,000x




Exponential Growth in Computing, Comm.
20

¢ Performance/Price doubles every 18 months
¢ 100x per decade

¢ Progress in next 18 months
= ALL previous progress
® New storage = sum of all old storage (ever)
® New processing = sum of all old processing.
¢ This has led to some broad phases in computing,
and correspondingly in the nature of operating
systems

¢Courtesy Jim Gray




History of Computers and OSes

Generations:

(1945-55) Vacuum Tubes

(1955-65) Transistors and Batch Systems
(

(

1965-1980) ICs and Multiprogramming
1980—Present) Personal Computers




Phase 1: The Early Days

Hardware very expensive, humans cheap

When was the first functioning digital computer built?
What was it built from?

How was the machine programmed?

What was the operating system?

The big innovation: punch cards

The really big one: the transistor

® Made computers reliable enough to be sold to and
operated by customers




Phase 2: Transistors and Batch Systems

Tape System
drive tape
Card —
reader [3([) SIS D ollf)| Printer
I, ' N H H N N
[— | n‘!! 0 ) 0 9 0 9 []!L

TN

1401

7094

(I

1401

(a) (b) (©) (d) (€) (f)

Hardware still expensive, humans relatively cheap

An early batch system
Programmers bring cards to reader system
Reader system puts jobs on tape




Phase 2: Transistors and Batch Systems
o0

Tape System

tape Output
tape
S 3 WQ 8 Printer
0} L‘J 1] LJ 0 LJ 1] L‘J

T

1401

7094

(I

1401

(a) (b) (©) (d) (€) (f)

An early batch system
Operator carries input tape to main computer
Main computer computes and puts output on tape
Operator carries output tape to printer system, which

’? prints output




Punch cards and Computer Jobs

p /$END

_~———Data for program

P Fortran program

|
/ $FORTRAN

AJOB, 10,6610802, MARVIN TANENBAUM /

e
8

m&nmnﬁm




Phase 3: ICs and Multiprogramming

Integrated circuits allowed families of computers to be
built that were compatible

Single OS to run on all (IBM OS/360): big and bloated
Key innovation: multiprogramming

What happens when a job is waiting on |/O

What if jobs spend a lot of the time waiting on 1/0O?




Phase 3: ICs and Multiprogramming

Job 3

Job 2

Memory
Job 1 partitions
Operating
system

Multiple jobs resident in computer's memory
Hardware switches between them (interrupts)
Hardware protects from one another (mem protection)
Computer reads jobs from cards as jobs finish (spooling)
Still batch systems: can’t debug online

Solution: time-sharing




Phase 3: ICs and Multiprogramming

Time-sharing:
Users at terminals simultaneously
Computer switches among active ‘jobs’/sessions
Shorter, interactive commands serviced faster

— \
App1 | App2
Time-sharing OS
— "Hardware




Phase 3: ICs and Multiprogramming
®
The extreme: computer as a utility: MULTICS (late 60s)

Problem: thrashing as no. of users increases

Didn’t work then, but idea may be back

_et others administer and manage; I'll just use

ICs led to mini-computers: cheap, small, powerful
Stripped down version of MULTICS, led to UNIX
Two branches (Sys V, BSD), standardized as POSIX
Free follow-ups: Minix (education), Linux (production)




Phase 4: HW Cheaper, Human More Costly

o000
¢ Personal computer

e Altos OS, Ethernet, Bitmap display, laser printer

® Pop-menu window interface, email, publishing SW,
spreadsheet, FTP, Telnet

e Eventually >100M units per year
¢ PC operating system

® Memory protection

® Multiprogramming

® Networking

17

@M—’
ok




Now: > 1 Machines per User

¢ Pervasive computers
e \Nearable computers
e Communication devices
e Entertainment equipment
e Computerized vehicle

¢ OS are specialized

e Embedded OS

® Specially configured general-
purpose OS

e
8

m&nmnﬁw




Now: Multiple Processors per Machine

¢ Multiprocessors
e SMP: Symmetric MultiProcessor

® ccNUMA: Cache-Coherent Non-Uniform
Memory Access

® General-purpose, single-image OS with
multiproccesor support

¢ Multicomputers

e Supercomputer with many CPUs and high-
speed communication

® Specialized OS with special message-
passing support
¢ Clusters
® A network of PCs
e Commodity OS

@tf-’
ok




Now: Multiple “Cores” per Processor

¢ Multicore or Manycore transition

Intel and AMD have released 4-core and soon 6-core CPUs
SUN'’s Niagara processor has 8-cores

Azul Vega8 now packs 24 cores onto the same chip

Intel has a TFlop-chip with 80 cores

Ambric Am2045: 336-core Array (embedded, and accelerators)

¢ Accelerated need for software support

e OS support for many cores; parallel programming of applications

Fixed
Function
Units

Scalable On DieFabric

A A 1A 1A IA A 1A
Core Core Core Core Core Core Core

Last Level Cache

A 1A 1A 1A A A 1A
Core Core Core Core Core Core Core




Summary: Evolution of Computers

60’s-70’s - Mainframes
Rise of IBM

70’s - 80’s — Minicomputers
Rise of Digital Equipment Corporation

80’s - 90’s — PCs
Rise of Intel, Microsoft

Now — Post-PC
Distributed applications

SUR NUNIN[-,

21




Summary: Evolution and Implications for OS

Mainframe Mini Micro
System $/|10:1 — 10:1 — 1:10-1:100
Worker $ 100:1 1:1
Goal System Overall | Productivity
utilization |cost
Target Capacity |Features |Ease of

Use

22




Today

Why study operating systems?
What's in COS 3187
Overview of Operating Systems

23




Why Study OS?

OS is a key part of a computer system
® [t makes our life better (or worse)
® |tis “magic” to realize what we want
® |t gives us “power”
Learn about concurrency
® Parallel programs run on OS
® OS runs on parallel hardware: all hw becoming parallel
® OS is great way to learn concurrent programming
Understand how a system works
® How many procedures does a key stroke invoke?
® \What happens when program references 0 as a pointer?

® Real OS is huge and impossible to read everything, but
building a small OS will go a long way

24




Why Study OS?

Important for studying further areas

® Networking, distributed systems, ...

Full employment

® New hardware capabilities and organizations
® New features

® New approaches

® E.g. handheld computers, Java, WWW

® Engineering tradeoffs, keep changing as the hardware
changes from below and the needs of apps from above

Lots of jargon: sound smart (or super-nerdy)

25




Today

What's in COS 3187
Overview of Operating Systems

26




What Is in COS 3187

Methodology

Lectures with discussions

Readings with topics

A lot of design and rationale, some theory, a fair bit of practice
Six projects to build key aspects of a basic OS

Covered concepts

Operating system structure
» Processes, threads, system calls and virtual machine monitor

Synchronization
» Mutex, semaphores and monitors
|/O subsystems
 Device drivers, IPC, and introduction to networking
Virtual memory
« Address spaces and paging
Storage system
» Disks and file system

27




What is COS 318 Like?

®
Is tt theoretical or practical?

® Focus on concepts, but also getting hands dirty in projects

® More about engineering tradeoffs, constraints,
optimization and imperfection than about optimal results
and beautiful mathematics

® High rate of change in the field yet lots of inertia in OSes
Is it easy?

® No. Fast paced, hard material, a lot of programming
What will enable me to succeed?

e Solid C background, pre-reqs, tradeoff thinking

® NOT schedule overload

28




Today

Overview of Operating Systems

29




Hardware of A Typical Computer

CPU | ... CPU

1I/O bus

ROM

Rl

Network

30




A Typical Computer System
[ _
CPU Memory
Application
CPU Operating System
BIOS
ROM
\ \
oS ) L e )
ApPS| ¢ 2 . Network
Data |,
31




Typical Unix OS Structure

Application

Libraries

Portable OS Layer

auls
ok

User level

Kernel level

32




Typical Unix OS Structure
20080

User function calls
written by programmers and
Application | compiled by programmers.

Libraries

Portable OS Layer

33




Typical Unix OS Structure
20080

mVritten by elves \

* Objects pre-compiled

* Defined in headers
ST * Input to linker
Application « Invoked like functions
* May be “resolved” when
Ly program is loaded

Portable OS Layer

34




Pipeline of Creating An Executable File

v

foo.c — gcc foo.s —1 as

v

- foo.o\
bar.c — gcc — bar.s—] as ' bar.o Id

- a.out

libc.a /

gcc can compile, assemble, and link together

Compiler (part of gcc) compiles a program into assembly
Assembler compiles assembly code into relocatable object file
Linker links object files into an executable

For more information:

® Read man page of a.out, elf, Id, and nm
® Read the document of ELF

35




Execution (Run An Application)

On Unix, “loader” does the job

® Read an executable file

e | ayout the code, data, heap and stack

® Dynamically link to shared libraries

® Prepare for the OS kernel to run the application

r Application
*o, *a— Id { a.out— loader —["PP

Shared
library




What's An Application?

¢ Four segments

® Code/Text — instructions

e Data — initialized global
variables

e Stack
® Heap
¢ Why?
® Separate code and data

e Stack and heap go
towards each other

@tf-’
ok

Heap

Initialized data

Code

37




Responsibilities

Stack
e [ ayout by compiler
e Allocate/deallocate by process creation (fork) and termination
e Names are relative off of stack pointer and entirely local
Heap
® |inker and loader say the starting address
® Allocate/deallocate by library calls such as malloc() and free()
® Application program use the library calls to manage
Global data/code
e Compiler allocate statically
e Compiler emit names and symbolic references
® Linker translate references and relocate addresses
® | oader finally lay them out in memory

38




Typical Unix OS Structure

Application

Libraries

Portable OS Layer

“‘Guts” of system calls :|

39




OS Service Examples

Examples that are not provided at user level

e System calls: file open, close, read and write

e Control the CPU so that users won’t stuck by running
« while (1);

® Protection:

« Keep user programs from crashing OS
« Keep user programs from crashing each other

System calls are typically traps or exceptions

® System calls are implemented in the kernel
® Application “traps” to kernel to invoke a system call
® \When finishing the service, a system returns to the user code

40




Interrupts

Raised by external events

Interrupt handler is in the
kernel

® Switch to another process
e QOverlap I/O with CPU

Eventually resume the
iInterrupted process

A way for CPU to wait for
long-latency events (like 1/O)
to happen

. —

i+1: <

Interrupt
handler

41




Typical Unix OS Structure

Application /

Libraries

Portable OS Layer

» Bootstrap
» System initialization

* Interrupt and exception

* |/O device driver

 Memory management

* Mode switching

* Processor management

\

/

42




Software “Onion” Layers

@tf-’
ok

User and Kernel
boundary

43




Processor Management

Goals

® QOverlap between I/O and
computation

® Time sharing
e Multiple CPU allocations

Issues
® Do not waste CPU resources

® Synchronization and mutual
exclusion

® Fairness and deadlock free

CPU | I/O | CPU
CPU | I/O
CPU
CPU
I/O
CPU

CPU

CPU

44




Memory Management

Goals
® Support programs to run
® Allocation and management

® Transfers from and to
secondary storage

Issues

e Efficiency & convenience
® Fairness

® Protection

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Disks: ~30M x

Archive storage: >1000M x

45




/O Device Management

Goals

® Interactions between
devices and applications

® Ability to plug in new
devices

Issues

e Efficiency

® Fairness

® Protection and sharing

User 1 ... | Usern
Library support
Driver Driver
I/0 I/0
device T device

46




File System

Goals:
® Manage disk blocks

® Map between files and disk
blocks

A typical file system

® QOpen a file with
authentication

® Read/write data in files
® Close afile

Issues

e Reliability

e Safety

e Efficiency

e Manageability

User 1 ... | Usern

File system services

File . File

=, O

o

47




Window Systems

Goals
® |nteracting with a user

® Interfaces to examine and |
manage apps and the system
Issues

-

_—-—7
e Direct inputs from keyboard and E\T
mouse r
e Display output from applications ﬂ/
and systems
e | abor of division
« Allin the kernel (Windows)
« All at user level
« Split between user and kernel (Unix)

48




Bootstrap

Power up a computer
Processor reset

® Set to known state

e Jump to ROM code (BIOS is
in ROM)

Load in the boot loader from
stable storage

Jump to the boot loader

Load the rest of the operating
system

Initialize and run
Question: Can BIOS be on disk?

Boot
loader

Boot
loader

OS
sector 1

OS
sector 2

OS
sector n

49




System Boot

Power on (processor waits until Power Good

Sig na|) Maps to FFFFFFFOh= 232-16

Processor jumps on a PC to address FFFE
« 1M= 1,048,576= 220 =FFFFFh+1

 FFFFFh=FFFFOh+16 is the end of t
memory

» The original PC using Intél 8088 had 20 address lines :-)

(FFFFFFFOh) is a JMP instruction to the ROM
BIOS startup program

irst 1MB of) system

COS318 Lec 2

50




ROM Bios Startup Program (1)

POST (Power-On Self-Test)

« If pass then AX:=0; DH:=5 (586: Pentium);

» Stop booting if fatal errors, and report

Look for video card and execute built-in ROM

BIOS code (normally at CO00h)

Look for other devices ROM BIOS code
- IDE/ATA disk ROM BIOS at C8000h (=819,200d)

Display startup screen ~_

 BIOS information

SCSI disks: must often
provide their own BIOS

Execute more tests
* memory
« system inventory

COS318 Lec 2

51




ROM BIOS startup program (2)

Look for logical devices

e | abel them
« Serial ports
« COM1,2, 3,4
« Parallel ports
« LPT1,2,3

® Assign each an I/O address and IRQ
Detect and configure Plug-and-Play (PnP) devices
Display configuration information on screen

COS318 Lec 2 52




ROM BIOS startup program (3)

Search for a drive to BOOT from
® Floppy or Hard disk

« Boot at cylinder 0, head 0, sector 1
Load code in boot sector

Execute boot loader

Boot loader loads program to be booted

* If no OS: "Non-system disk or disk error - Replace and press
any key when ready"

Transfer control to loaded program

Is it okay to boot at first sector on the floppy or
disk?

COS318 Lec 2

53




Ways to Develop An Operating System

A hardware simulator
A virtual machine

A good kernel debugger
® \When OS crashes, always goes to the debugger
® Debugging over the network

54




