
COS 318: Operating Systems

Virtual Memory Design Issues

2

Design Issues

! Thrashing and working set

! Backing store

! Simulate certain PTE bits

! Pin/lock pages

! Zero pages

! Shared pages

! Copy-on-write

! Distributed shared memory

! Virtual memory in Unix and Linux

! Virtual memory in Windows 2000

3

Virtual Memory Design Implications

! Revisit Design goals
" Protection

• Isolate faults among processes

" Virtualization

• Use disk to extend physical memory

• Make virtualized memory user friendly (from 0 to high address)

! Implications
" TLB overhead and TLB entry management

" Paging between DRAM and disk

! VM access time

Access time = h ! memory access time + (1 - h) ! disk access time

" E.g. Suppose memory access time = 100ns, disk access time = 10ms

• If h = 90%, VM access time is 1ms!

" What’s the worst case?

4

Thrashing

! Thrashing
" Paging in and paging out all the time

" Processes block, waiting for pages to be fetched from disk

! Reasons
" Process requires more physical memory than system has
" Does not reuse memory well

" Reuses memory, but it does not fit

" Too many processes, even though they individually fit

! Solution: working set (last lecture)
" Pages referenced by a process in the last T seconds

" Two design questions

• Which working set should be in memory?

• How to allocate pages?

5

Working Set: Fit in Memory

! Maintain two groups of processes
" Active: working set loaded

" Inactive: working set intentionally not loaded

! Two schedulers
" A short-term scheduler schedules processes

" A long-term scheduler decides which one active and which
one inactive, such that active working sets fits in memory

! A key design point
" How to decide which processes should be inactive

" Typical method is to use a threshold on waiting time

Working Set: Global vs. Local Page Allocation

! The simplest is global allocation only
" Pros: Pool sizes are adaptable

" Cons: Too adaptable, little isolation

! A balanced allocation strategy
" Each process has its own pool of pages

" Paging allocates from its own pool and
replaces from its own working set

" Use a “slow” mechanism to change the
allocations to each pool while providing
isolation

! Do global and local always make sense?

! Design questions:
" What is “slow?”

" How big is each pool?

" When to migrate?

User 1 User 2

?

Backing Store

! Swap space
" Separate partition on disk to handle swap (often separate disk)

" When process is created, allocate swap space for it (keep disk address in
process table entry)

" Need to load or copy executables to the swap space, or page out as needed

! Dealing with process space growth
" Separate swap areas for text, data and stack, each with > 1 disk chunk

" No pre-allocation, just allocate swap page by page as needed

! Mapping pages to swap portion of disk
" Fixed locations on disk for pages (easy to compute, no disk addr per page)

• E.g. shadow pages on disk for all pages

" Select disk pages on demand as needed (need disk addr per page)

! What if no space is available on swap partition?

! Are text files different than data in this regard?

8

Revisit Address Translation

! Map to page frame and disk
" If valid bit = 1, map to pp#

physical page number

" If valid bit = 0, map to dp# disk
page number

! Page out
" Invalidate page table entry and

TLB entry

" Copy page to disk

" Set disk page number in PTE

! Page in
" Find an empty page frame (may

trigger replacement)

" Copy page from disk

" Set page number in PTE and TLB
entry and make them valid

.

..
subl $20 %esp

movl 8(%esp), %eax
.
.
.

vp#

v vp#

i vp#

v vp#

v vp#

Process

TLB

pp#

pp#

dp#

pp#

pp#

...

v

9

Example: x86 Paging Options

! Flags

" PG flag (Bit 31 of CR0): enable page translation

" PSE flag (Bit 4 of CR4): 0 for 4KB page size and 1 for large page size

" PAE flag (Bit 5 of CR4): 0 for 2MB pages when PSE = 1 and 1 for 4MB pages when PSE = 1
extending physical address space to 36 bit

! 2MB and 4MB pages are mapped directly from directory entries

! 4KB and 4MB pages can be mixed

10

Pin (or Lock) Page Frames

! When do you need it?
" When I/O is DMA’ing to memory pages

" If process doing I/O is suspended and another process comes
in and pages the I/O (buffer) page out

" Data could be over-written

! How to design the mechanism?
" A data structure to remember all pinned pages

" Paging algorithm checks the data structure to decide on page
replacement

" Special calls to pin and unpin certain pages

! How would you implement the pin/unpin calls?
" If the entire kernel is in physical memory, do we still need

these calls?

11

Zero Pages

! Zeroing pages
" Initialize pages with 0’s

! How to implement?
" On the first page fault on a data page or stack page, zero it

" Have a special thread zeroing pages

! Can you get away without zeroing pages?

12

Shared Pages

! PTEs from two processes
share the same physical pages
" What use cases?

! APIs
" Shared memory calls

! Implementation issues
" Destroying a process with shared

pages?

" Page in, page out shared pages

" Pin and unpin shared pages

Page table 2

vp#

v vp#

v vp#

pp#

pp#

pp#

...

v

Page table 1

vp#

v vp#

v vp#

pp#

pp#

pp#

...

v

Physical

pages

13

Copy-On-Write

! A technique to avoid copying all
pages to run a large process

! Method
" Child’s address space uses the same

mapping as parent’s

" Make all pages read-only

" Make child process ready

" On a read, nothing happens

" On a write, generates a fault

• map to a new page frame

• copy the page over

• restart the instruction

" Only written pages are copied

! Issues
" How to destroy an address space?

" How to page in and page out?

" How to pin and unpin?

Child

Page table

v vp# pp#

...

r pp#v

Parent

Page table

...
Physical

pages

r pp#v

r pp#v

r pp#v

r pp#v

r pp#v

Write
fault

w

14

Distributed Shared Memory

! Run shared memory program
on a cluster of computers

! Method
" Multiple address space mapped

to “shared virtual memory”

" Page access bits are set
according to coherence rules

• Exclusive writer

• N readers

" A read fault will invalidate the
writer, make read only and copy
the page

" A write fault will invalidate
another writer or all readers and
copy page

! Issues
" Thrashing

" Copy page overhead

Virtual
Address
space

Virtual
Address
space

. . .

Shared
Virtual

Memory

15

Address Space in Unix

! Stack

! Data
" Un-initialized: BSS (Block Started by

Symbol)

" Initialized

" brk(addr) to grow or shrink

! Text: read-only

! Mapped files
" Map a file in memory

" mmap(addr, len, prot, flags, fd, offset)

" unmap(addr, len)

Stack

BSS

Data

Text

Address space

Mapped

file

16

Virtual Memory in BSD4

! Physical memory partition
" Core map (pinned): everything about page frames

" Kernel (pinned): the rest of the kernel memory

" Frames: for user processes

! Page replacement
" Run page daemon until there is enough free pages

" Early BSD used the basic Clock (FIFO with 2nd chance)

" Later BSD used Two-handed Clock algorithm

" Swapper runs if page daemon can’t get enough free pages

• Looks for processes idling for 20 seconds or more

• 4 largest processes

• Check when a process should be swapped in

17

Virtual Memory in Linux

! Linux address space for 32-bit machines
" 3GB user space

" 1GB kernel (invisible at user level)

! Backing store
" Text segments and mapped files uses file on disk as backing storage

" Other segments get backing storage on demand (paging files or swap area)

" Pages are allocated in backing store when needed

! Copy-on-write for forking off processes

! Multi-level paging: supports jumbo pages (4MB)

! Replacement
" Keep certain number of pages free

" Clock algorithm on paging cache and file buffer cache

" Clock algorithm on unused shared pages

" Modified Clock on memory of user processes

18

Address Space in Windows 2K/XP

! Win2k user address space
" Upper 2GB for kernel (shared)

" Lower 2GB – 256MB are for user code and
data (Advanced server uses 3GB instead)

" The 256MB contains system data (counters
and stats) for user to read

" 64KB guard at both ends

! Virtual pages
" Page size

• 4KB for x86

• 8 or 16KB for IA64

" States

• Free: not in use and cause a fault

• Committed: mapped and in use

• Reserved: not mapped but allocated

guard

guard

System data 2GB

4GB

0

Page table

19

 Backing Store in Windows 2K/XP

! Backing store allocation
" Win2k delays backing store page assignments until paging out

" There are up to 16 paging files, each with an initial and max
sizes

! Memory mapped files
" Multiple processes can share mapped files

" Implement copy-on-write

20

Paging in Windows 2K/XP

! Each process has a working set with
" Min size with initial value of 20-50 pages

" Max size with initial value of 45-345 pages

! On a page fault
" If working set < min, add a page to the working set

" If working set > max, replace a page from the working set

! If a process has a lot of paging activities, increase its max

! Working set manager maintains a large number of free pages
" In the order of process size and idle time

" If working set < min, do nothing

" Otherwise, page out the pages with highest “non-reference” counters in a
working set for uniprocessors

" Page out the oldest pages in a working set for multiprocessors

21

Summary

! Must consider many issues
" Global and local replacement strategies

" Management of backing store

" Primitive operations

• Pin/lock pages

• Zero pages

• Shared pages

• Copy-on-write

! Shared virtual memory can be implemented using
access bits

! Real system designs are complex

