COS 318: Operating Systems

Virtual Memory Design Issues

gi’a’
I
5

Design Issues

Thrashing and working set
Backing store

Simulate certain PTE bits
Pin/lock pages

Zero pages

Shared pages

Copy-on-write

Distributed shared memory
Virtual memory in Unix and Linux
Virtual memory in Windows 2000

Virtual Memory Design Implications

Revisit Design goals
® Protection

* |solate faults among processes
® Virtualization

« Use disk to extend physical memory
« Make virtualized memory user friendly (from O to high address)
Implications
® TLB overhead and TLB entry management
® Paging between DRAM and disk

VM access time
Access time = h x memory access time + (1 - h) x disk access time

® E.g. Suppose memory access time = 100ns, disk access time = 10ms
* If h=90%, VM access time is 1ms!
e \What's the worst case?

Thrashing

Thrashing

® Paging in and paging out all the time

® Processes block, waiting for pages to be fetched from disk
Reasons

® Process requires more physical memory than system has

® Does not reuse memory well

® Reuses memory, but it does not fit

® Too many processes, even though they individually fit

Solution: (last lecture)
® Pages referenced by a process in the last T seconds

® Two design questions
« Which working set should be in memory?
« How to allocate pages?

Working Set: Fit in Memory

Maintain two groups of processes

® Active: working set loaded

® |nactive: working set intentionally not loaded
Two schedulers

® A short-term scheduler schedules processes

® Along-term scheduler decides which one active and which
one inactive, such that active working sets fits in memory

A key design point
® How to decide which processes should be inactive
® Typical method is to use a threshold on waiting time

Working Set: Global vs. Local Page Allocation

The simplest is global allocation only
® Pros: Pool sizes are adaptable
e Cons: Too adaptable, little isolation

A balanced allocation strategy
® Each process has its own pool of pages

® Paging allocates from its own pool and
replaces from its own working set

® Use a “slow” mechanism to change the
allocations to each pool while providing
isolation

Do global and local always make sense?

Design questions:
e \What is “slow?”
® How big is each pool?
® \When to migrate?

User 1

User 2

Backing Store

Swap space
® Separate partition on disk to handle swap (often separate disk)

® \When process is created, allocate swap space for it (keep disk address in
process table entry)

® Need to load or copy executables to the swap space, or page out as needed

Dealing with process space growth
® Separate swap areas for text, data and stack, each with > 1 disk chunk
® No pre-allocation, just allocate swap page by page as needed

Mapping pages to swap portion of disk
® Fixed locations on disk for pages (easy to compute, no disk addr per page)
» E.g. shadow pages on disk for all pages
® Select disk pages on demand as needed (need disk addr per page)

What if no space is available on swap partition?

Are text files different than data in this regard?

Revisit Address Translation

Map to page frame and disk

e |f valid bit = 1, map to pp#
physical page number

e |f valid bit = 0, map to dp# disk
page number
Page out

® |nvalidate page table entry and
TLB entry

® Copy page to disk
® Set disk page numberin PTE
Page in

® Find an empty page frame (may
trigger replacement)

® Copy page from disk

® Set page numberin PTE and TLB
entry and make them valid

subl $2b %esp

movl 8(%esp), %eax

Process

Vp#

pp#

4+

Vp#

1
] -T
- - e
pp# o
/7

i| vp#

dp#|’

N
< |=— < (<L

Vp#

ppit|-.. !

T op#t”

TLB

Example: x86 Paging Options

Flags
e PG flag (Bit 31 of CRO): enable page translation
e PSE flag (Bit 4 of CR4): 0 for 4KB page size and 1 for large page size

extending physical address space to 36 bit
2MB and 4MB pages are mapped directly from directory entries
4KB and 4MB pages can be mixed

Page-Table Entry (4-KByte Page)
31 1211 9876543210

® PAE flag (Bit 5 of CR4): 0 for 2MB pages when PSE = 1 and 1 for 4MB pages when PSE = 1

Page Base Address Avalil

G

D

A

Available for system programmer’s use —I
Global Page

Page Table Attribute Index
Dirty

Accessed

Cache Disabled

Write-Through

User/Supervisor
Read/Write

Present

Wy
79

I‘:B:fmﬁmﬁ

Pin (or Lock) Page Frames

When do you need it?
® \When I/O is DMA'ing to memory pages

® |f process doing I/O is suspended and another process comes

in and pages the I/O (buffer) page out
e Data could be over-written

How to design the mechanism?
e A data structure to remember all pinned pages

® Paging algorithm checks the data structure to decide on page

replacement
® Special calls to pin and unpin certain pages
How would you implement the pin/unpin calls?

e [f the entire kernel is in physical memory, do we still need
these calls?

10

Zero Pages

Zeroing pages
® |nitialize pages with O’s
How to implement?

® On the first page fault on a data page or stack page, zero it
e Have a special thread zeroing pages

Can you get away without zeroing pages?

11

Shared Pages

PTEs from two processes

share the same physical pages |V VP#| pp# -
V| Vp# | pp#[-.
® \What use cases? |
APIs e
v| vp#| pp#f-.
® Shared mer.nory. calls Page table 1
Implementation issues A
® Destroying a process with shared et
a es’g/ vaP V| Vp#| pp#i i
pages: v[vp#| pp#}-"
® Page in, page out shared pages '
® Pin and unpin shared pages .
V| VP# | pp#H|-

Physical
Page table 2 pages

12

Copy-On-Write

A technique to avoid copying all

PP# -,

. Y
\
"
N
pp# 5 \
~ \ \
N
\ YN
RN

pp#[~

pp# =

pp# |-

pages to run a Iarge Process vir pp#-x\
Method b
e Child’s address space uses the same
mapping as parent’s
e Make all pages read-only vir
e Make child process ready Parent
e On aread, nothing happens Page table
® On a write, generates a fault
- map to a new page frame vt
. copy the page over Write __[1]
« restart the instruction fault
® Only written pages are copied
Issues il
e How to destroy an address space? Child
e How to page in and page out? Page table

e How to pin and unpin?

Physical
pages

13

Distributed Shared Memory

Run shared memory program
on a cluster of computers

Method
e Multiple address space mapped Virtual R Virtual
to “shared virtual memory” Address Address
® Page access bits are set Space space
according to coherence rules

* Exclusive writer
N readers

® Aread fault will invalidate the
writer, make read only and copy Shared
the page Virtual | .

e Awrite fault will invalidate . [Memory| /
another writer or all readers and

copy page
Issues

® Thrashing

e Copy page overhead

14

Address Space in Unix

Stack

Data

e Un-initialized: BSS (Block Started by
Symbol)

® |nitialized
® brk(addr) to grow or shrink
Text: read-only

Mapped files

® Map a file in memory

¢ mmap(addr, len, prot, flags, fd, offset)
e unmap(addr, len)

Stack

Address space

15

Virtual Memory in BSD4

Physical memory partition

e Core map (pinned): everything about page frames
e Kernel (pinned): the rest of the kernel memory

® Frames: for user processes

Page replacement
® Run page daemon until there is enough free pages
e Early BSD used the basic Clock (FIFO with 2nd chance)
e | ater BSD used Two-handed Clock algorithm

e Swapper runs if page daemon can'’t get enough free pages
 Looks for processes idling for 20 seconds or more
* 4 largest processes
« Check when a process should be swapped in

16

Virtual Memory in Linux

Linux address space for 32-bit machines
e 3GB user space
e 1GB kernel (invisible at user level)

Backing store
® Text segments and mapped files uses file on disk as backing storage

® QOther segments get backing storage on demand (paging files or swap area)

® Pages are allocated in backing store when needed
Copy-on-write for forking off processes
Multi-level paging: supports jumbo pages (4MB)
Replacement
Keep certain number of pages free
Clock algorithm on paging cache and file buffer cache

[

o

® Clock algorithm on unused shared pages

® Modified Clock on memory of user processes

17

Address Space in Windows 2K/XP

Win2k user address space
e Upper 2GB for kernel (shared)

® [ower 2GB — 256MB are for user code and
data (Advanced server uses 3GB instead)

® The 256MB contains system data (counters
and stats) for user to read

® 64KB guard at both ends
Virtual pages

® Page size
« 4KB for x86
« 8 or 16KB for |IA64

e States
* Free: not in use and cause a fault
« Committed: mapped and in use
« Reserved: not mapped but allocated

Page table

System data

4GB

2GB

18

Backing Store in Windows 2K/XP

Backing store allocation

e \Win2k delays backing store page assignments until paging out

® There are up to 16 paging files, each with an initial and max
sizes

Memory mapped files
® Multiple processes can share mapped files
® Implement copy-on-write

19

Paging in Windows 2K/XP

Each process has a working set with
® Min size with initial value of 20-50 pages
® Max size with initial value of 45-345 pages

On a page fault

e |f working set < min, add a page to the working set
e [f working set > max, replace a page from the working set

If a process has a lot of paging activities, increase its max

Working set manager maintains a large number of free pages
® |n the order of process size and idle time
® [f working set < min, do nothing
e Otherwise, page out the pages with highest “non-reference” counters in a
working set for uniprocessors
® Page out the oldest pages in a working set for multiprocessors

20

Summary

Must consider many issues
® Global and local replacement strategies
® Management of backing store

® Primitive operations

* Pin/lock pages

« Zero pages

« Shared pages

« Copy-on-write
Shared virtual memory can be implemented using
access bits

Real system designs are complex

21

