
COS 318: Operating Systems

Virtual Memory Paging

2

Today’s Topics

! Paging mechanism

! Page replacement algorithms

3

Virtual Memory Paging

! Simple world
" Load entire process into memory. Run it. Exit.

! Problems
" Slow (especially with big processes)

" Wasteful of space (doesn’t use all of its memory all the time)

" Reduces number of processes ready to run at a time

! Solution
" Demand paging: only bring in pages actually used

" Paging: only keep frequently used pages in memory

! Mechanism:
" Programs refer to addresses in virtual address space

" Virtual memory maps some to physical pages in memory,
some to disk

4

VM Paging Steps

Steps
! Memory reference

(may cause a TLB miss)

! TLB entry invalid triggers a page
fault and VM handler takes over

! Move page from disk to memory

! Update TLB entry w/ pp#, valid bit

! Restart the instruction

! Memory reference again

.

..
subl $20 %esp

movl 8(%esp), %eax
.
.
. vp#

v vp#

i vp#

v vp#

v vp#

TLB

pp#

pp#

dp#

pp#

pp#

...

v

VM

system

pp#v

Reference

fa
u

lt

Restart

VP# = virtual page no.
PP# = physical page no.

5

Virtual Memory Issues

! How to switch a process after a fault?
" Need to save state and resume

" Is it the same as an interrupt?

! What to page in?
" Just the faulting page or more?

" Want to know the future…

! What to replace?
" Memory is a software-managed cache on disk

" Caches always too small, which page to replace?

" Want to know the future...

6

How Does Page Fault Work?

! User program should not be aware of the page fault

! Fault may have happened in the middle of the
instruction!

! Can we skip the faulting instruction?

! Is a faulting instruction always restartable?

 .
 .
 .

subl $20 %esp

movl 8(%esp), %eax

 .
 .
 .

VM fault handler()

{

 Save states

 .
 .
 .
 iret

}

7

What to Page In?

! Page in the faulting page
" Simplest, but each “page in” has substantial overhead

! Page in more pages each time
" May reduce page faults if the additional pages are used

" Waste space and time if they are not used

" Real systems do some kind of prefetching

! Applications control what to page in
" Some systems support for user-controlled prefetching

" But, many applications do not always know

8

VM Page Replacement

! Things are not always available when you want them
" It is possible that no unused page frame is available

" VM needs to do page replacement

! On a page fault
" If there is an unused frame, get it

" If no unused page frame available,

• Find a used page frame

• If it has been modified, write it to disk

• Invalidate its current PTE and TLB entry

" Load the new page from disk

" Update the faulting PTE and remove its TLB entry

" Restart the faulting instruction

! General data structures
" A list of unused page frames

" A table to map page frames to PID and virtual pages, why?

Page

Replacement

9

Which “Used” Page Frame To Replace?

! Random

! Optimal or MIN algorithm

! NRU (Not Recently Used)

! FIFO (First-In-First-Out)

! FIFO with second chance

! Clock

! LRU (Least Recently Used)

! NFU (Not Frequently Used)

! Aging (approximate LRU)

! Working Set

! WSClock

10

Optimal or MIN

! Algorithm:

" Replace the page that won’t be

used for the longest time

(Know all references in the future)

! Example

" Reference string:

" 4 page frames

" 6 faults

! Pros
" Optimal solution and can be used as an off-line analysis method

! Cons
" No on-line implementation

1 2 3 4 1 2 5 1 2 3 4 5

11

Revisit TLB and Page Table

! Important bits for paging
" Reference: Set when referencing a location in the page

" Modify: Set when writing to a location in the page

offset

Virtual address

.

.

.

PPage# ...

PPage# ...

PPage# …

PPage # offset

VPage #

TLB

Hit

Miss
Page Table

VPage#

VPage#

VPage#

12

Not Recently Used (NRU)

! Algorithm
" Randomly pick a page from lowest-numbered non-empty class below

• Not referenced and not modified

• Not referenced and modified (huh?)

• Referenced and not modified

• Referenced and modified

" Clear reference bits periodically (e.g. at clock interrupts)

! Example
" 4 page frames

" Reference string

" 8 page faults

! Pros
" Implementable

! Cons
" Require scanning through reference bits and modified bits

1 2 3 4 1 2 5 1 2 3 4 5

13

First-In-First-Out (FIFO)

! Algorithm
" Throw out the oldest page

! Example
" 4 page frames

" Reference string

" 10 page faults

! Pros
" Low-overhead implementation

! Cons
" May replace the heavily used pages

5 3 4 7 9 11 2 1 15
Page

out

Recently

loaded

1 2 3 4 1 2 5 1 2 3 4 5

14

More Frames ! Fewer Page Faults?

! Consider the following with 4 page frames
" Algorithm: FIFO replacement

" Reference string:

" 10 page faults

! Same string with 3 page frames
" Algorithm: FIFO replacement

" Reference string:

" 9 page faults!

! This is so called “Belady’s anomaly” (Belady,
Nelson, Shedler 1969)

1 2 3 4 1 2 5 1 2 3 4 5

1 2 3 4 1 2 5 1 2 3 4 5

15

FIFO with 2nd Chance

! Algorithm
" Check the reference-bit of the oldest page
" If it is 0, then replace it
" If it is 1, clear the referent-bit, put it to the end of the list

(as if it had just been loaded), and continue searching

! Example
" 4 page frames
" Reference string:
" 8 page faults

! Pros
" Simple to implement

! Cons
" The worst case may take a long time (moving pages

around on the list)

5 3 4 7 9 11 2 1 15
Recently

loaded

Page

out

If ref bit = 1

1 2 3 4 1 2 5 1 2 3 4 5

16

Clock

! FIFO clock algorithm
" Hand points to the oldest page

" On a page fault, follow the hand to
inspect pages

! Second chance
" If the reference bit is 0, use it for

replacement, new page replaces it,
advance the hand

" If the reference bit is 1, set it to 0
and advance the hand

Oldest page

17

Least Recently Used

! Algorithm
" Replace page that hasn’t been used for the longest time

• Order the pages by time of reference

• Timestamp for each referenced page

! Example
" 4 page frames

" Reference string:

" 8 page faults

! Pros
" Good to approximate MIN

! Cons
" Expensive: maintain list of pages by reference, update on every reference

5 3 4 7 9 11 2 1 15
Recently
loaded

Least
Recently
used

1 2 3 4 1 2 5 1 2 3 4 5

18

Approximations of LRU

! Use CPU ticks
" For each memory reference, store the ticks in its PTE

" Find the page with minimal ticks value to replace

! Use a smaller counter

Most recently used Least recently used

N categories

Pages in order of last reference

LRU

Crude
LRU 2 categories

Pages referenced since

the last page fault

Pages not referenced

since the last page fault

8-bit
count 256 categories254 255

19

Aging: Not Frequently Used (NFU)

! Algorithm
" Shift reference bits into counters at every clock interrupt

" Pick the page with the smallest counter to replace

! Old example
" 4 page frames

" Reference string:

" 8 page faults

! Main difference between NFU and LRU?
" NFU can’t distinguish LRU within a clock interrupt period

" NFU has a short history (counter length)

! How many bits are enough?
" In practice 8 bits are quite good

00000000

00000000

10000000

00000000

10000000

00000000

11000000

00000000

01000000

10000000

11100000

00000000

10100000

01000000

01110000

10000000

01010000

10100000

00111000

01000000

1 2 3 4 1 2 5 1 2 3 4 5

20

Program Behavior (Denning 1968)

! 80/20 rule
" > 80% memory references are

within <20% of memory space

" > 80% memory references are
made by < 20% of code

! Spatial locality
" Neighbors are likely to be accessed

! Temporal locality
" The same page is likely to be

accessed again in the near future

Pages in memory

#
 P

ag
e

fa
u

lt
s

21

Working Set

! Main idea (Denning 1968, 1970)
" Define a working set as the set of pages in the most recent K

page references

" Keep the working set in memory will reduce page faults
significantly

! Approximate working set
" The set of pages of a process used in the last T seconds

! An algorithm
" On a page fault, scan through all pages of the process

" If the reference bit is 1, record the current time for the page

" If the reference bit is 0, check the “time of last use,”

• If the page has not been used within T, replace the page

• Otherwise, go to the next

" Add the faulting page to the working set

22

WSClock

! Follow the clock hand

! If the reference bit is 1
" Set reference bit to 0

" Set the current time for the page

" Advance the clock hand

! If the reference bit is 0, check “time of last use”
" If the page has been used within ", go to the next

" If the page has not been used within " and modify bit is 1

• Schedule the page for page out and go to the next

" If the page has not been used within " and modify bit is 0

• Replace this page

23

Replacement Algorithms

! The algorithms
" Random

" Optimal or MIN algorithm

" NRU (Not Recently Used)

" FIFO (First-In-First-Out)

" FIFO with second chance

" Clock

" LRU (Least Recently Used)

" NFU (Not Frequently Used)

" Aging (approximate LRU)

" Working Set
" WSClock

! Which are your top two?

24

Summary

! VM paging
" Page fault handler

" What to page in

" What to page out

! LRU is good but difficult to implement

! Clock (FIFO with 2nd hand) is considered a good practical
solution

! Working set concept is important

! Aging and WSClock do quite well and are implementable

