
COS 318: Operating Systems

Message Passing

2

Today’s Topics

! Message passing
" Semantics

" How to use

! Implementation issues
" Synchronous vs. asynchronous

" Buffering

" Indirection

" Exceptions

3

Big Picture

Process

Sender

Process

Receiver

4

Send and Receive Primitives

send(dest,
type,
msg)

Sender

recv(src,
type,
msg)

Receiver

pid, file, port,… pid, file, port, any,…

buffer, n-bytes
buffer, ?-bytes

msg type expected
msg type

Many ways to design the message passing API

5

Synchronous Message Passing

! Move data between processes
" Sender: when data is ready, send it to the receiver process

" Receiver: when the data has arrived and when the receive process is
ready to take the data, move the data to the destination data structure

! Synchronization
" Sender: signal the receiver process that a particular event happens

" Receiver: block until the event has happened

…

… …

…
S R

Send(R, buf, n);

Recv(S, &buf, &n);

6

Example: Producer-Consumer

! Questions
" Does this work?

" Would it work with multiple producers and 1 consumer?

" Would it work with 1 producer and multiple consumers?

" What about multiple producers and multiple consumers?

Producer(){

 ...

 while (1) {

 produce item;

 recv(Consumer, &credit);

 send(Consumer, item);

 }

}

Consumer(){

 ...

 for (i=0; i<N; i++)

 send(Producer, credit);

 while (1) {

 recv(Producer, &item);

 send(Producer, credit);

 consume item;

 }

}

7

Implementation Issues

! Buffering messages

! Direct vs. indirect

! Unidirectional vs.
bidirectional

! Asynchronous vs.
synchronous

! Event handler vs. receive

! How to handle exceptions?

…

…

8

Buffering Messages

! No buffering
" Sender must wait until the

receiver receives the message

" Rendezvous on each message

! Bounded buffer
" Finite size

" Sender blocks on buffer full

" Use monitor to solve the problem

! Unbounded buffer
" “Infinite” size

" Sender never blocks buffer

9

Direct Communication

! A single buffer at the receiver
" More than one process may

send messages to the receiver

" To receive from a specific
sender, it requires searching
through the whole buffer

! A buffer at each sender
" A sender may send messages

to multiple receivers

" To get a message, it also
requires searching through the
whole buffer

…

…

10

Indirect Communication

! Use mailbox as the abstraction
" Allow many-to-many communication

" Require open/close a mailbox

! Buffering
" A buffer, its mutex and condition

variables should be at the mailbox

! Message size
" Not necessarily. One can break a

large message into packets

! Mailbox vs. pipe
" A mailbox allows many to many

communication

" A pipe implies one sender and one
receiver

mbox

pipe

11

Synchronous vs. Asynchronous: Send

! Synchronous
" Block if resource is busy

" Initiate data transfer

" Block until data is out of its
source memory

" Rendezvous: block until
receiver has done recv and
sent acknowledgment

! Asynchronous
" Block if resource is busy

" Initiate data transfer and
return

" Completion

• Require applications to
check status

• Notify or signal the
application

send(dest, type, msg)

msg transfer resource

status = async_send(dest, type, msg)

…

if !send_complete(status)

 wait for completion;

…

use msg data structure;

…

12

Synchronous vs. Asynchronous: Receive

! Synchronous
" Return data if there is a

message

! Asynchronous
" Return data if there is a

message

" Return status if there is no
message (probe)

recv(src, type, msg)

msg transfer resource

status = async_recv(src, type, msg);

if (status == SUCCESS)

 consume msg;

while (probe(src) != HaveMSG)

 wait for msg arrival

recv(src, type, msg);

consume msg;

13

Event Handler vs. Receive

! hrecv(src, type, msg, func)
" msg is an arg of func

" Execute “func” on a message
arrival

! Which one is more powerful?
" Recv with a thread can emulate a

Handler

" Handler can be used to emulate
recv by using Monitor

! Pros and Cons

void func(char * msg) {

 …

}

…

hrecv(src, type, msg, func)

…

while(1) {

 recv(src,type, msg);

 func(msg);

}

program
Create a thread

…

14

Example: Keyboard Input

! How do you implement keyboard input?
" Need an interrupt handler

" Generate a mbox message from the interrupt handler

! Suppose a keyboard device thread converts input
characters into an mbox message
" How would you synchronize between the keyboard interrupt

handler and device thread?

" How can a device thread convert input into mbox messages?

mbox

V(s);

…

while (1) {

 P(s);

 Acquire(m);

 convert …

 Release(m);

};

Interrupt

handler

Device

thread

Process

15

Exception: Process Termination

! R waits for a message from S,
but S has terminated
" Problem: R may be blocked

forever

! S sends a message to R,
but R has terminated
" Problem: S has no buffer and

will be blocked forever

S R

S R

16

Exception: Message Loss

! Use ack and timeout to detect
and retransmit a lost message
" Require the receiver to send an ack

message for each message

" Sender blocks until an ack message
is back or timeout
status = send(dest, msg, timeout);

" If timeout happens and no ack, then
retransmit the message

! Issues
" Duplicates

" Losing ack messages

S R

send

ack

17

Exception: Message Loss, cont’d

! Retransmission must handle
" Duplicate messages on receiver side

" Out-of-sequence ack messages on
sender side

! Retransmission
" Use sequence number for each

message to identify duplicates

" Remove duplicates on receiver side

" Sender retransmits on an out-of-
sequence ack

! Reduce ack messages
" Bundle ack messages

" Receiver sends noack messages:
can be complex

" Piggy-back acks in send messages

S R

send1

ack1

send2

ack2

18

Exception: Message Corruption

! Detection
" Compute a checksum over the entire message and send

the checksum (e.g. CRC code) as part of the message

" Recompute a checksum on receive and compare with the
checksum in the message

! Correction
" Trigger retransmission

" Use correction codes to recover

Data

Compute checksum

19

Example: Sockets API

! Abstraction for TCP and UDP
" Guest lecture by Prof. Rexford on 11/29

! Addressing
" IP address and port number

(216 ports available for users)

! Create and close a socket
" sockid = socket(af, type,

protocol);

" Sockerr = close(sockid);

! Bind a socket to a local address
" sockerr = bind(sockid, localaddr,

addrlength);

! Negotiate the connection
" listen(sockid, length);

" accept(sockid, addr, length);

! Connect a socket to destimation
" connect(sockid, destaddr,

addrlength);

socket socket

bind

listen

accept

read

connect

write

write read

Server Client

20

Summary

! Message passing
" Move data between processes

" Implicit synchronization

" API design is important

! Implementation issues
" Synchronous method is most common

" Asynchronous method provides overlapping but requires
careful design considerations

" Indirection makes implementation flexible

" Exception needs to be carefully handled

