COS 318: Operating Systems **Message Passing**

Today's Topics

- Message passing
 - Semantics
 - How to use
 - Implementation issues
 - Synchronous vs. asynchronous
 - Buffering
 - Indirection
 - Exceptions

Synchronous Message Passing

- Move data between processes
 - Sender: when data is ready, send it to the receiver process
 - Receiver: when the data has arrived and when the receive process is ready to take the data, move the data to the destination data structure
- Synchronization
 - Sender: signal the receiver process that a particular event happens
 - Receiver: block until the event has happened

Questions

- Does this work?
- Would it work with multiple producers and 1 consumer?
- Would it work with 1 producer and multiple consumers?
- What about multiple producers and multiple consumers?

Implementation Issues

- Buffering messages
- Direct vs. indirect
- Unidirectional vs.
 bidirectional
- Asynchronous vs. synchronous
- Event handler vs. receive
- How to handle exceptions?

Buffering Messages

- No buffering
 - Sender must wait until the receiver receives the message
 - Rendezvous on each message
- Bounded buffer
 - Finite size
 - Sender blocks on buffer full
 - Use monitor to solve the problem
- Unbounded buffer
 - "Infinite" size
 - Sender never blocks

Direct Communication

- A single buffer at the receiver
 - More than one process may send messages to the receiver
 - To receive from a specific sender, it requires searching through the whole buffer
- A buffer at each sender
 - A sender may send messages to multiple receivers
 - To get a message, it also requires searching through the whole buffer

Indirect Communication

- Use mailbox as the abstraction
 - Allow many-to-many communication
 - Require open/close a mailbox
- Buffering
 - A buffer, its mutex and condition variables should be at the mailbox
- Message size
 - Not necessarily. One can break a large message into packets
- Mailbox vs. pipe
 - A mailbox allows many to many communication
 - A pipe implies one sender and one receiver

Synchronous vs. Asynchronous: Send

Synchronous

- Block if resource is busy
- Initiate data transfer
- Block until data is out of its source memory
- Rendezvous: block until receiver has done recv and sent acknowledgment
- Asynchronous
 - Block if resource is busy
 - Initiate data transfer and return
 - Completion
 - Require applications to check status
 - Notify or signal the application


```
status = async_send( dest, type, msg )
```

```
•••
```

```
if !send_complete( status ) wait for completion;
```

use msg data structure;

Synchronous vs. Asynchronous: Receive

Synchronous

Return data if there is a message

msg transfer resource

```
→recv( src, type, msg )
```


- Return data if there is a message
- Return status if there is no message (probe)

while (probe(src) != HaveMSG)
 wait for msg arrival
recv(src, type, msg);
consume msg;

Event Handler vs. Receive

- hrecv(src, type, msg, func)
 - msg is an arg of func
 - Execute "func" on a message arrival
- Which one is more powerful?
 - Recv with a thread can emulate a Handler
 - Handler can be used to emulate recv by using Monitor
- Pros and Cons

Example: Keyboard Input

- How do you implement keyboard input?
 - Need an interrupt handler
 - Generate a mbox message from the interrupt handler
- Suppose a keyboard device thread converts input characters into an mbox message
 - How would you synchronize between the keyboard interrupt handler and device thread?
 - How can a device thread convert input into mbox messages?

Exception: Process Termination

- R waits for a message from S, but S has terminated
 - Problem: R may be blocked forever

 Problem: S has no buffer and will be blocked forever

Exception: Message Loss

- Use ack and timeout to detect and retransmit a lost message
 - Require the receiver to send an ack message for each message
 - Sender blocks until an ack message is back or timeout status = send(dest, msg, timeout);
 - If timeout happens and no ack, then retransmit the message
- Issues
 - Duplicates
 - Losing ack messages

Exception: Message Loss, cont'd

- Retransmission must handle
 - Duplicate messages on receiver side
 - Out-of-sequence ack messages on sender side
- Retransmission
 - Use sequence number for each message to identify duplicates
 - Remove duplicates on receiver side
 - Sender retransmits on an out-ofsequence ack
- Reduce ack messages
 - Bundle ack messages
 - Receiver sends noack messages: can be complex
 - Piggy-back acks in send messages

- Compute a checksum over the entire message and send the checksum (e.g. CRC code) as part of the message
- Recompute a checksum on receive and compare with the checksum in the message

Correction

- Trigger retransmission
- Use correction codes to recover

Summary

Message passing

- Move data between processes
- Implicit synchronization
- API design is important
- Implementation issues
 - Synchronous method is most common
 - Asynchronous method provides overlapping but requires careful design considerations
 - Indirection makes implementation flexible
 - Exception needs to be carefully handled

