
COS 318: Operating Systems

I/O Device and Drivers

2

Input and Output

! A computer’s job is to process data
" Computation (CPU, cache, and memory)

" Move data into and out of a system (between I/O devices
and memory)

! Challenges with I/O devices
" Different categories: storage, networking, displays, etc.

" Large number of device drivers to support

" Device drivers run in kernel mode and can crash systems

! Goals of the OS
" Provide a generic, consistent, convenient and reliable way to

access I/O devices

" As device-independent as possible

" Don’t hurt the performance capability of the I/O system too
much

3

Revisit Hardware

! Compute hardware
" CPU and caches

" Chipset

" Memory

! I/O Hardware
" I/O bus or interconnect

" I/O controller or adaptor

" I/O device

! Two types of I/O
" Programmed I/O (PIO)

• CPU does the work of moving data

" Direct Memory Access (DMA)

• CPU offloads the work of moving
data to DMA controller

CPU

Memory

I/O bus

CPU
CPU
CPU

Network

4

Definitions and General Method

! Overhead
" Time that the CPU is tied up

initiating/ending an operation

! Latency
" Time to transfer one byte

" Overhead + 1 byte reaches
destination

! Bandwidth
" Rate of I/O transfer, once initiated

" Mbytes/sec

! General method
" Higher level abstractions of byte

transfers

" Batch transfers into block I/O for
efficiency to amortize overhead
and latency over a large unit

Initiate Data transfer

5

Programmed Input Device

! Device controller
" Status register

ready: tells if the host is done
busy: tells if the controller is done
int: interrupt
…

" Data registers

! A simple mouse design
" Put (X, Y) in data registers on a

move

" Interrupt

! Input on an interrupt
" Read values in X, Y registers

" Set ready bit

" Wake up a process/thread or
execute a piece of code

6

Programmed Output Device

! Device
" Status registers (ready, busy, …)

" Data registers

! Example
" A serial output device

! Perform an output
" Wait until ready bit is clear

" Poll the busy bit

" Writes the data to register(s)

" Set ready bit

" Controller sets busy bit and
transfers data

" Controller clears the ready bit and
busy bit

7

Direct Memory Access (DMA)

! DMA controller or adaptor
" Status register

(ready, busy, interrupt, …)

" DMA command register

" DMA register (address, size)

" DMA buffer

! Host CPU initiates DMA
" Device driver call (kernel mode)

" Wait until DMA device is free

" Initiate a DMA transaction
(command, memory address, size)

" Block

! Controller performs DMA
" DMA data to device

(size--; address++)

" Interrupt on completion (size == 0)

! Interrupt handler (on completion)
" Wakeup the blocked process

8

I/O Software Stack

User-Level I/O Software

Device-Independent

OS software

Device Drivers

Interrupt handlers

Hardware

9

Recall Interrupt Handling

! Save context (registers that hw hasn’t saved, PSW etc)

! Mask interrupts if needed

! Set up a context for interrupt service

! Set up a stack for interrupt service

! Acknowledge interrupt controller, perhaps enable it (huh?)

! Save entire context to PCB

! Run the interrupt service

! Unmask interrupts if needed

! Possibly change the priority of the process

! Run the scheduler

! Then OS will set up context for next process, load
registers and PSW, start running process …

10

I/O System

Device Drivers

Rest of the

operating

system

Device

driver

Device

driver

.

.

.

Device

driver

Device

controller

Device

controller

.

.

.
Device

controller

Device

Device

Device

Device

In
te

rr
u
p
t
H

a
n
d
lin

g

! Manage the complexity and differences among specific types of
devices (disk/mouse, different types of disks …)

! Each handles one type of device or small class of them (eg SCSI)

11

Typical Device Driver Design

! Operating system and driver communication
" Commands and data between OS and device drivers

! Driver and hardware communication
" Commands and data between driver and hardware

! Driver operations
" Initialize devices

" Interpreting commands from OS

" Schedule multiple outstanding requests

" Manage data transfers

" Accept and process interrupts

" Maintain the integrity of driver and kernel data structures

Simplified Device Driver Behavior

! Check input parameters for validity, and translate them to device-
specific language

! Check if device is free (wait or block if not)

! Issue commands to control device
" Write them into device controller’s registers

" Check after each if device is ready for next (wait or block if not)

! Block or wait for controller to finish work

! Check for errors, and pass data to device-indept software

! Return status information

! Process next queued request, or block waitng for next

! Challenges:
" Must be reentrant (can be called by an interrupt while running)

" Handle hot-pluggable devices and device removal while running

" Complex and many of them; bugs in them can crash system

12

Types of I/O Devices

! Block devices
" Organize data in fixed-size blocks

" Transfers are in units of blocks

" Blocks have addresses and data are therefore addressable

" E.g. hard disks, USB disks, CD-ROMs

! Character devices
" Delivers or accepts a stream of characters, no block structure

" Not addressable, no seeks

" Can read from stream or write to stream

" Printers, network interfaces, terminals

! Like everything, not a perfect classification
" E.g. tape drives have blocks but not randomly accessed

" Clocks are I/O devices that just generate interrupts

13

Typical Device Speeds

! Keyboard

! Mouse

! Compact Flash card

! USB 2.0

! 52x CD-ROM

! Scanner

! 56K modem

! 802.11g wireless net

! Gigabit Ethernet

! FireWire-1

! SCSI Ultra-2 disk

! SATA disk

! PCI bus

! Ultrium tape

14

10 B/s

100 B/s

40 MB/s

60 MB/s

7.8 MB/s

400 KB/s

7 KB/s

6.75 MB/s

320 MB/s

50 MB/s

80 MB/s

300 MB/s

528 MB/s

320 MB/s

15

Device Driver Interface

! Open(deviceNumber)
" Initialization and allocate resources (buffers)

! Close(deviceNumber)
" Cleanup, deallocate, and possibly turnoff

! Device driver types
" Block: fixed sized block data transfer

" Character: variable sized data transfer

" Terminal: character driver with terminal control

" Network: streams for networking

! Interfaces for block and character/stream oriented
devices (at least) are different
" Like to preserve same interface within each category

16

Character and Block Device Interfaces

! Character device interface
" read(deviceNumber, bufferAddr, size)

• Reads “size” bytes from a byte stream device to “bufferAddr”

" write(deviceNumber, bufferAddr, size)

• Write “size” bytes from “bufferAddr” to a byte stream device

! Block device interface
" read(deviceNumber, deviceAddr, bufferAddr)

• Transfer a block of data from “deviceAddr” to “bufferAddr”

" write(deviceNumber, deviceAddr, bufferAddr)

• Transfer a block of data from “bufferAddr” to “deviceAddr”

" seek(deviceNumber, deviceAddress)

• Move the head to the correct position

• Usually not necessary

17

Unix Device Driver Interface Entry Points

! init()
" Initialize hardware

! start()
" Boot time initialization (require system services)

! open(dev, flag, id) and close(dev, flag, id)
" Initialization resources for read or write, and release afterwards

! halt()
" Call before the system is shutdown

! intr(vector)
" Called by the kernel on a hardware interrupt

! read(…) and write() calls
" Data transfer

! poll(pri)
" Called by the kernel 25 to 100 times a second

! ioctl(dev, cmd, arg, mode)
" special request processing

18

Synchronous vs. Asynchronous I/O

! Synchronous I/O
" read() or write() will block a user process until its completion

" OS overlaps synchronous I/O with another process

! Asynchronous I/O
" read() or write() will not block a user process

" user process can do other things before I/O completion

" I/O completion will notify the user process

19

Detailed Steps of Blocked Read

! A process issues a read call which executes a system call

! System call code checks for correctness and buffer cache

! If it needs to perform I/O, it will issues a device driver call

! Device driver allocates a buffer for read and schedules I/O

! Controller performs DMA data transfer

! Block the current process and schedule a ready process

! Device generates an interrupt on completion

! Interrupt handler stores any data and notifies completion

! Move data from kernel buffer to user buffer

! Wakeup blocked process (make it ready)

! User process continues when it is scheduled to run

20

Asynchronous I/O

! API
" Non-blocking read() and write()

" Status checking call

" Notification call

" Different form the synchronous I/O API

! Implementation
" On a write

• Copy to a system buffer, initiate the write and return

• Interrupt on completion or check status

" On a read

• Copy data from a system buffer if the data are there

• Otherwise, return with a special status

21

Why Buffering?

! Speed mismatch between the producer and consumer
" Character device and block device, for example

" Adapt different data transfer sizes (packets vs. streams)

! Deal with address translation
" I/O devices see physical memory

" User programs use virtual memory

! Caching
" Avoid I/O operations

! User-level and kernel-level buffering

! Spooling
" Avoid user processes holding up resources in multi-user

environment

22

Think About Performance

! A terminal connects to computer via a serial line
" Type character and get characters back to display

" RS-232 is bit serial: start bit, character code, stop bit (9600
baud)

! Do we have any cycles left?
" 10 users or 10 modems

" 900 interrupts/sec per user

" What should the overhead of an interrupt be

! Technique to minimize interrupt overhead
" Interrupt coalescing

23

Other Design Issues

! Build device drivers
" Statically

• A new device driver requires reboot OS

" Dynamically

• Download a device driver without rebooting OS

• Almost every modern OS has this capability

! How to down load device driver dynamically?
" Load drivers into kernel memory

" Install entry points and maintain related data structures

" Initialize the device drivers

24

Dynamic Binding: Indirection

Open(1, …);

D
ri

v
er

-k
er

n
el

 i
n

te
rf

ac
e

Driver for device 0

…

open(…) {

}

read(…) {

}

Driver for device 1

…

open(…) {

}

read(…) {

}

Indirect table

Other

Kernel

services

Interrupt

handlers

25

Issues with Device Drivers

! Flexible for users, ISVs and IHVs
" Users can download and install device drivers

" Vendors can work with open hardware platforms

! Dangerous methods
" Device drivers run in kernel mode

" Bad device drivers can cause kernel crashes and introduce
security holes

! Progress on making device driver more secure
" Checking device driver codes

" Build state machines for device drivers

26

Summary

! Device controllers
" Programmed I/O is simple but inefficient

" DMA is efficient (asynchronous) and complex

! Device drivers
" Dominate the code size of OS

" Dynamic binding is desirable for desktops or laptops

" Device drivers can introduce security holes

" Progress on secure code for device drivers but completely
removing device driver security is still an open problem

