Overview

Exhaustive search. Iterate through all elements of a search space.

Applicability. Huge range of problems (include intractable ones).

Caveat. Search space is typically exponential in size ⇒ effectiveness may be limited to relatively small instances.

Warmup: enumerate N-bit strings

Goal. Process all 2^N bit strings of length N.
- Maintain $a[i]$ where $a[i]$ represents bit i.
- Simple recursive method does the job.

```
public class BinaryCounter {
    private int N;   // number of bits
    private int[] a; // a[i] = ith bit
    ... 
}
```

```
public static void main(String[] args) {
    int N = Integer.parseInt(args[0]);
    new BinaryCounter(N);
}
```

```
% java BinaryCounter 4
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
```

Remark. Equivalent to counting in binary from 0 to $2^N - 1$.

all programs in this lecture are variations on this theme
N-rooks problem

Q. How many ways are there to place N rooks on an N-by-N board so that
no rook can attack any other?

Representation. No two rooks in the same row or column ⇒ permutation.

Challenge. Enumerate all N! permutations of 0 to N-1.

int[] a = { 2, 0, 1, 3, 6, 7, 4, 5 };

Recursive algorithm to enumerate all N! permutations of size N.
• Start with permutation a[0] to a[N-1].
• For each value of i:
 - swap a[i] into position 0
 - enumerate all (N-1)! permutations of a[1] to a[N-1]
 - clean up (swap a[i] back to original position)

```java
private void enumerate(int k)
{
   if (k == N)
   {  process(); return;  }
   for (int i = k; i < N; i++)
   {
      exch(k, i);
      enumerate(k+1);
      exch(i, k);
   }
}
```

% java Rooks 4
0 1 2 3
0 1 3 2
0 2 1 3
0 2 3 1
0 3 1 2
0 3 2 1
1 0 2 3
1 0 3 2
1 2 0 3
1 2 3 0
1 3 0 2
1 3 2 0
2 1 0 3
2 1 3 0
2 3 0 1
2 3 1 0
3 0 1 2
3 0 2 1
3 1 0 2
3 1 2 0
3 2 0 1
3 2 1 0
...
public class Rooks
{
 private int N;
 private int[] a; // bits (0 or 1)
 public Rooks(int N)
 {
 this.N = N;
 a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = i;
 enumerate(0);
 }
 private void enumerate(int k)
 {
 /* see previous slide */
 }
 private void exch(int i, int j)
 {
 int t = a[i];
 a[i] = a[j];
 a[j] = t;
 }
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 new Rooks(N);
 }
}

N-rooks problem: back-of-envelope running time estimate

Studying slow way to compute N!, but good warmup for calculations.

Hypothesis. Running time is about 2(N! / 8!) seconds.
Q. How many ways are there to place N queens on an N-by-N board so that no queen can attack any other?

Representation. No two queens in the same row or column \Rightarrow permutation.

Additional constraint. No diagonal attack is possible.

Challenge. Enumerate (or even count) the solutions.

```
int[] a = { 2, 7, 3, 6, 0, 5, 1, 4 };
```

Unlike the N-rooks problem, nobody knows the answer for $N > 30$.

4-queens search tree

- **diagonal conflict**
 - on partial solution: no point going deeper
 - solutions

N-queens problem: backtracking solution

- **Backtracking paradigm.** Iterate through elements of search space.
 - When there are N possible choices, make one choice and recur.
 - If the choice is a dead end, backtrack to previous choice, and make next available choice.

- **Benefit.** Identifying dead ends allows us to prune the search tree.

- **Ex.** [backtracking for N-queens problem]
 - Dead end: a diagonal conflict.
 - Pruning: backtrack and try next column when diagonal conflict found.
N-queens problem: backtracking solution

Private boolean backtrack(int k)
{
 for (int i = 0; i < k; i++)
 {
 if ((a[i] - a[k]) == (k - i)) return true;
 if ((a[k] - a[i]) == (k - i)) return true;
 }
 return false;
}

// place N-k queens in a[k] to a[N-1]
private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 for (int i = k; i < N; i++)
 {
 exch(k, i);
 if (!backtrack(k)) enumerate(k+1);
 exch(i, k);
 }
}

N-queens problem: effectiveness of backtracking

Pruning the search tree leads to enormous time savings.

<table>
<thead>
<tr>
<th>N</th>
<th>Q(N)</th>
<th>N!</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>720</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>5,040</td>
</tr>
<tr>
<td>8</td>
<td>92</td>
<td>40,320</td>
</tr>
<tr>
<td>9</td>
<td>352</td>
<td>362,880</td>
</tr>
<tr>
<td>10</td>
<td>724</td>
<td>3,628,800</td>
</tr>
<tr>
<td>11</td>
<td>2,680</td>
<td>39,916,800</td>
</tr>
<tr>
<td>12</td>
<td>14,200</td>
<td>479,001,600</td>
</tr>
<tr>
<td>13</td>
<td>73,712</td>
<td>6,227,020,800</td>
</tr>
<tr>
<td>14</td>
<td>365,596</td>
<td>87,178,291,200</td>
</tr>
</tbody>
</table>

N-queens problem: How many solutions?

% java Queens 4 | wc -l
1 3 0 2
2 0 3 1
% java Queens 5
0 2 4 1 3
0 3 1 4 2
1 3 0 2 4
1 4 2 0 3
2 0 3 1 4
2 4 1 3 0
3 1 4 2 0
3 0 4 1 5
4 1 3 0 2
4 2 0 3 1

% java Queens 6
1 3 5 0 2 4
2 5 1 4 0 3
3 0 4 1 5 2
4 2 0 5 3 1

Hypothesis. Running time is about \((N! / 2.5^N) / 43,000\) seconds.

Conjecture. \(Q(N) \approx N! / c^N\), where \(c\) is about 2.54.
Counting: Java implementation

Goal. Enumerate all \(N\)-digit base-\(R\) numbers.

Solution. Generalize binary counter in lecture warmup.

```java
private static void enumerate(int k)
{
    if (k == N)
    {  process(); return;  }
    for (int r = 0; r < R; r++)
    {
        a[k] = r;
        enumerate(n+1);
    }
    a[k] = 0;
}
```

Counting application: Sudoku

Goal. Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.

Remark. Natural generalization is NP-hard.

Sudoku: backtracking solution

Iterate through elements of search space.
- For each empty cell, there are 9 possible choices.
- Make one choice and recur.
- If you find a conflict in row, column, or box, then backtrack.

```plaintext
backtrack on 3, 4, 5, 7, 8, 9
```
private void enumerate(int k)
{
 if (k == 81)
 { process(); return; }
 if (a[k] != 0)
 { enumerate(k+1); return; }
 for (int r = 1; r <= 9; r++)
 {
 a[k] = r;
 if (!backtrack(k))
 enumerate(k+1);
 }
 a[k] = 0;
}

private void enumerate(int k)
{
 if (k == 81)
 { process(); return; }
 if (a[k] != 0)
 { ... r <= 9; r++)
 {
 a[k] = r;
 if (!backtrack(k))
 enumerate(k+1);
 }
 a[k] = 0;
}

Enumerating subsets: natural binary encoding

Given N items, enumerate all 2^N subsets.
• Count in binary from 0 to $2^N - 1$.
• Bit i represents item i.
• If 0, in subset; if 1, not in subset.

<table>
<thead>
<tr>
<th>i</th>
<th>binary</th>
<th>subset</th>
<th>complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0</td>
<td>empty</td>
<td>4 3 2 1</td>
</tr>
<tr>
<td>1</td>
<td>1 0 0 0</td>
<td>1</td>
<td>4 3 2</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 0</td>
<td>2</td>
<td>4 3 1</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 1</td>
<td>2 1</td>
<td>4 3</td>
</tr>
<tr>
<td>4</td>
<td>0 1 0 0</td>
<td>3</td>
<td>4 2 1</td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 1</td>
<td>3 1</td>
<td>4 2</td>
</tr>
<tr>
<td>6</td>
<td>0 1 1 0</td>
<td>3 2</td>
<td>4 1</td>
</tr>
<tr>
<td>7</td>
<td>0 1 1 1</td>
<td>3 2 1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1 0 0 0</td>
<td>4</td>
<td>3 2 1</td>
</tr>
<tr>
<td>9</td>
<td>1 0 0 1</td>
<td>4 1</td>
<td>3 2</td>
</tr>
<tr>
<td>10</td>
<td>1 0 1 0</td>
<td>4 2</td>
<td>3 1</td>
</tr>
<tr>
<td>11</td>
<td>1 0 1 1</td>
<td>4 2 1</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1 1 0 0</td>
<td>4 3</td>
<td>2 1</td>
</tr>
<tr>
<td>13</td>
<td>1 1 0 1</td>
<td>4 3 1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>1 1 1 0</td>
<td>4 3 2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1 1 1 1</td>
<td>4 3 2 1</td>
<td>empty</td>
</tr>
</tbody>
</table>

Binary counter from warmup does the job.
Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once.

<table>
<thead>
<tr>
<th>code</th>
<th>subset</th>
<th>move</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>empty</td>
<td>enter 1</td>
</tr>
<tr>
<td>0 0 1</td>
<td>1</td>
<td>enter 1</td>
</tr>
<tr>
<td>0 1 1</td>
<td>2</td>
<td>enter 2</td>
</tr>
<tr>
<td>0 1 0</td>
<td>2</td>
<td>exit 1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>3</td>
<td>enter 4</td>
</tr>
<tr>
<td>0 1 1</td>
<td>3</td>
<td>exit 1</td>
</tr>
<tr>
<td>0 1 1</td>
<td>4</td>
<td>enter 1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>4</td>
<td>exit 2</td>
</tr>
<tr>
<td>1 0 0</td>
<td>4</td>
<td>exit 1</td>
</tr>
<tr>
<td>1 1 0</td>
<td>4</td>
<td>enter 1</td>
</tr>
<tr>
<td>1 1 0</td>
<td>3</td>
<td>exit 2</td>
</tr>
<tr>
<td>1 0 1</td>
<td>3</td>
<td>enter 4</td>
</tr>
<tr>
<td>1 0 1</td>
<td>2</td>
<td>exit 1</td>
</tr>
<tr>
<td>1 1 1</td>
<td>2</td>
<td>enter 2</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1</td>
<td>exit 2</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0</td>
<td>exit 1</td>
</tr>
</tbody>
</table>

Binary reflected gray code

Def. The k-bit binary reflected Gray code is:
• the (k-1) bit code with a 0 prepended to each word, followed by
• the (k-1) bit code in reverse order, with a 1 prepended to each word.

Everting subsets using Gray code

Two simple changes to binary counter from warmup:
• Flip a[k] instead of setting it to 1.
• Eliminate cleanup.

Gray code binary counter

```java
private void enumerate(int k)
{
  if (k == N)
  {  process(); return;  }
  a[k] = 1 - a[k];
  enumerate(k+1);
  a[k] = 0;
}
```

Standard binary counter (from warmup)

```java
private void enumerate(int k)
{
  if (k == N)
  {  process(); return;  }
  a[k] = 1;
  enumerate(k+1);
  a[k] = 0;
}
```

Advantage. Only one item in subset changes at a time.

More applications of Gray codes

- 3-bit rotary encoder
- 8-bit rotary encoder
- Chinese ring puzzle
- Towers of Hanoi
Scheduling (set partitioning). Given \(n \) jobs of varying length, divide among two machines to minimize the makespan (time the last job finishes).

Remark. Intractable.

Scheduling: improvements

Many opportunities (details omitted).

- Fix last job to be on machine 0 (quick factor-of-two improvement).
- Maintain difference in finish times (instead of recomputing from scratch).
- Backtrack when partial schedule cannot beat best known.
 (check total against goal: half of total job times)

- Process all \(2^k \) subsets of last \(k \) jobs, keep results in memory,
 (reduces time to \(2^{n-k} \) when \(2^k \) memory available).

```java
public class Scheduler {
    private int N;          // Number of jobs.
    private int[] a;        // Subset assignments.
    private int[] b;        // Best assignment.
    private double[] jobs;  // Job lengths.

    public Scheduler(double[] jobs) {
        this.N = jobs.length;
        this.jobs = jobs;
        a = new int[N];
        b = new int[N];
        enumerate(N);
    }

    public int[] best() {
        return b;
    }

    private void enumerate(int k) {
        if (k == N-1) {
            process();
            return;
        }
        if (backtrack(k)) return;
        enumerate(k+1);
        a[k] = 1 - a[k];
        enumerate(k+1);
    }

    private void process() {
        if (cost(a) < cost(b)) {
            for (int i = 0; i < N; i++)
                b[i] = a[i];
        }
    }

    public static void main(String[] args) {
        /* create Scheduler, print results */
    }
}
```
Enumerating all paths on a grid

Goal. Enumerate all simple paths on a grid of adjacent sites.

Application. Self-avoiding lattice walk to model polymer chains.

Boggle: Java implementation

```java
private void dfs(String prefix, int i, int j)
{
    if ((i < 0 || i >= N) ||
        (j < 0 || j >= N) ||
        !dictionary.containsAsPrefix(prefix))
        return;

    visited[i][j] = true;
    prefix = prefix + board[i][j];
    
    if (dictionary.contains(prefix))
        found.add(prefix);

    for (int ii = -1; ii <= 1; ii++)
        for (int jj = -1; jj <= 1; jj++)
            dfs(prefix, i + ii, j + jj);

    visited[i][j] = false;
}
```

Hamilton path

Goal. Find a simple path that visits every vertex exactly once.

Remark. Euler path easy, but Hamilton path is NP-complete.
Knight’s tour

Goal. Find a sequence of moves for a knight so that (starting from any desired square) it visits every square on a chessboard exactly once.

Solution. Find a Hamilton path in knight’s graph.

Hamilton path: backtracking solution

Backtracking solution. To find Hamilton path starting at v:
- Add v to current path.
- For each vertex w adjacent to v
 - find a simple path starting at w using all remaining vertices
- Clean up: remove v from current path.

Q. How to implement?
A. Add cleanup to DFS (!!)

Hamilton path: Java implementation

```java
public class HamiltonPath {
    private boolean[] marked;    // vertices on current path
    private int count = 0;    // number of Hamiltonian paths

    public HamiltonPath(Graph G) {
        marked = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            dfs(G, v, 1);
    }

    private void dfs(Graph G, int v, int depth) {
        marked[v] = true;
        if (depth == G.V()) count++;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w, depth+1);
        marked[v] = false;  // clean up
    }
}
```

Combinatorial search: summary

<table>
<thead>
<tr>
<th>problem</th>
<th>enumeration</th>
<th>backtracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-rooks</td>
<td>permutations</td>
<td>no</td>
</tr>
<tr>
<td>N-queens</td>
<td>permutations</td>
<td>yes</td>
</tr>
<tr>
<td>Sudoku</td>
<td>base-9 numbers</td>
<td>yes</td>
</tr>
<tr>
<td>scheduling</td>
<td>subsets</td>
<td>yes</td>
</tr>
<tr>
<td>Boggle</td>
<td>paths in a grid</td>
<td>yes</td>
</tr>
<tr>
<td>Hamilton path</td>
<td>paths in a graph</td>
<td>yes</td>
</tr>
</tbody>
</table>
The longest path

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I’m addicted to completeness,
And I keep searching for the longest path.
The algorithm I would like to see
Is of polynomial degree,
But it’s elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it’s right, and he marks it wrong.
Some how I’ll feel sorry when it’s done: GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

Recorded by Dan Barrett in 1988
while a student at Johns Hopkins
during a difficult algorithms final