
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · October 13, 2008 10:17:08 PM

Balanced Trees

References:
 Handout on red-black trees
 http://www.cs.princeton.edu/algs4/43balanced

‣ 2-3 trees
‣ red-black trees
‣ B-trees

2

Symbol table review

Challenge. Guarantee performance.
This lecture. 2-3 trees, left-leaning red-black trees, B-trees.

introduced to the world in
COS 226, Fall 2007

(see handout)

implementation

guarantee average case
ordered

iteration?
operations

on keys
search insert delete search hit insert delete

sequential search
(linked list) N N N N/2 N N/2 no equals()

binary search
(ordered array) lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

Goal log N log N log N log N log N log N yes compareTo()

3

‣ 2-3 trees
‣ red-black trees
‣ B-trees

Allow 1 or 2 keys per node.

• 2-node: one key, two children.

• 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

2-3 tree

4

E J

H L

Anatomy of a 2-3 search tree

2-node3-node

null link

M

R

P S XA C

between E and J

larger than Jsmaller than

• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

5

Search in a 2-3 tree

successful search for H

found H so return value (search hit)

H is less than M so
look to the left

H is between E and L so
look in the middle

B is between A and C so look in the middle

B is less than M so
look to the left

B is less than C
so look to the left

Successful and unsuccessful search in a 2-3 tree

link is null so B is not in the tree (search miss)

unsuccessful search for B

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

6

Insertion in a 2-3 tree

Case 1. Insert into a 2-node at bottom.

• Search for key, as usual.

• Replace 2-node with 3-node.

inserting K

search for K ends here

replace 2-node with
new 3-node containing K

Insert into a 2-node

E J

H L

M

R

P S XA C

E J

H

M

R

P S XK LA C

7

Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

split 4-node into two 2-nodes
pass middle key to parent

replace 3-node with
temporary 4-node

containing Z

replace 2-node
with new 3-node

containing
middle key

S X Z

S Z

Insert into a 3-node whose parent is a 2-node

E J

H L

M

R

PA C

inserting Z

search for Z ends
at this 3-nodeE J

H L

M

R

P S XA C

E J

H

M

P

R X

A C L

why middle key?

8

Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary.

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node

add middle key C to 3-node
to make temporary 4-node

add new key D to 3-node
to make temporary 4-node

A C D

A D

inserting D

search for D ends
at this 3-node E J

H L

M

R

P S XA C

E J

H L

M

R

P S X

C E J

H L

M

R

P S X

A D H L

C J R

P S X

E M

Insert into a 3-node whose parent is a 3-nodesplit 4-node into two 2-nodes
pass middle key to parent

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node

add middle key C to 3-node
to make temporary 4-node

add new key D to 3-node
to make temporary 4-node

A C D

A D

inserting D

search for D ends
at this 3-node E J

H L

M

R

P S XA C

E J

H L

M

R

P S X

C E J

H L

M

R

P S X

A D H L

C J R

P S X

E M

Insert into a 3-node whose parent is a 3-node

Case 2. Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary.

• If you reach the root and it's a 4-node, split it into three 2-nodes.

Remark. Splitting the root increases height by 1.
9

Insertion in a 2-3 tree

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1

add middle key C to 3-node
to make temporary 4-node

A C D

A D

Splitting the root

inserting D

search for D ends
at this 3-node E J

H LA C

E J

H L

C E J

H L

A D H L

C J

E

add new key D to 3-node
to make temporary 4-node

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1

add middle key C to 3-node
to make temporary 4-node

A C D

A D

Splitting the root

inserting D

search for D ends
at this 3-node E J

H LA C

E J

H L

C E J

H L

A D H L

C J

E

add new key D to 3-node
to make temporary 4-node

Standard indexing client.

10

2-3 tree construction trace

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

2-3 tree construction traces

 standard indexing client same keys in increasing order

 insert S

E

A

R

C

H

X

M

P

L

 insert A

C

E

H

L

M

P

R

S

X

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

2-3 tree construction traces

 standard indexing client same keys in increasing order

 insert S

E

A

R

C

H

X

M

P

L

 insert A

C

E

H

L

M

P

R

S

X

The same keys inserted in ascending order.

11

2-3 tree construction trace

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

2-3 tree construction traces

 standard indexing client same keys in increasing order

 insert S

E

A

R

C

H

X

M

P

L

 insert A

C

E

H

L

M

P

R

S

X

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

2-3 tree construction traces

 standard indexing client same keys in increasing order

 insert S

E

A

R

C

H

X

M

P

L

 insert A

C

E

H

L

M

P

R

S

X

12

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of steps.

Splitting a 4-node is a local transformation

b c d

a e

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

b d

a c e

Invariant. Symmetric order.
Invariant. Perfect balance.

Pf. Each transformation maintains order and balance.

13

Global properties in a 2-3 tree

 parent is a 3-node

right

middle

left

 parent is a 2-node

right

left

b db c d

a ca

a b c

d

ca

b d

splitting the root

a b c
a c

b
c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e

 parent is a 3-node

right

middle

left

 parent is a 2-node

right

left

b db c d

a ca

a b c

d

ca

b d

splitting the root

a b c
a c

b
c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e

 parent is a 3-node

right

middle

left

 parent is a 2-node

right

left

b db c d

a ca

a b c

d

ca

b d

splitting the root

a b c
a c

b
c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e

14

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

• Worst case:

• Best case:

Typical 2-3 tree built from random keys

15

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

• Worst case: lg N. [all 2-nodes]

• Best case: log3 N ≈ .631 lg N. [all 3-nodes]

• Between 12 and 20 for a million nodes.

• Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

Typical 2-3 tree built from random keys

ST implementations: summary

16

constants depend upon
implementation

implementation

guarantee average case
ordered

iteration?
operations

on keys
search insert delete search hit insert delete

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

2-3 tree c lg N c lg N c lg N c lg N c lg N c lg N yes compareTo()

17

2-3 tree: implementation?

Direct implementation is complicated, because:

• Maintaining multiple node types is cumbersome.

• Need multiple compares to move down tree.

• Need to move back up the tree to split 4-nodes.

• Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

18

‣ 2-3-4 trees
‣ red-black trees
‣ B-trees

1. Represent 2–3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3–nodes.

Key property. 1–1 correspondence between 2–3 and LLRB.

19

Left-leaning red-black trees (Guibas-Sedgewick 1979 and Sedgewick 2007)

red links "glue"
nodes within a 3-node

black links connect
2-nodes and 3-nodes

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b
3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b
3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

larger key is root

A BST such that:

• No node has two red links connected to it.

• Every path from root to null link has the same number of black links.

• Red links lean left.

20

An equivalent definition

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

"perfect black balance"

Search implementation for red-black trees

Observation. Search is the same as for elementary BST (ignore color).

Remark. Many other ops (e.g., ceiling, selection, iteration) are also identical.
21

public Val get(Key key)
{
 Node x = root;
 while (x != null)
 {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else if (cmp == 0) return x.val;
 }
 return null;
}

but runs faster because of better balance

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Red-black tree representation

Each node is pointed to by precisely one link (from its parent) ⇒
can encode color of links in nodes.

22

 private static final boolean RED = true;
 private static final boolean BLACK = false;

 private class Node
 {
 Key key;
 Value val;
 Node left, right;
 boolean color;
 }

 private boolean isRed(Node x)
 {
 if (x == null) return false;
 return x.color == RED;
 }

private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node
{
 Key key; // key
 Value val; // associated data
 Node left, right; // subtrees
 int N; // # nodes in this subtree
 boolean color; // color of link from
 // parent to this node

 Node(Key key, Value val, int N, boolean color)
 {
 this.key = key;
 this.val = val;
 this.N = N;
 this.color = color;
 }
}

private boolean isRed(Node x)
{
 if (x == null) return false;
 return x.color == RED;
}

J
G

E

A D
C

Node representation for red−black trees

h
h.left.color

is RED
h.right.color

is BLACK

null links are black

Elementary red-black tree operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

Invariants. Maintains symmetric order and perfect black balance.
23

 private Node rotateLeft(Node h)
 {
 x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 return x;
 }

Left rotate (right link of h)

Node rotateLeft(Node h)
{
 x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

h

x

x

h

E

S

between
E and S

less
than E

greater
than S

E
S

between
E and S

could be right or left,
red or black

less
than E

greater
than S

Left rotate (right link of h)

Node rotateLeft(Node h)
{
 x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

h

x

x

h

E

S

between
E and S

less
than E

greater
than S

E
S

between
E and S

could be right or left,
red or black

less
than E

greater
than S

Elementary red-black tree operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

Invariants. Maintains symmetric order and perfect black balance.
24

 private Node rotateRight(Node h)
 {
 Node x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 return x;
 }

Right rotate (left link of h)

Node rotateRight(Node h)
{
 x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

x

h

h

x

E

S

between
S and E

less
than E

greater
than S

E
S

between
S and E

less
than E

greater
than S

Right rotate (left link of h)

Node rotateRight(Node h)
{
 x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

x

h

h

x

E

S

between
S and E

less
than E

greater
than S

E
S

between
S and E

less
than E

greater
than S

Elementary red-black tree operations

Color flip. Recolor to split a (temporary) 4-node.

Invariants. Maintains symmetric order and perfect black balance.
25

 private void flipColors(Node h)
 {
 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
 }

Flipping colors to split a 4-node

void flipColors(Node h)
{
 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
}

h

A

E

between
A and E

less
than A

S

between
E and S

could be left
or right link

red link attaches
middle node

to parent

black links split
to 2-nodes

greater
than S

A

E

between
A and E

less
than A

S

between
E and S

greater
than S

Flipping colors to split a 4-node

void flipColors(Node h)
{
 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
}

h

A

E

between
A and E

less
than A

S

between
E and S

could be left
or right link

red link attaches
middle node

to parent

black links split
to 2-nodes

greater
than S

A

E

between
A and E

less
than A

S

between
E and S

greater
than S

Elementary red-black tree operations: examples

26

S
X

M

R

E

A H
C

P
S

X

P

R

M

C H
E

A

rotate left

rotate right

flip colors

 insert P

S
X

M

R

E

A H
C

S
X

M

R

E

A H
C

P
R

S
X

M

E

A
C H

P

add new node here

both children red
so flip colors

S
X

M

R

E

A H
C

P

right link red
so rotate right

S

X

P

R

M

C H
E

two lefts in a row
so rotate right

A

P
R

S
X

M

E

A
C H

both children red
so flip colors

 insert P

S
X

M

R

E

A H
C

S
X

M

R

E

A H
C

P
R

S
X

M

E

A
C H

P

add new node here

both children red
so flip colors

S
X

M

R

E

A H
C

P

right link red
so rotate right

S

X

P

R

M

C H
E

two lefts in a row
so rotate right

A

P
R

S
X

M

E

A
C H

both children red
so flip colors

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by
applying elementary red-black tree operations.

Insertion in a LLRB tree: overview

27

E

A

LLRB tree

 insert C

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

rotate left

E

A R S

E

R SA C

2-3 tree

Warmup 1. Insert into a tree with exactly 1 node.

Insertion in a LLRB tree

28

Insert into a single
2-node (two cases)

right

search ends
at this null link

left

red link to
 new node

containing a
converts 2-node

to 3-node

search ends
at this null link

attached new node
with red link

rotated left
to make a

legal 3-node

a

b

a

a

b

b

a

b

root

root

root

root

Insert into a single
2-node (two cases)

right

search ends
at this null link

left

red link to
 new node

containing a
converts 2-node

to 3-node

search ends
at this null link

attached new node
with red link

rotated left
to make a

legal 3-node

a

b

a

a

b

b

a

b

root

root

root

root

Warmup 2. Insert into a tree with exactly 2 nodes.

smaller

search ends
at this null link

larger
search ends

at this
null linksearch ends

at this null link

attached new
node with
red link

attached new
node with
red link

a

c
b

Insert into a single 3-node (three cases)

between

attached new
node with
red link

rotated left

rotated
right

rotated
right

colors flipped
to black

colors flipped
to black

colors flipped
to black

a

c
b

b

c

a

b

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

smaller

search ends
at this null link

larger
search ends

at this
null linksearch ends

at this null link

attached new
node with
red link

attached new
node with
red link

a

c
b

Insert into a single 3-node (three cases)

between

attached new
node with
red link

rotated left

rotated
right

rotated
right

colors flipped
to black

colors flipped
to black

colors flipped
to black

a

c
b

b

c

a

b

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

Insertion in a LLRB tree

29

smaller

search ends
at this null link

larger
search ends

at this
null linksearch ends

at this null link

attached new
node with
red link

attached new
node with
red link

a

c
b

Insert into a single 3-node (three cases)

between

attached new
node with
red link

rotated left

rotated
right

rotated
right

colors flipped
to black

colors flipped
to black

colors flipped
to black

a

c
b

b

c

a

b

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

Case 1. Insert into a 2-node at the bottom.

• Do standard BST insert; color new link red.

• If new red link is a right link, rotate left.

Insertion in a LLRB tree

30

E

A

Insert into a 2-node
at the bottom

 insert C

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

right link red
so rotate left

Insertion in a LLRB tree

Case 2. Insert into a 3-node at the bottom.

• Do standard BST insert; color new link red.

• Rotate to balance the 4-node (if needed).

• Flip colors to pass red link up one level.

• Rotate to make lean left (if needed).

31

H

Insert into a 3-node
at the bottom

 insert H
E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

H

Insert into a 3-node
at the bottom

 insert H
E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

Case 2. Insert into a 3-node at the bottom.

• Do standard BST insert; color new link red.

• Rotate to balance the 4-node (if needed).

• Flip colors to pass red link up one level.

• Rotate to make lean left (if needed).

• Repeat Case 1 or Case 2 up the tree (if needed).

Insertion in a LLRB tree

32

 insert P

S
X

M

R

E

A H
C

S
X

M

R

E

A H
C

P
R

S
X

M

E

A
C H

P

add new node here

both children red
so flip colors

S
X

M

R

E

A H
C

P

right link red
so rotate right

S

X

P

R

M

C H
E

two lefts in a row
so rotate right

A

P
R

S
X

M

E

A
C H

both children red
so flip colors

 insert P

S
X

M

R

E

A H
C

S
X

M

R

E

A H
C

P
R

S
X

M

E

A
C H

P

add new node here

both children red
so flip colors

S
X

M

R

E

A H
C

P

right link red
so rotate right

S

X

P

R

M

C H
E

two lefts in a row
so rotate right

A

P
R

S
X

M

E

A
C H

both children red
so flip colors

Standard indexing client.

33

LLRB tree construction trace

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

2-3 tree construction traces

 standard indexing client same keys in increasing order

 insert S

E

A

R

C

H

X

M

P

L

 insert A

C

E

H

L

M

P

R

S

X

S

E

A S

E

A

PA

H

C M

E L

A

H

C M

E L

red-black tree construction traces
 standard indexing client same keys in increasing order

 insert S

E

A

R

C

H

X

M

P

L

 insert A

C

E

H

L

M

P

R

S

X

E

R
S

L
M

P
R

S
X

A

H

C

E

R
S

C

A
E

H

A
C

E
S

A

C

A E

A
C

S
X

M

R

E

A H
C

S
X

R

E

A
C H

P
R

S
X

M

E

A
C H

P
R

SH
X

M

E

A
C L

S

R

E

A
C H

L

H

C
A E

S

R

M
L P

A

H

C

E

R

M
L P

H

C
A E

red black tree 2-3 tree

Standard indexing client.

34

LLRB tree construction trace

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

2-3 tree construction traces

 standard indexing client same keys in increasing order

 insert S

E

A

R

C

H

X

M

P

L

 insert A

C

E

H

L

M

P

R

S

X

S

E

A S

E

A

PA

H

C M

E L

A

H

C M

E L

red-black tree construction traces
 standard indexing client same keys in increasing order

 insert S

E

A

R

C

H

X

M

P

L

 insert A

C

E

H

L

M

P

R

S

X

E

R
S

L
M

P
R

S
X

A

H

C

E

R
S

C

A
E

H

A
C

E
S

A

C

A E

A
C

S
X

M

R

E

A H
C

S
X

R

E

A
C H

P
R

S
X

M

E

A
C H

P
R

SH
X

M

E

A
C L

S

R

E

A
C H

L

H

C
A E

S

R

M
L P

A

H

C

E

R

M
L P

H

C
A E

red black tree 2-3 tree

Insertion in a LLRB tree: Java implementation

Same code for both cases.

• If the right child is red and the left child is not red, rotate left.

• If both the left child and its left child are red, rotate right.

• If both children are red, flip colors.

35

 private Node put(Node h, Key key, Value val)
 {
 if (h == null) return new Node(key, val, RED);
 int cmp = key.compareTo(h.key);
 if (cmp < 0) h.left = put(h.left, key, val);
 else if (cmp > 0) h.right = put(h.right, key, val);
 else h.val = val;

 if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
 if (isRed(h.left) && isRed(h.right)) h = flipColors(h);

 return h;
 }

insert at bottom

split 4-node
balance 4-node
lean left

only a few extra lines of code provide near-perfect balance

Insertion in a LLRB tree: visualization

36

255 insertions in ascending order

37

Insertion in a LLRB tree: visualization

255 insertions in descending order

Insertion in a LLRB tree: visualization

38

50 random insertions

39

Insertion in a LLRB tree: visualization

255 random insertions

40

Balance in LLRB trees

Proposition. Height of tree is ≤ 2 lg N in the worst case.
Pf.

• Every path from root to null link has same number of black links.

• Never two red links in-a-row.

Property. Height of tree is ~ 1.00 lg N in typical applications.

ST implementations: summary

41

implementation

guarantee average case
ordered

iteration?
operations

on keys
search insert delete search hit insert delete

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

2-3 tree c lg N c lg N c lg N c lg N c lg N c lg N yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

exact value of coefficient unknown
but extremely close to 1

Why left-leaning trees?

42

private Node put(Node x, Key key, Value val, boolean sw)
{
 if (x == null)
 return new Node(key, value, RED);
 int cmp = key.compareTo(x.key);

 if (isRed(x.left) && isRed(x.right))
 {
 x.color = RED;
 x.left.color = BLACK;
 x.right.color = BLACK;
 }
 if (cmp < 0)
 {
 x.left = put(x.left, key, val, false);
 if (isRed(x) && isRed(x.left) && sw)
 x = rotateRight(x);
 if (isRed(x.left) && isRed(x.left.left))
 {
 x = rotateRight(x);
 x.color = BLACK; x.right.color = RED;
 }
 }
 else if (cmp > 0)
 {
 x.right = put(x.right, key, val, true);
 if (isRed(h) && isRed(x.right) && !sw)
 x = rotateLeft(x);
 if (isRed(h.right) && isRed(h.right.right))
 {
 x = rotateLeft(x);
 x.color = BLACK; x.left.color = RED;
 }
 }
 else x.val = val;
 return x;
}

 public Node put(Node h, Key key, Value val)
 {
 if (h == null)
 return new Node(key, val, RED);
 int cmp = kery.compareTo(h.key);
 if (cmp < 0)
 h.left = put(h.left, key, val);
 else if (cmp > 0)
 h.right = put(h.right, key, val);
 else h.val = val;

 if (isRed(h.right) && !isRed(h.left))
 h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left))
 h = rotateRight(h);
 if (isRed(h.left) && isRed(h.right))
 h = flipColors(h);

 return h;
 }

old code (that students had to learn in the past) new code (that you have to learn)

extremely tricky

straightforward
 (if you’ve paid attention)

Why left-leaning trees?

43

Simplified code.

• Left-leaning restriction reduces number of cases.

• Short inner loop.

Same ideas simplify implementation of other operations.

• Delete min/max.

• Arbitrary delete.

Improves widely-used algorithms.

• AVL trees, 2-3 trees, 2-3-4 trees.

• Red-black trees.

Bottom line. Left-leaning red-black trees are the simplest balanced BST
to implement and the fastest in practice.

new

1972

1978

2008

44

‣ 2-3-4 trees
‣ red-black trees
‣ B-trees

45

File system model

Page. Contiguous block of data (e.g., a file or 4096-byte chunk).
Probe. First access to a page (e.g., from disk to memory).

Model. Time required for a probe is much larger than time to accessdata
within a page.

Goal. Access data using minimum number of probes.

slow fast

B-tree. Generalize 2-3 trees by allowing up to M links per node.

• At least 1 entry at root.

• At least M/2 links in other nodes.

• External nodes contain client keys.

• Internal nodes contain copies of keys to guide search.

46

B-trees (Bayer-McCreight, 1972)

Anatomy of a B-tree set (M = 5)

2-node

5-node (full)

 internal node

 external node

all nodes except the root are 3-, 4- or 5-nodes

* B C

 sentinel key

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X

each red key is a copy
of min key in subtree

client keys (black)
are in external nodes

choose M as large as possible so
that M links fit in a page, e.g., M = 1000

• Start at root.

• Find interval for search key and take corresponding link.

• Search terminates in external node.

47

Searching in a B-tree

Searching in a B-tree set

* B C

searching for E

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X

search for E in
this external node

follow this link because
E is between * and K

follow this link because
E is between D and H

• Search for new key.

• Insert at bottom.

• Split (M+1)-nodes on the way up the tree.

48

Insertion in a B-tree

Inserting a new key into a B-tree set

* A B C E F H I J K M N O P Q R T

* C H

* K

K Q U

U W X

* A B C E F H I J K M N O P Q R T U W X

* C H K Q U

* A B C E F H I J K M N O P Q R T U W X

* H K Q U

* B C E F H I J K M N O P Q R T U W X

* H K Q U

new key (A) causes
overflow and split

inserting A

root split causes
a new root to be created

new key (C) causes
overflow and split

Probes. A search or insert in a B-tree of order M with N items requires
between logMN and logM/2N probes.

Pf. All internal nodes (besides root) have between M/2 and M links.

In practice. Number of probes is at most 4!

Optimization. Always keep root page in memory.

49

Balance in B-tree

M = 1000; N = 62 billion
log M/2 N ≤ 4

50

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

• Java: java.util.TreeMap, java.util.TreeSet.

• C++ STL: map, multimap, multiset.

• Linux kernel: completely fair scheduler, linux/rbtree.h.

B-tree variants. B+ tree, B*tree, B# tree, …

B-trees (and variants) are widely used for file systems and databases.

• Windows: HPFS.

• Mac: HFS, HFS+.

• Linux: ReiserFS, XFS, Ext3FS, JFS.

• Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

51

Red-black trees in the wild

Common sense. Sixth sense.
Together they're the
FBI's newest team.

Red-black trees in the wild

52

