
COS 226 Algorithms and Data Structures Fall 2006

Midterm

This test has 8 questions worth a total of 50 points. You have 80 minutes. The exam is closed
book, except that you are allowed to use a one page cheatsheet. No calculators or other electronic
devices are permitted. Give your answers and show your work in the space provided. Write out
and sign the Honor Code pledge before turning in the test.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Problem Score Problem Score
1 5
2 6
3 7
4 8

Sub 1 Sub 2

Total

Name:

Login ID:

Precept: 1 12:30 Janet
3 3:30 Wolfgang

1



2 PRINCETON UNIVERSITY

1. 8 sorting algorithms. (8 points)

The column on the left is the original input of strings to be sorted. The columns to the right
are the contents at some intermediate step during one of the 8 sorting algorithms listed below.
Match up each algorithm by writing its number under the corresponding column. Use each
number exactly once.

Data | Leaf Code Code Case Type Next Data Code Case
Type | Scan Cost Data Code Trie Edge Edge Data Code
Hash | Heap Case Find Cost Tree Hash Hash Find Cost
Code | Swap Data Hash Data Time Code Code Hash Data
Heap | Exch Exch Heap Edge Loop Heap Heap Heap Edge
Sort | Code Edge Link Exch Swim Lifo Lifo Leaf Exch
Link | Node Find List Fifo Temp Link Link Left Fifo
List | Tree Fifo Loop Find Skip List List Link Find
Push | Fifo Hash Push Hash Push Push Push List Hash
Loop | Lifo Heap Root Heap Heap Loop Loop Loop Heap
Find | Left Join Sort Join Join Find Find Node Join
Root | Edge Link Type Leaf Sort Root Root Null Leaf
Leaf | Trie List Leaf Root Scan Leaf Leaf Path Left
Tree | Swim Loop Tree Tree Swap Fifo Fifo Push Less
Null | Join Leaf Null Null Null Null Null Root Lifo
Path | Skip Left Path Path Path Path Path Sort Link
Node | Null Less Node Node Node Node Node Tree List
Left | Time Lifo Left Left Left Left Left Type Loop
Less | Temp Null Less Less Less Less Less Case Next
Cost | Find Node Cost Push Cost Cost Cost Cost Node
Case | Link Next Case Type Case Case Case Edge Null
Join | Sink Push Join List Find Join Join Exch Path
Exch | Loop Path Exch Sort Exch Exch Exch Fifo Push
Sink | Root Root Sink Sink Sink Data Sink Join Root
Swim | Type Sort Swim Swim Root Scan Scan Less Scan
Next | Sort Sink Next Next Next Swap Next Lifo Sink
Scan | Case Swim Scan Scan Leaf Skip Skip Next Skip
Swap | Hash Scan Swap Swap Hash Sort Swap Scan Sort
Temp | Push Swap Temp Temp Link Sink Temp Sink Swap
Fifo | Less Skip Fifo Link Fifo Swim Tree Skip Swim
Lifo | List Type Lifo Lifo Lifo Time Sort Swap Temp
Trie | Cost Tree Trie Trie List Tree Trie Swim Time
Edge | Data Temp Edge Loop Edge Temp Type Temp Tree
Time | Path Trie Time Time Data Type Time Time Trie
Skip | Next Time Skip Skip Code Trie Swim Trie Type
---- ---- ---- ---- ---- ---- ---- ---- ---- ----
0

(0) Original input

(1) 3-way radix quicksort

(2) Heap sort

(3) Insertion sort

(4) LSD radix sort

(5) Mergesort

(6) MSD radix sort

(7) Quicksort

(8) Selection sort

(9) All of them



COS 226 MIDTERM, FALL 2006 3

2. Algorithm Properties. (6 points)

Match up each worst-case quantity on the left with the best matching order-of-growth term
on the right. You may use a letter more than once.

−−− Height of a binary heap with N keys

−−− Height of a BST with N keys

−−− Number of comparisons to quicksort N equal keys
using our standard version of quicksort

−−− Number of comparisons to quicksort N equal keys
using 3-way quicksort

−−− Time to iterate over the keys in a BST using inorder traversal

−−− Number of equality tests to insert N keys into an empty linear
probing hash table of size 2N .

A. 1

B. log N

C. N

D. N log N

E. N2

F. 2N

3. Sorting a linked list. (6 points)

Suppose that you wish to sort a singly linked list of N Comparable items. Which algorithm
would you choose and why? For your algorithm, describe its (i) memory usage, beyond the
space required to represent the linked list, (ii) average asymptotic number of compares, and
(iii) whether or not the algorithm is stable.

Algorithm Extra memory Running time Stability



4 PRINCETON UNIVERSITY

4. Comparable interface. (4 points)

What is broken with the following implementation of the Java Comparable interface?

public class Temperature implements Comparable<Temperature> {
private double degrees; // Kelvin

public Temperature(double degrees) {
this.degrees = degrees;

}
public int compareTo(Temperature y) {

double EPSILON = 0.01;
if (degrees < y.degrees - EPSILON) return -1;
else if (degrees > y.degrees + EPSILON) return +1;
else return 0;

}
}

5. Java API. (4 points)

You have been hired to design a new Java library with the following API.

public class OrderStatistic<Item extends Comparable>
public boolean isEmpty() // is the data structure empty?
public int size() // return the number of items N
public void insert(Item item) // insert an item
public Item select(int k) // return the kth largest item for 1 <= k <= N

Your manager requires that all operations take constant time in the worst-case.
Describe why you won’t succeed.



COS 226 MIDTERM, FALL 2006 5

6. Binary heaps. (6 points)

Consider the following binary heap (i.e., the array-representation of a heap-ordered complete
binary tree).

0 1 2 3 4 5 6 7 8 9 10 11 12 13
- X W J V U D H S P Q R C -

(a) Draw the corresponding binary tree.

(b) Insert the key M. Give the resulting binary heap, circling those values that changed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
-

(c) Delete the maximum key from the original binary heap. Give the resulting binary heap,
circling those values that changed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
-



6 PRINCETON UNIVERSITY

7. Red-black trees. (6 points)

Consider the following red-black tree. (As usual, the thick edges represent red links.)

a

Add the key S; then add the key D. Draw the final red-black tree.



COS 226 MIDTERM, FALL 2006 7

8. Two-sum. (10 points)

TwoSum. Given an array of N 64-bit long integers, find two integers x and y such that
x + y = 0. (For simplicity, assume none of the integers is 0 or −263.)

(a) Describe a efficient algorithm for TwoSum in the box below. Your algorithm should
run in linear time on average (for full credit) or linearithmic time (for partial credit).
Your answer will be graded on correctness, clarity, and conciseness.

(b) Circle the average-case running time of your algorithm.

log N N N log N N2 2N

(c) Circle the worst-case running time of your algorithm.

log N N N log N N2 2N


