
COS 226 Algorithms and Data Structures Fall 2006

Final Solutions

1. Analysis of algorithms.

(a) There exists a constant c > 0 such that for any array of N elements, heapsort takes at
most cN lg N steps (pairwise comparisons and exchanges).

(b) Any comparison-based sorting algorithm must make Ω(N log N) comparisons in the
worst case.

(c) 2 hours.

(d) 1 hour.

2. Algorithm analogies.

(a) Hamilton path

(b) ternary search trie

(c) Dijkstra’s algorithm

(d) ccw

(e) binary heap

3. String searching.

1



4. Convex hull.

(a) List the points in the order that they are considered for insertion into the convex hull.

J G H I E F D A B C

1. J -> G -> H
2. J -> G -> H -> I
3. J -> G -> E
4. J -> G -> E -> F
5. J -> G -> E -> D
6. J -> G -> E -> A
7. J -> G -> E -> A -> B
8. J -> G -> E -> A -> B -> C

(b) A set of points is convex if for any two points p1 and p2 in the set, all of the points on
the line segment from p1 to p2 are also in the set.

5. BFS and DFS.

(a) DFS preorder: A B D E C F H G I

(b) DFS postorder: B H F C I G E D A

(c) BFS levelorder: A B D E I C F G H

6. Algorithm throwdown.

Red-black tree Ternary search trie
arbitrary Comparable keys faster for string keys
worst-case guarantee longest prefix match

Dijkstra’s algorithm Bellman-Ford-Moore
faster handles negative weights
undirected graphs negative cycle detection

Burrows-Wheeler LZW compression
better compression ratio faster

Red-black tree Hash table
performance guarantee O(1) average case
range search

Breadth-first search Depth-first search
shortest path topological sort

strongly connected components

2



7. Minimum spanning tree.

(a) C-D B-C A-D E-F G-I E-G F-H D-I

(b) A-D C-D B-C D-I G-I E-G E-F F-H

8. Data compression and tries.

(a) c a g t aa ac ca aat ta aac ct

(b)

9. Linear programming.

maximize −26A − 30B − 20C
subject to: A + B + 2C = 200

3A + 6B + 3C + S1 = 45
9A + 2B + 4C − S2 = 85
5A + 9B + 6C + S3 = 95

−5A + −9B + −6C + S4 = 95
A , B , C , S1 , S2 , S3 , S4 ≥ 0

3



10. Reductions.

Given an instance x1, . . . xN of ElementDistinctness, form the instance (x1, 0), . . . , (xN , 0)
for ClosestPair. The elements in the ElementDistinctness problem are distinct if and
only if the closest pair of points has distance strictly greater than 0.

Remark. There is an Ω(N log N) lower bound for ElementDistinctness in the quadratic
decision tree model of computation. This reduction proves that there is also an Ω(N log N)
lower bound for ClosestPair.

11. Sorting and hashing.

(a) Sort the N elements. Then, scan through the elements and check if any two adjacent
elements are equal. Use heapsort to guarantee O(N log N) performance, while using
O(1) extra memory.
Note that quicksort does not guaranteed O(N log N) performance. Also, it uses Ω(log N)
extra space for the function call stack.

(b) Create an empty set of elements. For each element of the N elements, check if it’s
already in the set. If it is, you’ve found a duplicate; otherwise insert it into the set. Use
a hash table to obtain O(1) average time per operation.

12. Shortest path with landmark.

(a) Compute the shortest path from v to x using Dijkstra’s algorithm. Then compute the
shortest path from x to w using Dijkstra’s algorithm. Concatenate the two paths.
Correctness follows since all of the edge weights are positive: if the shortest landmark
path used a non-shortest path from v to x, we could shorten it by substituting a shortest
path from v to x. The same argument applies to the path from x to w.

(b) Pre-compute the following two quantities. Here x is fixed, and we compute the quantity
for every vertex u.

• d̄(u, x) = length of the shortest path from u to x.
• d(x, u) = length shortest path from x to u.

Use Dijkstra’s algorithm (with x as the source) to compute d(x, u). This computes
d(x, u) for every vertex u in O(E log V ) time. Use Dijkstra’s algorithm on the reverse
graph Ḡ (with x as the source) to compute d̄(u, x).
To process a shortest landmark path query from v to w, return d̄(v, x) + d(x,w).

4


