
Princeton University
COS 217: Introduction to Programming Systems

Fall 2008 Final Exam Preparation

Topics

You are responsible for all material covered in lectures, precepts, assignments, and required readings.
This is a non-exhaustive list of topics that were covered. Topics that were covered after the midterm exam
are in boldface.

1. Number Systems

• The binary, octal, and hexadecimal number systems
• Finite representation of integers
• Representation of negative integers
• Binary arithmetic
• Bitwise operators

2. C Programming

• The program preparation process: preprocess, compile, assemble, link
• Program structure: multi-file programs using header files
• Process memory layout: text, stack, heap, rodata, data, bss sections
• Data types
• Variable declarations and definitions
• Variable scope, linkage, and duration/extent
• Constants: #define, constant variables, enumerations
• Operators and statements
• Function declarations and definitions
• Pointers; call-by-reference
• Arrays: arrays and pointers, arrays as parameters, strings
• Command-line arguments
• Input/output functions
• Text files
• Structures
• Dynamic memory mgmt.: malloc(), calloc(), realloc(), free()
• Dynamic memory mgmt. errors: dangling pointer, memory leak, double free
• Abstract data types; opaque pointers
• Void pointers
• Function pointers and function callbacks
• Parameterized macros and their dangers (see King Section 14.3)

3. Programming-in-the-Large

• Testing
o External testing taxonomy: boundary condition, statement, path, stress
o Internal testing techniques: testing invariants, verifying conservation properties,

checking function return values, changing code temporarily, leaving testing code intact
o General testing strategies: testing incrementally, comparing implementations,

automation, bug-driven testing, fault injection
• Debugging heuristics

Page 1 of 4

o Understand error messages, think before writing, look for familiar bugs, divide and
conquer, add more internal tests, display output, use a debugger, focus on recent changes

• Building
o Automated builds, partial builds

• Performance improvement techniques
o Execution efficiency: do timing studies, identify hot spots, use a better algorithm or data

structure, enable compiler speed optimization, tune the code
o Space efficiency: use a smaller data type, compute instead of storing, enable compiler

size optimization
• Program and programming style

o Top-down design
• Data structures and algorithms

o Linked lists, hash tables, memory ownership
• Module qualities:

o Separates interface and implementation, encapsulates data, manages resources
consistently, is consistent, has a minimal interface, reports errors to clients, establishes
contracts, has strong cohesion, has weak coupling

• Generics
o Generic data structures via void pointers, generic algorithms via function pointers,

wrappers
• Portable programming

o General heuristics
o Heuristics related to differences in hardware, operating systems, compilers,

libraries, and cultures

4. Under the Hood: Toward the Hardware

• Computer architectures and the IA-32 computer architecture
o The Von Neumann architecture
o Control unit vs. ALU
o Little-endian vs. big-endian byte order
o Language levels: high-level vs. assembly vs. machine

• Assembly languages and the IA-32 assembly language
o Directives (.section, .asciz, .long, etc.)
o Mnemonics (movl, addl, call, etc.)
o Jump instructions and condition codes
o Instruction operands: immediate, register, memory
o Memory addressing modes: direct, indirect, indexed, base pointer
o The stack and local variables
o The stack and function calls: the C function call convention

• Machine language
o Opcodes
o The ModR/M byte
o The SIB byte
o Immediate, register, memory, displacement operands

• Assemblers
o The forward reference problem
o Pass 1: Create symbol table
o Pass 2: Use symbol table to generate data section, rodata section, bss section, text

section, relocation records
• Linkers

o Resolution: Fetch library code
o Relocation: Use relocation records and symbol table to patch code

Page 2 of 4

5. Under the Hood: Toward the Operating System

• Virtual Memory
o The memory hierarchy: registers vs. cache vs. memory vs. local secondary storage

vs. remote secondary storage
o Locality of reference
o Page faults

• Dynamic memory management
o Memory allocation strategies
o Free block management
o Optimizing malloc() and free()

• Unix system calls
o For process control

 The process abstraction
 The process lifecycle
 Context switches
 The getpid(), execvp(), fork(), and wait() system calls
 The exit() and system() functions

o For interacting with the file system
 The stream abstraction
 The open(), creat(), close(), read(), write(), and lseek() system calls

o For inter-process communication
 The dup(), dup2(), and pipe() system calls

• Unix signals
o Sending signals via keystrokes, the kill command, and the raise() and kill() functions
o Installing signal handler functions: the signal() and sigaction() functions
o Ignoring signals
o Race conditions
o Blocking signals: the sigprocmask() function

• Unix alarms and timers
o The alarm() function

6. Applications

• De-commenting
• Lexical analysis via finite state automata
• String manipulation
• Symbol tables, linked lists, hash tables
• Dynamically expanding arrays
• Buffer overrun attacks
• Unix shells

7. Tools

• The Unix/GNU programming environment
o The Make tool

Page 3 of 4

Readings

As specified by the course "Schedule" Web page. Readings that were assigned after the midterm exam are
in boldface.

Required:

• C Programming (King): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22

• Computer Systems (Bryant & O'Hallaron): 1, 3 (OK to skip 3.14 and 3.15), 8, 10

• Communications of the ACM "Detection and Prevention of Stack Buffer Overflow Attacks"

• The C Programming Language (Kernighan & Ritchie) 8.7

Recommended:

• Computer Systems (Bryant & O'Hallaron): 2, 5, 7, 11

• The Practice of Programming (Kernighan & Pike): 1, 2, 4, 5, 6, 7, 8

• Programming with GNU Software (Loukides & Oram): 1, 2, 3, 4, 6, 7, 8, 9

Copyright © 2009 by Robert M. Dondero, Jr.

Page 4 of 4

	Topics
	 Variable declarations and definitions

