9. Scientific Computing

Itroduction to Computer Science • Sedgewick and Wayne • Copyright © 2007 • http://www.cs.Princeton.EDU/Introcs

Floating Point

IEEE 754 representation.

- Used by all modern computers.
- Scientific notation, but in binary.
- Single precision: float $=32$ bits.
- Double precision: double $=64$ bits.

Ex. Single precision representation of -0.453125 .


```
bias phantom bit
l
-1\times 2 125-127}\times1.8125=-0.45312
```

Science and engineering challenges.

- Fluid dynamics.

Commercial applications

- Seismic surveys.
- Web search.
- Financial modeling.
- Plasma dynamics.
- Computer graphics.
- Ocean circulation.
- Digital audio and video
- Electronics design.
- Natural language processing.
- Pharmaceutical design
- Architecture walk-throughs.
- Human genome project.
- Medical diagnostics (MRI, CAT)
- Vehicle crash simulation
- Global climate simulation.
- Nuclear weapons simulation
- Molecular dynamics simulation.

Common features.

- Problems tend to be continuous instead of discrete.
- Algorithms must scale to handle huge problems.

Floating Point

Remark. Most real numbers are not representable, including π and 1/10.

Roundoff error. When result of calculation is not representable. Consequence. Non-intuitive behavior for uninitiated.

```
if (0.1+0.2== 0.3) { // NO }
if (0.1 + 0.3 == 0.4) { // YES }
```

Financial computing. Calculate 9% sales tax on a $50 \$$ phone call. Banker's rounding. Round to nearest integer, to even integer if tie.

```
double a1 = 1.14 * 75; // 85.49999999999999
double a2 = Math.round(a1); // 85 49999999999 you lost 14
double b1 = 1.09 * 50; // 54.50000000000001
double b2 = Math.round (b1) ; // 55 - SEC violation (!)
```


Floating point numbers are like piles of sand; every time you move them around, you lose a little sand and pick up a little dirt. - Kernighan and Plauger

Catastrophic Cancellation

A simple function. $\quad f(x)=\frac{1-\cos x}{x^{2}}$
Goal. Plot $f(x)$ for $-4 \cdot 10^{-8} \leq x \leq 4 \cdot 10^{-8}$.

IEEE 754 double precision answer

```
A simple function. }f(x)=\frac{1-\operatorname{cos}x}{\mp@subsup{x}{}{2}
Goal. Plot f(x) for -4 '10-8 \leqx\leq4\cdot10-8.
```


Catastrophic Cancellation

```
public static double fl(double x) {
    return (1.0 - Math.cos(x)) / (x* x)
}
```

Ex. Evaluate $\mathrm{fl}(\mathrm{x})$ for $\mathrm{x}=1.1 \mathrm{e}-8$.

- Math. $\cos (x)=0.99999999999999988897769753748434595763683319091796875$.
nearest floating point value agrees with
- (1.0 - Math. $\cos (x))=1.1102 e-16$
exact answer to 16 decimal places.
- (1.0 - Math. $\cos (x)) /\left(x^{*} x\right)=0.9175$
80% larger than exact answer (about 0.5)

Catastrophic cancellation. Devastating loss of precision when small numbers are computed from large numbers, which themselves are subject to roundoff error.

Ariane 5 rocket. [June 4, 1996]

- 10 year, $\$ 7$ billion ESA project exploded after launch.
- 64-bit float converted to 16 bit signed int.
- Unanticipated overflow.

Vancouver stock exchange. [November, 1983]

- Index undervalued by 44%.
- Recalculated index after each trade by adding change in price.
- 22 months of accumulated truncation error.

Patriot missile accident. [February 25, 1991]

- Failed to track scud; hit Army barracks, killed 28.
- Inaccuracy in measuring time in $1 / 20$ of a second since using 24 bit binary floating point.

Linear system of equations. N linear equations in N unknowns.

$$
\begin{aligned}
& 0 x_{0}+1 x_{1}+1 x_{2}=4 \\
& 2 x_{0}+4 x_{1}-2 x_{2}=2 \\
& 0 x_{0}+3 x_{1}+15 x_{2}=36
\end{aligned}
$$

matrix notation: find x such that $A x=b$

Fundamental problems in science and engineering.

- Chemical equilibrium.
- Linear and nonlinear optimization.
- Kirchoff's current and voltage laws.
- Hooke's law for finite element methods.
- Leontief's model of economic equilibrium.
- Numerical solutions to differential equations.
-

Gaussian Elimination

Ex. Combustion of propane.

$$
x_{0} \mathrm{C}_{3} \mathrm{H}_{8}+x_{1} \mathrm{O}_{2} \Rightarrow x_{2} \mathrm{CO}_{2}+x_{3} \mathrm{H}_{2} \mathrm{O}
$$

Stoichiometric constraints.

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \Rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Remark. Stoichiometric coefficients tend to be small integers; among first hints suggesting the atomic nature of matter.

Ex. Find current flowing in each branch of a circuit

Kirchoff's current law.

- $10=1 x_{0}+25\left(x_{0}-x_{1}\right)+50\left(x_{0}-x_{2}\right)$.
- $0=25\left(x_{1}-x_{0}\right)+30 x_{1}+1\left(x_{1}-x_{2}\right)$.
conservation of electrical charge
- $0=50\left(x_{2}-x_{0}\right)+1\left(x_{2}-x_{1}\right)+55 x_{2}$.

Solution. $x_{0}=0.2449, x_{1}=0.1114, x_{2}=0.1166$.

Gaussian Elimination

Gaussian elimination.

- Among oldest and most widely used solutions.
- Repeatedly apply row operations to make system upper triangular.
- Solve upper triangular system by back substitution.

Elementary row operations.

- Exchange row p and row q.
- Add a multiple α of row p to row q.

Key invariant. Row operations preserve solutions.

Upper triangular system. $a_{i j}=0$ for $\mathrm{i}>\mathrm{j}$.

```
2x0}+4\mp@subsup{x}{1}{}-2\mp@subsup{x}{2}{}=
0x}0+1\mp@subsup{x}{1}{}+1\mp@subsup{x}{2}{}=
0x0}+0\mp@subsup{x}{1}{}+12\mp@subsup{x}{2}{}=2
```

Back substitution. Solve by examining equations in reverse order.

- Equation 2: $x_{2}=24 / 12=2$.
- Equation 1: $x_{1}=4-x_{2}=2$.
- Equation 0: $x_{0}=\left(2-4 x_{1}+2 x_{2}\right) / 2=-1$.

```
```

for (int i = N-1; i >= 0; i--) {

```
```

for (int i = N-1; i >= 0; i--) {
double sum = 0.0;
double sum = 0.0;
for (int j = i+1; j < N; j++)
for (int j = i+1; j < N; j++)
sum += A[i][j] * x[j];
sum += A[i][j] * x[j];
x[i] = (b[i] - sum) / A[i][i];

```
```

 x[i] = (b[i] - sum) / A[i][i];
    ```
```

\}

Gaussian Elimination: Row Operations

Elementary row operations.
$0 x_{0}+1 x_{1}+1 x_{2}=4$
$2 x_{0}+4 x_{1}-2 x_{2}=2$
$0 x_{0}+3 x_{1}+15 x_{2}=36$
(interchange row 0 and 1)
$2 x_{0}+4 x_{1}-2 x_{2}=2$
$0 x_{0}+1 x_{1}+1 x_{2}=4$
$0 x_{0}+3 x_{1}+15 x_{2}=36$
(subtract $3 \times$ row 1 from row 2)
$2 x_{0}+4 x_{1}-2 x_{2}=2$
$0 x_{0}+1 x_{1}+1 x_{2}=4$
$0 x_{0}+0 x_{1}+12 x_{2}=24$

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot $a_{p p}$.

for (int $\mathbf{i}=\mathrm{p}+1$; $\mathbf{i}<\mathbf{N}$; $\mathbf{i + +}$) $\{$
double alpha $=A[i][p] / A[p][p]$ $\mathrm{b}[\mathrm{i}]$-= alpha * $\mathrm{b}[\mathrm{p}]$;
for (int $j=p ; j<N ; j++)$

$$
A[i][j]-=\text { alpha * A[p][j] }
$$

\}

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot $a_{p p}$.


```
for (int p = 0; p < N; p++) {
    for (int i = p + 1; i<N; i++)
        double alpha = A[i][p] / A[p][p]
        b[i] -= alpha * b[p].
        for (int j = p; j < N; j++)
            A[i][j] -= alpha * A[p][j]
    }
```

$1 x_{0}+0 x_{1}+1 x_{2}+4 x_{3}=1$
$2 x_{0}+-1 x_{1}+1 x_{2}+7 x_{3}=2$
$-2 x_{0}+1 x_{1}+0 x_{2}+-6 x_{3}=3$
$1 x_{0}+1 x_{1}+1 x_{2}+9 x_{3}=4$
$1 x_{0}+0 x_{1}+1 x_{2}+4 x_{3}=1$
$0 x_{0}+-1 x_{1}+-1 x_{2}+-1 x_{3}=0$
$0 x_{0}+0 x_{1}+1 x_{2}+1 x_{3}=5$
$0 x_{0}+0 x_{1}+-1 x_{2}+4 x_{3}=3$
$1 x_{0}+0 x_{1}+1 x_{2}+4 x_{3}=1$
$0 x_{0}+-1 x_{1}+-1 x_{2}+-1 x_{3}=0$
$0 x_{0}+0 x_{1}+1 x_{2}+1 x_{3}=5$
$0 x_{0}+0 x_{1}+0 x_{2}+5 x_{3}=8$

Gaussian Elimination: Partial Pivoting

Remark. Previous code fails spectacularly if pivot $a_{p p}=0$.

```
1\mp@subsup{x}{0}{}+1\mp@subsup{x}{1}{}+0\mp@subsup{x}{3}{}=1
    2x0}+2\mp@subsup{x}{1}{}+-2\mp@subsup{x}{3}{}=-
    0x0 + 3x + + 15x ( 
```

$1 x_{0}+1 x_{1}+0 x_{3}=1$
$0 x_{0}+0 x_{1}+-2 x_{3}=-4$
$0 x_{0}+3 x_{1}+15 x_{3}=33$

| $1 x_{0}+1 x_{1}+0 x_{3}=$ | 1 |
| ---: | :--- |
| $0 x_{0}+0 x_{1}+-2 x_{3}=$ | -4 |
| $0 x_{0}+\operatorname{Nan} x_{1}+\operatorname{Inf} x_{3}=$ | Inf |

Partial pivoting. Swap row p with the row that has largest entry in column p among rows i below the diagonal.

```
// find pivot row
int max = p
for (int i = p + 1; i < N; i++)
if (Math.abs(A[i][p]) > Math.abs(A[max][p]))
    max = i
// swap rows p and max
double[] T = A [p]; A [p] = A[max]; A[max] = T;
double t = b[p]; b[p] = b[max]; b[max] = t;
```


Q. What if pivot $a_{p p}=0$ while partial pivoting?
A. System has no solutions or infinitely many solutions.

Gaussian Elimination with Partial Pivoting

```
public static double[] lsolve(double[][] A, double[] b)
    int N = b.length;
    |/ Gaussian elimination
        for (int p=0; p<N; p++)
        // partial pi
        int max = p
            (int i = p+1; i < N; i++)
                f (Math.abs (A[i][p]) > Math.abs (A[max][p])
        max = 1
        double[] T=A[p]; A[p] = A[max]; A[max] = T
        double t=b[p];b[p]= b[max]; b[max]= t
        I/ zero out entries of A and b using pivot A[p][p]
            for (int i = p+1; i < N; i++) {
                double alpha =A[i][p]/A[p][p]
            b[i] -= alpha * b[p];
            or(int j = p; j<N; j++)
    ,
    // back substitution
    // back substitution
    for(int i}=N-1; i >= 0; i--),
        double sum = 0.0
            for (int j=i+1; j < N ; j+
        sum += A[i][j] * x[j]
        x[i] = (b[i] - sum)/A[i][i]
    }
    return x
}
```

$\sim N^{3} / 3$ additions
$\sim N^{3} / 3$ multiplications
$\mathrm{N}^{2} / 2$ additions $\sim \mathrm{N}^{2} / 2$ multiolications

Numerically Unstable Algorithms

Stability. Algorithm $f l(x)$ for computing $f(x)$ is numerically stable if $f 1(x) \approx f(x+\varepsilon)$ for some small perturbation ε.

Nearly the right answer to nearly the right problem.

Ex 1. Numerically unstable way to compute $f(x)=\frac{1-\cos x}{x^{2}}$

```
public static double fl(double x) {
    return (1.0 - Math.cos(x)) / (x* x)
```

\}

$$
f(x)=\frac{2 \sin ^{2}(x / 2)}{x^{2}}
$$

Stability. Algorithm $\mathrm{fl}(\mathrm{x})$ for computing $\mathrm{f}(\mathrm{x})$ is numerically stable if $f 1(x) \approx f(x+\varepsilon)$ for some small perturbation ε.

Nearly the right answer to nearly the right problem.

Ex 2. Gaussian elimination (w/o partial pivoting) can fail spectacularly.

| Algorithm | x_{0} | x_{1} |
| :---: | :---: | :---: |
| no pivoting | 0.0 | 1.0 |
| partial pivoting | 1.0 | 1.0 |
| exact | $\frac{1}{1-2 a} \approx 1$ | $\frac{1-3 a}{1-2 a} \approx 1$ |

Theorem. Partial pivoting improves numerical stability.

Numerically Solving an Initial Value ODE

Lorenz attractor.

- Idealized atmospheric model to describe turbulent flow.
- Convective rolls: warm fluid at bottom, rises to top, cools off, and falls down.

```
dx}dt=-10(x+y
```

dx}dt=-10(x+y
dy}d=-xz+28x-
dy}d=-xz+28x-
dz}d=\quadxy-\frac{8}{3}

```
dz}d=\quadxy-\frac{8}{3}
```


$x=$ fluid flow velocity

$y=\nabla$ temperature between ascending and descending currents
$z=$ distortion of vertical temperature profile from linearity

Solution. No closed form solution for $x(t), y(t), z(t)$. Approach. Numerically solve ODE.

Conditioning. Problem is well-conditioned if $f(x) \approx f(x+\varepsilon)$ for all small perturbation ε.

Solution varies gradually as problem varies.

Ex. Hilbert matrix.

- Tiny perturbation to H_{n} makes it singular.
- Cannot solve $H_{12} x=b$ using floating point.

Hilbert matrix

Matrix condition number. [Turing, 1948] Widely-used concept for detecting ill-conditioned linear systems.

Euler's Method

Euler's method. [to numerically solve initial value ODE]

- Choose Δt sufficiently small.
- Approximate function at time \dagger by tangent line at \dagger.
- Estimate value of function at time $t+\Delta t$ according to tangent line.
- Increment time to $\dagger+\Delta \dagger$.
- Repeat.

```
xt+\Deltat}=\mp@subsup{x}{t}{}+\Deltat\frac{dx}{dt}(\mp@subsup{x}{t}{},\mp@subsup{y}{t}{},\mp@subsup{z}{t}{}
yt\Deltat}=\mp@subsup{y}{t}{}+\Deltat\frac{dy}{dt}(\mp@subsup{x}{t}{},\mp@subsup{y}{t}{},\mp@subsup{z}{t}{}
z}\mp@subsup{z}{t+\Deltat}{}=\mp@subsup{z}{t}{}+\Deltat\frac{dz}{dt}(\mp@subsup{x}{t}{},\mp@subsup{y}{t}{},\mp@subsup{z}{t}{}
```

Advanced methods. Use less computation to achieve desired accuracy.

- $4^{\text {th }}$ order Runge-Kutta: evaluate slope four times per step.
- Variable time step: automatically adjust timescale Δt.
- See COS 323.

```
public class Lorenz {
    public static double dx(double x, double y, double z)
    { return -10*(x - y); }
    public static double dy(double x, double y, double z)
    { return - x*z + 28*x - y; }
    public static double dz(double x, double y, double z)
    { return x*y - 8*z/3; }
        public static void main(String[] args) {
            louble x = 0.0, y
            StdDraw.setXscale (-25, 25).
            StdDraw.setYscale( 0, 50);
            while (true) {
            louble xnew = x +dt* dx(x,y,z); 
            double ynew = y + dt * dy (x,y,z}\mathbf{z})
            double znew = z + dt * dz (x,y,z
            x = xnew; y = ynew; z = znew;
            StdDraw.point(x,z).
        }
3
```

Butterfly Effect

Experiment.
. Initialize $y=20.01$ instead of $y=20$.

- Plot original trajectory in blue, perturbed one in magenta.
-What happens?
IIl-conditioning.
- Sensitive dependence on initial conditions.
- Property of system, not of numerical solution approach.

```
Predictability: Does the Flap of a Butterfly's Wings in Brazil set off
``` a Tornado in Texas? - Title of 1972 talk by Edward Lorenz

The Lorenz Attractor

Accuracy depends on both stability and conditioning.
- Danger: apply unstable algorithm to well-conditioned problem.
- Danger: apply stable algorithm to ill-conditioned problem.
- Safe: apply stable algorithm to well-conditioned problem.

Numerical analysis. Art and science of designing numerically stable algorithms for well-conditioned problems.

Lesson 1. Some algorithms are unsuitable for floating point solutions. Lesson 2. Some problems are unsuitable to floating point solutions.```

