Applications of Scientific Computing

Commercial applications.

Financial modeling.

Computer graphics.

Digital audio and video.

Natural language processing.

Architecture walk-throughs.

Medical diagnostics (MRI, CAT).

2

4

. Web search.

9. Scientific Computing

Science and engineering challenges.

Fluid dynamics.

- Seismic surveys.
- Plasma dynamics.
- Ocean circulation.
- Electronics design.
- Pharmaceutical design.
- Human genome project.
- Vehicle crash simulation.
- Global climate simulation.
- Nuclear weapons simulation.
- Molecular dynamics simulation.

Common features.

- Problems tend to be continuous instead of discrete.
- Algorithms must scale to handle huge problems.

Introduction to Computer Science · Sedgewick and Wayne · Copyright @ 2007 · http://www.cs.Princeton.EDU/IntroCS

Floating Point

IEEE 754 representation.

- Used by all modern computers.
- Scientific notation, but in binary.
- Single precision: float = 32 bits.
- Double precision: double = 64 bits.

Ex. Single precision representation of -0.453125.

sign b ļ	oit -			exp	oone J	nt														si	gnif Į	ica	nd								
1	0	1	1			1	0	1	1	1	0	1	0												0	0	0	0	0	0	0
-1				12	25									1/	2	+ 1	L/4	+	1/	16	=	0.	812	25							

3

Floating Point

Remark. Most real numbers are not representable, including π and 1/10.

Roundoff error. When result of calculation is not representable. Consequence. Non-intuitive behavior for uninitiated.

> if (0.1 + 0.2 == 0.3) { // NO } if (0.1 + 0.3 == 0.4) { // YES }

Financial computing. Calculate 9% sales tax on a 50¢ phone call. Banker's rounding. Round to nearest integer, to even integer if tie.

Floating Point

Catastrophic Cancellation

A simple function. $f(x) = \frac{1 - \cos x}{x^2}$

Goal. Plot f(x) for $-4 \cdot 10^{-8} \le x \le 4 \cdot 10^{-8}$.

6

8

Catastrophic Cancellation

Ex. Evaluate fl(x) for x = 1.1e-8.

• Math.cos(x) = 0.999999999999999988897769753748434595763683319091796875.

Catastrophic cancellation. Devastating loss of precision when small numbers are computed from large numbers, which themselves are subject to roundoff error.

Floating point numbers are like piles of sand; every time you move them around, you lose a little sand and pick up a little dirt. - Kernighan and Plauger

A simple function.

IEEE 754 double precision answer

Ariane 5 rocket. [June 4, 1996]

- 10 year, \$7 billion ESA project exploded after launch.
- 64-bit float converted to 16 bit signed int.
- Unanticipated overflow.

Vancouver stock exchange. [November, 1983]

- Index undervalued by 44%.
- Recalculated index after each trade by adding change in price.
- 22 months of accumulated truncation error.

Patriot missile accident. [February 25, 1991]

- Failed to track scud; hit Army barracks, killed 28.
- Inaccuracy in measuring time in 1/20 of a second since using 24 bit binary floating point.

9

Copyright, Arianespac

Linear System of Equations

Linear system of equations. N linear equations in N unknowns.

matrix notation: find x such that Ax = b

Fundamental problems in science and engineering.

- Chemical equilibrium.
- Linear and nonlinear optimization.
- . Kirchoff's current and voltage laws.
- Hooke's law for finite element methods.
- Leontief's model of economic equilibrium.
- Numerical solutions to differential equations.

• ...

Gaussian Elimination

Chemical Equilibrium

Ex. Combustion of propane.

 $x_0C_3H_8 + x_1O_2 \implies x_2CO_2 + x_3H_2O$

Stoichiometric constraints.

• Carbon:
$$3x_0 = x_2$$
.
• Hydrogen: $8x_0 = 2x_3$.
• Oxygen: $2x_1 = 2x_2 + x_3$.
• Normalize: $x_0 = 1$.

$$C_3H_8 + 5O_2 \Rightarrow 3CO_2 + 4H_2O$$

Remark. Stoichiometric coefficients tend to be small integers; among first hints suggesting the atomic nature of matter.

Kirchoff's Current Law

Ex. Find current flowing in each branch of a circuit.

Kirchoff's current law.

- 10 = $1x_0 + 25(x_0 x_1) + 50 (x_0 x_2)$. 0 = $25(x_1 x_0) + 30x_1 + 1(x_1 x_2)$. 0 = $50(x_2 x_0) + 1(x_2 x_1) + 55x_2$.

conservation of electrical charge

Solution. $x_0 = 0.2449$, $x_1 = 0.1114$, $x_2 = 0.1166$.

Upper triangular system. $a_{ii} = 0$ for i > j.

 $2 x_0 + 4 x_1 - 2 x_2 = 2$ $0 x_0 + 1 x_1 + 1 x_2 = 4$ $0 x_0 + 0 x_1 + 12 x_2 = 24$

Back substitution. Solve by examining equations in reverse order.

- Equation 2: x₂ = 24/12 = 2.
- Equation 1: x₁ = 4 x₂ = 2.
- Equation 0: x₀ = (2 4x₁ + 2x₂) / 2 = -1.

14

16

Gaussian Elimination

Gaussian elimination.

- Among oldest and most widely used solutions.
- Repeatedly apply row operations to make system upper triangular.
- Solve upper triangular system by back substitution.

Elementary row operations.

- Exchange row p and row q.
- Add a multiple α of row p to row q.

Key invariant. Row operations preserve solutions.

Gaussian Elimination: Row Operations

Elementary row operations.

0 x ₀	+	1 x ₁	+ 1 x ₂	=	4	
2 x ₀	+	4 x ₁	- 2 x ₂	=	2	
0 x ₀	+	3 x ₁	+ 15 x ₂	=	36	

(interchange row 0 and 1)

2 x ₀	+	4 x ₁	- 2 x ₂	=	2
			+ 1 x ₂		
0 x ₀	+	3 x ₁	+ 15 x ₂	=	36

(subtract 3x row 1 from row 2)

2 x ₀	+	4 x ₁	- 2 x ₂	=	2
0 x ₀	+	1 x ₁	+ 1 x ₂	=	4
0 x ₀	+	0 x ₁	+ 12 × ₂	=	24

Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot a po.

17

19

```
for (int i = p + 1; i < N; i++) {
    double alpha = A[i][p] / A[p][p];
    b[i] -= alpha * b[p];
    for (int j = p; j < N; j++)
        A[i][j] -= alpha * A[p][j];
}</pre>
```

Gaussian Elimination Example

1 × ₀	+	0 x ₁	+	1 x ₂	+	4 x ₃	=	1
2 x ₀	+	-1 × ₁	+	1 x ₂	+	7 x ₃	=	2
-		-		-		-6 x ₃		3
1 × ₀	+	1 × ₁	+	1 x ₂	+	9 x ₃	=	4

Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot app.

ſ	*	*	*	*	*]		[*	*	*	*	*]		[*	*	*	*	*]		[*	*	*	*	*]		[*	*	*	*	*]
	*	*	*	*	*		0	*	*	*	*		0	*	*	*	*		0	*	*	*	*		0	*	*	*	*
	*	*	*	*	*	⇒	0	*	*	*	*	⇒	0	0	*	*	*	⇒	0	0	*	*	*	⇒	0	0	*	*	*
	*	*	*	*	*		0	*	*	*	*		0	0	*	*	*		0	0	0	*	*		0	0	0	*	*
l	*	*	*	*	*		0	*	*	*	*		0	0	*	*	*		0	0	0	*	*		0	0	0	0	*

Gaussian Elimination Example

18

$1x_0 + 0$	×1 +	1 x ₂	+	$4 x_3$	=	1
0 x ₀ + -1						0
0 x ₀ + 1						5
0 x ₀ + 1	×1 +	0 x ₂	+	5 x ₃	=	3

Gaussian Elimination Example

Gaussian Elimination Example

1 × ₀	+	0 x ₁	+	1 x ₂	+	4 x ₃	=	1
0 × ₀	+	-1 x ₁	+	-1 x ₂	+	-1 x ₃	=	0
0 × ₀		0 ×1		1 ×22		1 × ₃		5
0 x ₀		0 × ₁		-1 x ₂		4 x ₃		3

1 x ₀	+	0 x ₁	+	1 x ₂	+	4 x ₃	=	1
0 x ₀	+	-1 × ₁	+	-1 x ₂	+	-1 x ₃	=	0
				1 x ₂		-		5
0 × ₀		0 × ₁		0 x ₂		5 x ₃		8

Gaussian Elimination Example

Gaussian Elimination: Partial Pivoting

Remark. Previous code fails spectacularly if pivot $a_{pp} = 0$.

1 × ₀	+	1 × ₁	+	0 x ₃	=	1
2 × ₀	+	2 x ₁	+	-2 x ₃	=	-2
0 × ₀	+	3 x ₁	+	15 x ₃	=	33
1 × ₀	+	1 x ₁	+	0 x ₃	=	1
0 x ₀	+ (0 x ₁	+	-2 x ₃	=	-4
0 × ₀	+	3 x ₁	+	15 x ₃	=	33
1 × ₀	+	1 x ₁	+	0 x ₃	=	1
0 × ₀	+	0 x ₁	+	-2 x ₃	=	-4
0 × ₀	+ N	lan x ₁	+	Inf x ₃	=	Inf

					1 x ₂				1
0	× ₀	+	-1 x ₁	+	-1 x ₂	+	-1 x ₃	=	0
0	× ₀	+	0 x ₁	+	1 x ₂	+	1 x ₃	=	5
0	× ₀	+	0 x ₁	+	0 x ₂	+	5 x ₃	=	8

X ₃	=	8/5
$x_2 = 5 - x_3$	=	17/5
$x_1 = 0 - x_2 - x_3$	=	-25/5
$x_0 = 1 - x_2 - 4x_3$	=	-44/5

21

Gaussian Elimination: Partial Pivoting

Partial pivoting. Swap row p with the row that has largest entry in column p among rows i below the diagonal.

Q. What if pivot $a_{pp} = 0$ while partial pivoting?

A. System has no solutions or infinitely many solutions.

Gaussian Elimination with Partial Pivoting

Numerically Unstable Algorithms

Stability. Algorithm fl(x) for computing f(x) is numerically stable if $fl(x) \approx f(x+\epsilon)$ for some small perturbation ϵ .

a numerically stable formula

Stability and Conditioning

Numerically Unstable Algorithms

Stability. Algorithm fl(x) for computing f(x) is numerically stable if $fl(x) \approx f(x+\epsilon)$ for some small perturbation ϵ .

Nearly the right answer to nearly the right problem.

Ex 2. Gaussian elimination (w/o partial pivoting) can fail spectacularly.

a = 10 ⁻¹⁷			Algorithm	×o	×1
$a = 10^{-10}$ $a x_0 + 1 x_1$ $1 x_0 + 2 x_1$			no pivoting	0.0	1.0
$1 x_0 + 2 x_1$	-		partial pivoting	1.0	1.0
			exact	$\frac{1}{1-2a} \approx 1$	$rac{1-3a}{1-2a}pprox 1$

Theorem. Partial pivoting improves numerical stability.

Numerically Solving an Initial Value ODE

Lorenz attractor.

- Idealized atmospheric model to describe turbulent flow.
- Convective rolls: warm fluid at bottom, rises to top, cools off, and falls down.

-10(x+y)= -xz + 28x - y $xy - \frac{8}{2}z$

Edward Lorenz

x = fluid flow velocity y = ∇ temperature between ascending and descending currents z = distortion of vertical temperature profile from linearity

Solution. No closed form solution for x(t), y(t), z(t). Approach. Numerically solve ODE.

Ill-Conditioned Problems

Conditioning. Problem is well-conditioned if $f(x) \approx f(x+\epsilon)$ for all small perturbation ϵ .

Solution varies gradually as problem varies.

Ex. Hilbert matrix.

- Tiny perturbation to H_n makes it singular.
- Cannot solve H₁₂ x = b using floating point.

Matrix condition number. [Turing, 1948] Widely-used concept for detecting ill-conditioned linear systems.

Euler's Method

Euler's method. [to numerically solve initial value ODE]

- Choose Δt sufficiently small.
- Approximate function at time t by tangent line at t.
- Estimate value of function at time t + Δ t according to tangent line.
- Increment time to $t + \Delta t$.
- 🛯 Repeat.

 $\begin{aligned} x_{t+\Delta t} &= x_t + \Delta t \; \frac{dx}{dt} \left(x_t, y_t, z_t \right) \\ y_{t+\Delta t} &= y_t + \Delta t \; \frac{dy}{dt} \left(x_t, y_t, z_t \right) \\ z_{t+\Delta t} &= z_t + \Delta t \; \frac{dz}{dt} \left(x_t, y_t, z_t \right) \end{aligned}$

Advanced methods. Use less computation to achieve desired accuracy.

- 4th order Runge-Kutta: evaluate slope four times per step.
- Variable time step: automatically adjust timescale ∆t.
- See COS 323.

29

Lorenz Attractor: Java Implementation

The Lorenz Attractor

Butterfly Effect

Experiment.

- Initialize y = 20.01 instead of y = 20.
- Plot original trajectory in blue, perturbed one in magenta.
- . What happens?

Ill-conditioning.

- Sensitive dependence on initial conditions.
- Property of system, not of numerical solution approach.

Predictability: Does the Flap of a Butterfly's Wings in Brazil set off a Tornado in Texas? - Title of 1972 talk by Edward Lorenz Stability and Conditioning

Accuracy depends on both stability and conditioning.

- Danger: apply unstable algorithm to well-conditioned problem.
- Danger: apply stable algorithm to ill-conditioned problem.
- Safe: apply stable algorithm to well-conditioned problem.

Numerical analysis. Art and science of designing numerically stable algorithms for well-conditioned problems.

Lesson 1. Some algorithms are unsuitable for floating point solutions. Lesson 2. Some problems are unsuitable to floating point solutions.

33