
COS126: General Computer Science • http://www.cs.Princeton.EDU/~cos126

6.2: Sequential Circuits

QS

R

2

Overview

Last lecture: Boolean logic and combinational circuits.

!! Basic abstraction = controlled switch.

!! In principle, can build TOY computer with a combinational circuit.

–! 255 ! 16 = 4,080 inputs " 24080 rows in truth table!

–! no simple pattern

–! each circuit element used at most once

This lecture: reuse circuit elements by storing bits in "memory."

Next lecture: glue components together to make TOY computer.

ALU
combinational

Memory
state

3

Sequential vs. Combinational Circuits

Combinational circuits.

!! Output determined solely by inputs.

!! Can draw solely with left-to-right

signal paths.

Sequential circuits.

!! Output determined by inputs

 AND previous outputs.

!! Feedback loop.

QS

R

4

Flip-Flop

Flip-flop.

!! A small and useful sequential circuit.

!! Abstraction that "remembers" one bit.

!! Basis of important computer components:

–! memory

–! counter

We will consider several flavors.

5

SR Flip-Flop

What is the value of Q if:

!! S = 1 and R = 0 ? "

Q
S

R

1

0

1

Q is surely 1

6

SR Flip-Flop

What is the value of Q if:

!! S = 1 and R = 0 ? " Q is surely 1.

!! S = 0 and R = 1 ? "

Q
S

R

0

1

Q is surely 0

0

0 0

7

Q
S

R

0

0

Q is possibly 0

0

0

0

SR Flip-Flop

What is the value of Q if:

!! S = 1 and R = 0 ? " Q is surely 1.

!! S = 0 and R = 1 ? " Q is surely 0.

!! S = 0 and R = 0 ? "

8

SR Flip-Flop

What is the value of Q if:

!! S = 1 and R = 0 ? " Q is surely 1.

!! S = 0 and R = 1 ? " Q is surely 0.

!! S = 0 and R = 0 ? " Q is possibly 0 . . .

Q
S

R

0

0

 or possibly 1 !

1

1

1

1

9

Q
S

R

0

0

SR Flip-Flop

What is the value of Q if:

!! S = 1 and R = 0 ? " Q is surely 1.

!! S = 0 and R = 1 ? " Q is surely 0.

!! S = 0 and R = 0 ? " Q is possibly 0 . . . or possibly 1.

While S = R = 0 , Q remembers what it was the last time S or R was 1.

old Q

10

SR Flip-Flop

SR Flip-Flop.

!! S = 1, R = 0 (set) " “Flips” bit on.

!! S = 0, R = 1 (reset) " “Flops” bit off.

!! S = R = 0 " Status quo.

!! S = R = 1 " Not allowed.

Interface

Implementation

S

R

SR flip flop SR flip flop

Q

Q
S

R

11

Truth Table and Timing Diagram

Truth table.

!! Values vary over time.

!! S(t), R(t), Q(t) denote value at time t.

Sample timing diagram for SR flip-flop.

Q(t+#)

SR Flip Flop Truth Table

S(t)

0 0

1 0

0 0

0 0

R(t)

0

0

1

1

Q(t)

0

1

0

1

1 1

1 1

1

1

0

0

1

1

0

1

0

1

Q

R

S

time

1

0

1

0

1

0

#$ #$

12

Clock

Clock.

!! Fundamental abstraction.

–! regular on-off pulse

!! External analog device.

!! Synchronizes operations of different circuit elements.

!! 1 GHz clock means 1 billion pulses per second.

cycle time

Clock

1

0

13

How much does it Hert?

Frequency is inverse of cycle time.

!! Expressed in hertz.

!! Frequency of 1 Hz means that there is 1 cycle per second.

!! Hence:

–! 1 kilohertz (kHz) means 1000 cycles/sec.

–! 1 megahertz (MHz) means 1 million cycles/sec.

–! 1 gigahertz (GHz) means 1 billion cycles/sec.

–! 1 terahertz (THz) means 1 trillion cycles/sec.

By the way, no such thing as 1 “hert” !

Heinrich Rudolf Hertz
(1857-1894)

14

Clocked SR Flip-Flop

Clocked SR Flip-Flop.

!! Same as SR flip-flop except S and R only active when clock is 1.

Interface
Implementation

Cl

R

S

Q

S

R

SR flip flop

Q Cl

R

S

Q Cl

R

S

Clocked
SR flip flop

15

Clocked D Flip-Flop

Clocked D Flip-Flop.

!! Output follows D input while clock is 1.

!! Output is remembered while clock is 0.

Interface
Implementation

Cl

D

Q

D

Cl
Q Cl

R

S

Clocked
SR flip flop

Q

Cl

D

Clocked
D flip flop

16

Fetch-execute cycle for TOY.

!! Need 1-bit counter.

Fetch-Execute Cycle

Clock

Execute

Fetch

Clock
Execute

Fetch

Q
Cl

1-bit
counter

17

1-bit counter.

!! Circuit that oscillates between 1 and 0.

1-Bit Counter

Q1

Cl

D Q2

Cl

D

Master Slave

Clocked
D flip flop

Clocked
D flip flop

Interface

Q

Cl

1-bit
counter

Cl

Q1

Q2

0
1

0 1 0

18

0

1-bit counter.

!! Circuit that oscillates between 1 and 0.

1-Bit Counter

Q1

Cl

D Q2

Cl

D

Master Slave

Clocked
D flip flop

Clocked
D flip flop

Interface

Q

Cl

1-bit
counter

Cl

Q1

Q2

0
1

1

0 1

X
1 X

0

X

19

1 0

1-bit counter.

!! Circuit that oscillates between 1 and 0.

1-Bit Counter

Q1

Cl

D Q2

Cl

D

Master Slave

Clocked
D flip flop

Clocked
D flip flop

Interface

Q

Cl

1-bit
counter

Cl

Q1

Q2

0
1

1

0 1

X1
X0

XX

20

0

1

1

0

0

1-bit counter.

!! Circuit that oscillates between 1 and 0.

1-Bit Counter

Q1

Cl

D Q2

Cl

D

Master Slave

Clocked
D flip flop

Clocked
D flip flop

Cl

Q1

Q2

0
1

1

X
X

X

Interface

Q

Cl

1-bit
counter

21

0

1

1

0

0

1-bit counter.

!! Circuit that oscillates between 1 and 0.

1-Bit Counter

Q1

Cl

D Q2

Cl

D

Master Slave

Clocked
D flip flop

Clocked
D flip flop

Cl

Q1

Q2

0
1

0 1

X
X

XX

Interface

Q

Cl

1-bit
counter

22

1-bit counter.

!! Circuit that oscillates between 1 and 0.

1-Bit Counter

Q1

Cl

D Q2

Cl

D

Master Slave

Clocked
D flip flop

Clocked
D flip flop

Cl

Q1

Q2

Interface

Q

Cl

1-bit
counter

23

Fetch-execute cycle for TOY.

!! Need 1-bit counter.

Fetch-Execute Cycle

Clock

Execute

Fetch

Clock
Execute

Fetch

Q
Cl

1-bit
counter

24

Memory Overview

Computers and TOY have many types of memory.

!! Program counter.

!! Registers.

!! Main memory.

We implement each bit of memory with a clocked D flip-flop.

Need mechanism to organize and manipulate GROUPS of related bits.

!! TOY has 16-bit words.

!! Memory hierarchy makes architecture manageable.

25

Bus

16-bit bus.

!! Bundle of 16 wires.

!! Memory transfer,

register transfer.

8-bit bus.

!! Bundle of 8 wires.

!! TOY memory address.

4-bit bus.

!! Bundle of 4 wires.

!! TOY register address.

16

8

4

26

Stand-Alone Register

k-bit register.

!! Stores k bits.

!! Register contents always available on output.

!! If write enable is asserted, k input

bits get copied into register.

Ex: Program Counter, 16 TOY registers,

256 TOY memory locations.

write
enable

read
data

reg 16 16

16-bit Register Interface

x15
Cl

D

16-bit Register Implementation

x1
Cl

D

x0
Cl

D

Write

y1

y0

Q y15

Q

Q

write
data

27

Register File Interface

n-by-k register file.

!! Bank of n registers; each stores k bits.

!! Read and write information to one of n registers.

–! log2 n address inputs specifies which one

!! Addressed bits always appear on output.

!! If write enable and clock are asserted, k input bits are copied into

addressed register.

Examples.

!! TOY registers: n = 16, k = 16.

!! TOY main memory: n = 256, k = 16.

!! Real computer: n = 256 million, k = 32.

–! 1 GB memory

–! (1 Byte = 8 bits)

write
data

read
data

16 16

256 x 16 Register File Interface

Reg

W

8

addr

28

Implementation example: TOY main memory.

!! Use 256 16-bit registers.

!! Multiplexer and decoder are combinational circuits.

Register File Implementation

W addr Cl write
data

read
data

reg 0

reg 1

reg 255

 Mux

0

1

255

8-bit
Decoder

select

0

1

255

addr

8

8
16

16

16

29

Implementation example: TOY main memory.

!! Use 256 16-bit registers.

!! Multiplexer is combinational circuit.

Register File Implementation: Reading

read
data

reg 0

reg 1

reg 255

 Mux

0

1

255

addr

8

16

16

30

2n-to-1 Multiplexer

2n-to-1 multiplexer.

!! n select inputs, 2n data

inputs, 1 output.

!! Copies "selected"

data input bit to output.

8-to-1 Mux Implementation

s0 s1 s2

x0

x1

x2

x3

x4

x5

x6

x7

y

y

8-to-1 Mux Interface

x7

x6

x5

x4

x3

x2

x1

x0

111

110

101

100

011

010

001

000

8 to 1
MUX

n = 8 for main memory

s0 s1 s2

31

2n-to-1 Multiplexer

2n-to-1 multiplexer.

!! n select inputs, 2n data

inputs, 1 output.

!! Copies "selected"

data input bit to output.

8-to-1 Mux Implementation

1 1 0

0

0

0

1

0

1

1

1

1

1

8-to-1 Mux Interface

1

1

1

0

1

0

0

0

111

110

101

100

011

010

001

000

8 to 1
MUX

1 1 0

n = 8 for main memory

32

2n-to-1 Multiplexer, Width = k

2n-to-1 multiplexer, width = k.

!! Select from one of 2n k-bit buses.

!! Copies k "selected" data bits to output.

!! Layering k 2n-to-1 multiplexers.

z

x x

x y

 4-wide
 2-to-1
 MUX

4

4

4

 Interface for 2-to-1 MUX, width = 4

x0

0

0
0

0

 Implementation for 2-to-1 MUX, width = 4

z0

y0 0

x1 0

z1

y1 0

x2

z2

y2

x3

z3

y3

 2-to-1
 MUX

4 copies of
same bit

n = 8, k = 16 for main memory

33

Implementation example: TOY main memory.

!! Use 256 16-bit registers.

!! Decoder is combinational circuit.

Register File Implementation: Writing

W addr Cl write
data

reg 0

reg 1

reg 255

8-bit
Decoder

select

0

1

255

8
16

34

n-Bit Decoder

n-bit decoder.

!! n address inputs, 2n data outputs.

!! Addressed output bit is 1; others are 0.

3-Bit Decoder Implementation

x5

x6

x7

x0

x1

x2

x3

x4

s0 s1 s2

3-Bit
Decoder

3-Bit Decoder Interface

x1

x2

x3

x4

x5

x6

x7

s0 s1 s2

select

111

110

101

100

011

010

001

x0 000

n = 8 for main memory

35

n-Bit Decoder

n-bit decoder.

!! n address inputs, 2n data outputs.

!! Addressed output bit is 1; others are 0.

3-Bit Decoder Implementation

0

1

0

0

0

0

0

0 1 1

3-Bit
Decoder

3-Bit Decoder Interface

0

0

0

0

0

0

1

0

0 1 1

select

111

110

101

100

011

010

001

000
0

n = 8 for main memory

36

Implementation example: TOY main memory.

!! Use 256 16-bit registers.

!! Multiplexer and decoder are combinational circuits.

Register File Implementation: Reading and Writing

W addr Cl write
data

read
data

reg 0

reg 1

reg 255

 Mux

0

1

255

8-bit
Decoder

select

0

1

255

addr

8

8
16

16

16

37

Summary

Sequential circuits add "state" to digital hardware.

!! Flip-flop. Represents 1 bit.

!! TOY register. 16 D flip-flops.

!! TOY main memory. 256 registers.

Actual technologies for register file and memory are different.

!! Register files are relatively small and very fast.

–! expensive per bit

!! Memories are relatively large and pretty fast.

–! amazingly cheap per bit

!! Drastic evolution of technology over time

Next time: we build a complete TOY computer.

