
6.1  Combinational Circuits 

George Boole (1815 – 1864) Claude Shannon (1916 – 2001) 
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Computer Architecture 

Earlier lectures. 
!! TOY machine. 

Next two lectures. 
!! Digital circuits. 

Culminating lecture. 
!! Putting it all together and building a TOY machine. 

–! (on paper, we mean) 
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Digital Circuits 

What is a digital system? 
!! Digital:  signals are 0 or 1. 
!! Analog:  signals vary continuously. 

Why digital systems? 
!! Accuracy and reliability. 
!! Staggeringly fast and cheap. 

Basic abstractions. 
!! On, off. 
!! Switch that can turn something on or off. 

Digital circuits and you. 
!! Computer microprocessors. 
!! Antilock brakes. 
!! Cell phones. 
!! Ipods 
!! . . . 
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Wires 

Wires. 
!! Propagate logical values from place to place. 
!! Signals "flow" from left to right. 

–! A drawing convention, sometimes violated 
–! Actually: flow from producer to consumer(s) of signal 
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Input Output 
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Logic Gates 

Logical gates. 
!! Fundamental building blocks. 
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Multiway AND Gates 

AND(x0, x1, x2, x3, x4, x5, x6, x7). 
!! 1 if all inputs are 1.  
!! 0 otherwise. 
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Multiway OR Gates 

OR(x0, x1, x2, x3, x4, x5, x6, x7). 
!! 1 if at least one input is 1. 
!! 0 otherwise. 
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Boolean Algebra 

History. 
!! Developed by Boole to solve mathematical logic problems (1847). 
!! Shannon master's thesis applied it to digital circuits (1937). 

Basics. 
!! Boolean variable:  value is 0 or 1. 
!! Boolean function:  function whose inputs and outputs are 0, 1. 

Relationship to circuits. 
!! Boolean variables:  signals. 
!! Boolean functions:  circuits. 

"possibly the most important, and also the most famous, 
 master's thesis of the [20th] century"  --Howard Gardner 
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Truth Table 

Truth table. 
!! Systematic method to describe Boolean function. 
!! One row for each possible input combination. 
!! N inputs  !  2N rows. 
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Truth Table for Functions of 2 Variables 

Truth table. 
!! 16 Boolean functions of 2 variables. 

–! every 4-bit value represents one 
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Truth Table for Functions of 3 Variables 

Truth table. 
!! 16 Boolean functions of 2 variables. 

–! every 4-bit value represents one 
!! 256 Boolean functions of 3 variables. 

–! every 8-bit value represents one 
!! 2^(2^N) Boolean functions of N variables! 

AND 

Some Functions of 3 Variables 

z 

0 0 

0 1 0 

1 0 0 

1 1 0 

y 

0 

x 

0 

0 

0 

0 

0 

0 1 

1 0 

1 1 

0 1 

1 

1 

1 

0 

0 

0 

1 

OR 

0 

1 

1 

1 

1 

1 

1 

1 

MAJ 

0 

0 

0 

1 

0 

1 

1 

1 

ODD 

0 

1 

1 

0 

1 

0 

0 

1 

14 

Universality of AND, OR, NOT 

Any Boolean function can be expressed using AND, OR, NOT. 

!! "Universal." 

!! XOR(x,y) = xy' + x'y 

Exercise.  Show  {AND, NOT}, {OR, NOT}, {NAND}, {AND, XOR} are universal. 

Hint.  Use DeMorgan’s Law: (xy)’ = (x’ + y’) and (x + y)’ = (x’y’) 

1 0 0 0 0 0 0 

0 0 0 1 1 1 1 

1 1 1 1 0 0 1 

0 1 0 0 0 1 0 

x' 
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Sum-of-Products 

Any Boolean function can be expressed using AND, OR, NOT. 
!! Sum-of-products is systematic procedure. 

–! form AND term for each 1 in truth table of Boolean function 
–! OR terms together 

x'yz 

Expressing MAJ Using Sum-of-Products 

z xyz' xyz xy'z MAJ y x 

0 

0 

0 

1 

0 

1 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

x'yz + xy'z + xyz' + xyz 

0 

0 

0 

1 

0 

1 

1 

1 

16 

Translate Boolean Formula to Boolean Circuit 

Use sum-of-products form. 
!! XOR(x, y) = xy' + x'y. 
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Translate Boolean Formula to Boolean Circuit 

Use sum-of-products form. 
!! MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz. 
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Simplification Using Boolean Algebra 

Many possible circuits for each Boolean function. 
!! Sum-of-products not necessarily optimal in: 

–! number of gates (space) 
–! depth of circuit (time) 

!! MAJ(x, y, z)  =  x'yz + xy'z + xyz' + xyz  =  xy + yz + xz. 

size = 4, depth = 2 size = 8, depth = 3 
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Expressing a Boolean Function Using AND, OR, NOT 

Ingredients. 
!! AND gates. 
!! OR gates. 
!! NOT gates. 
!! Wire. 

Instructions. 
!! Step 1:  represent input and output signals with Boolean variables. 
!! Step 2:  construct truth table to carry out computation. 
!! Step 3:  derive (simplified) Boolean expression using sum-of products. 
!! Step 4:  transform Boolean expression into circuit. 
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ODD Parity Circuit 

ODD(x, y, z). 
!! 1 if odd number of inputs are 1.  
!! 0 otherwise. 

x'y'z 

Expressing ODD Using Sum-of-Products 
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ODD Parity Circuit 

ODD(x, y, z). 
!! 1 if odd number of inputs are 1.  
!! 0 otherwise. 
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Let's Make an Adder Circuit 

Goal:  x + y = z for 4-bit integers. 
!! We build 4-bit adder:  9 inputs, 4 outputs. 
!! Same idea scales to 128-bit adder. 
!! Key computer component. 

Step 1. 
!! Represent input and output in binary. 
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Let's Make an Adder Circuit 

Goal:  x + y = z for 4-bit integers. 

Step 2.  (first attempt) 
!! Build truth table. 
!! Why is this a bad idea? 

–! 128-bit adder:  2256+1 rows  >  # electrons in universe! 
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Let's Make an Adder Circuit 

Goal:  x + y = z for 4-bit integers. 

Step 2.  (do one bit at a time) 
!! Build truth table for carry bit. 
!! Build truth table for summand bit. 
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Let's Make an Adder Circuit 

Goal:  x + y = z for 4-bit integers. 

Step 3. 
!! Derive (simplified) Boolean expression. 
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Let's Make an Adder Circuit 

Goal:  x + y = z for 4-bit integers. 

Step 4. 
!! Transform Boolean expression into circuit. 
!! Chain together 1-bit adders. 
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Let's Make an Adder Circuit 

Goal:  x + y = z for 4-bit integers. 

Step 4. 
!! Transform Boolean expression into circuit. 
!! Chain together 1-bit adders. 
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Subtractor 

Subtractor circuit:  z = x - y. 
!! One approach:  design like adder circuit. 
!! Better idea:  reuse adder circuit. 

–! 2's complement:  to negate an integer, flip bits, then add 1 
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Arithmetic Logic Unit:  Interface 

ALU Interface. 
!! Add, subtract, bitwise and, bitwise xor, shift left, shift right, copy. 
!! Associate 3-bit integer with 5 primary ALU operations. 

–! ALU performs operations in parallel 
–! control wires select which result ALU outputs 
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Arithmetic Logic Unit:  Implementation 
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Summary 

Lessons for software design apply to hardware design! 
!! Interface describes behavior of circuit. 
!! Implementation gives details of how to build it. 

Layers of abstraction apply with a vengeance! 
!! On/off. 
!! Controlled switch (transistor). 
!! Gates (AND, OR, NOT). 
!! Boolean circuit (MAJ, ODD). 
!! Adder. 
!! . . . 
!! Arithmetic logic unit. 
!! . . . 
!! TOY machine. 


