6.1 Combinational Circuits

George Boole (1815-1864)

Claude Shannon (1916-2001)

Digital Circuits

What is a digital system?

- Digital: signals are 0 or 1.
- Analog: signals vary continuously.

Why digital systems?

- Accuracy and reliability.
- Staggeringly fast and cheap.

Basic abstractions.

- On, off.
- Switch that can turn something on or off.

Digital circuits and you.
\Rightarrow - Computer microprocessors.

- Antilock brakes.
- Cell phones.
- Ipods

Earlier lectures.

- TOY machine.

Next two lectures.

- Digital circuits.

Culminating lecture.

- Putting it all together and building a TOY machine. - (on paper, we mean)

- ..

Logical gates.

- Fundamental building blocks.

Multiway OR Gates

$O R\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$

- 1 if at least one input is 1 .
- 0 otherwise.

$\operatorname{AND}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$.
- 1 if all inputs are 1.
- O otherwise.

Boolean Algebra

History.

- Developed by Boole to solve mathematical logic problems (1847).
- Shannon master's thesis applied it to digital circuits (1937).

1 "possibly the most important, and also the most famous, master's thesis of the [20th] century" --Howard Gardner

Basics

- Boolean variable: value is 0 or 1 .
- Boolean function: function whose inputs and outputs are 0,1.

Relationship to circuits.

- Boolean variables: signals.
- Boolean functions: circuits.

Truth table.

- Systematic method to describe Boolean function.
- One row for each possible input combination.
- N inputs $\Rightarrow 2^{N}$ rows.

AND Truth Table		
x	y	AND (x, y)
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table for Functions of 3 Variables

Truth table.

- 16 Boolean functions of 2 variables.
- every 4-bit value represents one
- 256 Boolean functions of 3 variables.
- every 8-bit value represents one
- $2^{\wedge}\left(2^{\wedge} N\right)$ Boolean functions of N variables!

Some Functions of 3 Variables						
x	y	z	AND	OR	MAJ	ODD
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	0	1	1	0
1	0	0	0	1	0	1
1	0	1	0	1	1	0
1	1	0	0	1	1	0
1	1	1	1	1	1	1

Truth table.

- 16 Boolean functions of 2 variables.
- every 4-bit value represents one

Truth Table for All Boolean Functions of 2 Variables									
\times	y	ZERO	AND		\times		y	XOR	OR
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Truth Table for All Boolean Functions of 2 Variables																			
x	y	NOR	EQ	y^{\prime}		x^{\prime}		NAND	ONE										
0	0	1	1	1	1	1	1	1	1										
0	1	0	0	0	0	1	1	1	1										
1	0	0	0	1	1	0	0	1	1										
1	1	0	1	0	1	0	1	0	1										

Universality of AND, OR, NOT

Any Boolean function can be expressed using AND, OR, NOT.
. "Universal."

- $\operatorname{XOR}(x, y)=x y^{\prime}+x^{\prime} y$

Expressing XOR Using AND, OR, NOT								
x	y	x^{\prime}	y^{\prime}	$x^{\prime} y$	$x y^{\prime}$	$x^{\prime} y+x y^{\prime}$	XOR	
0	0	1	1	0	0	0	0	
0	1	1	0	1	0	1	1	
1	0	0	1	0	1	1	1	
1	1	0	0	0	0	0	0	

Notation	Meaning
x^{\prime}	NOT x
$x y$	x AND y
$x+y$	x OR y

Exercise. Show \{AND, NOT\}, \{OR, NOT\}, \{NAND\}, \{AND, XOR\} are universal. Hint. Use DeMorgan's Law: $(x y)^{\prime}=\left(x^{\prime}+y^{\prime}\right)$ and $(x+y)^{\prime}=\left(x^{\prime} y^{\prime}\right)$

Any Boolean function can be expressed using AND, OR, NOT.

- Sum-of-products is systematic procedure.
- form AND term for each 1 in truth table of Boolean function
- OR terms together

Expressing MAJ Using Sum-of-Products								
x	y	z	MAJ	$x^{\prime} y z$	$x y^{\prime} z$	$x y z^{\prime}$	$x y z$	$x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z$
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0	1
1	0	0	0	0	0	0	0	0
1	0	1	1	0	1	0	0	1
1	1	0	1	0	0	1	0	1
1	1	1	1	0	0	0	1	1

Translate Boolean Formula to Boolean Circuit

Use sum-of-products form.

- $\operatorname{MAJ}(x, y, z)=x^{\prime} y z+x y ' z+x y z^{\prime}+x y z$.

Use sum-of-products form.

- $X O R(x, y)=x y^{\prime}+x^{\prime} y$.

Simplification Using Boolean Algebra

Many possible circuits for each Boolean function.

- Sum-of-products not necessarily optimal in:
- number of gates (space)
- depth of circuit (time)
- $\operatorname{MAJ}(x, y, z)=x^{\prime} y z+x y^{\prime} z+x y z '+x y z=x y+y z+x z$.

size $=8$, depth $=3$

size $=4$, depth $=2$

Ingredients.

- AND gates.
- OR gates.
- NOT gates.
- Wire

Instructions.

- Step 1: represent input and output signals with Boolean variables.
- Step 2: construct truth table to carry out computation.
- Step 3: derive (simplified) Boolean expression using sum-of products.
- Step 4: transform Boolean expression into circuit.

ODD (x, y, z).

- 1 if odd number of inputs are 1.
- 0 otherwise.

ODD (x,y,z)

- 1 if odd number of inputs are 1.
- O otherwise.

Expressing ODD Using Sum-of-Products								
x	y	z	ODD	$x^{\prime} y^{\prime} z$	$x^{\prime} y z^{\prime}$	$x y^{\prime} z^{\prime}$	$x y z$	$x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z$
0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	1
0	1	0	1	0	1	0	0	1
0	1	1	0	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1

Let's Make an Adder Circuit

Goal: $x+y=z$ for 4-bit integers.

- We build 4-bit adder: 9 inputs, 4 outputs.
- Same idea scales to 128-bit adder.
- Key computer component.

Step 1.

- Represent input and output in binary.

x_{3}	x_{2}	x_{1}	x_{0}
$+y_{3}$	y_{2}	y_{1}	y_{0}
z_{3}	z_{2}	z_{1}	z_{0}

Goal: $x+y=z$ for 4-bit integers
c_{0}
Step 2. (first attempt)

- Build truth table.
- Why is this a bad idea?

Goal: $x+y=z$ for 4-bit integers.

Step 2. (do one bit at a time)

- Build truth table for carry bit.
- Build truth table for summand bit

4-Bit Adder Truth Table

Let's Make an Adder Circuit

Goal: $x+y=z$ for 4-bit integers.
Step 3.

- Derive (simplified) Boolean expression.

Summand Bit				
x_{i}	y_{i}	c_{i}	z_{i}	ODD
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Summand Bit			
x_{i}	y_{i}	c_{i}	z_{i}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Goal: $x+y=z$ for 4-bit integers.
Step 4.

- Transform Boolean expression into circuit.
- Chain together 1-bit adders.

Carry Bit				
x_{i}	y_{i}	c_{i}	c_{i+1}	MAJ
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

z3

$z 1$

z 0

Goal: $x+y=z$ for 4-bit integers.

Step 4.

- Transform Boolean expression into circuit.
- Chain together 1-bit adders.

Subtractor circuit: $z=x-y$.

- One approach: design like adder circuit.
- Better idea: reuse adder circuit.
- 2's complement: to negate an integer, flip bits, then add 1

4-Bit Subtractor Interface

4-Bit Subtractor Implementation

Arithmetic Logic Unit: Interface

ALU Interface.

- Add, subtract, bitwise and, bitwise xor, shift left, shift right, copy.
- Associate 3-bit integer with 5 primary ALU operations.
- ALU performs operations in parallel
- control wires select which result ALU outputs

op	2	1	0
,+-	0	0	0
$\&$	0	0	1
\wedge	0	1	0
$«, \gg$	0	1	1
input 2	1	0	0

Arithmetic Logic Unit: Implementation

Lessons for software design apply to hardware design!

- Interface describes behavior of circuit.
- Implementation gives details of how to build it.

Layers of abstraction apply with a vengeance

- On/off.
- Controlled switch (transistor).
- Gates (AND, OR, NOT).
- Boolean circuit (MAJ, ODD)
- Adder.
- ..
- Arithmetic logic unit.
- TOY machine.

