
6.1 Combinational Circuits

George Boole (1815 – 1864) Claude Shannon (1916 – 2001)

3

Computer Architecture

Earlier lectures.
!! TOY machine.

Next two lectures.
!! Digital circuits.

Culminating lecture.
!! Putting it all together and building a TOY machine.

–! (on paper, we mean)

4

Digital Circuits

What is a digital system?
!! Digital: signals are 0 or 1.
!! Analog: signals vary continuously.

Why digital systems?
!! Accuracy and reliability.
!! Staggeringly fast and cheap.

Basic abstractions.
!! On, off.
!! Switch that can turn something on or off.

Digital circuits and you.
!! Computer microprocessors.
!! Antilock brakes.
!! Cell phones.
!! Ipods
!! . . .

5

Wires

Wires.
!! Propagate logical values from place to place.
!! Signals "flow" from left to right.

–! A drawing convention, sometimes violated
–! Actually: flow from producer to consumer(s) of signal

0 0

1 1

1

1

Input Output

6

Logic Gates

Logical gates.
!! Fundamental building blocks.

0 1

1 0

NOT

0

1
0

AND

1

0
0

1

1
1

0

0
0

0

0
0

0

1
1

1

0
1

1

1
1

OR

x x' x

y
xy

x

y
x + y

7

Multiway AND Gates

AND(x0, x1, x2, x3, x4, x5, x6, x7).
!! 1 if all inputs are 1.
!! 0 otherwise.

8

Multiway OR Gates

OR(x0, x1, x2, x3, x4, x5, x6, x7).
!! 1 if at least one input is 1.
!! 0 otherwise.

9

Boolean Algebra

History.
!! Developed by Boole to solve mathematical logic problems (1847).
!! Shannon master's thesis applied it to digital circuits (1937).

Basics.
!! Boolean variable: value is 0 or 1.
!! Boolean function: function whose inputs and outputs are 0, 1.

Relationship to circuits.
!! Boolean variables: signals.
!! Boolean functions: circuits.

"possibly the most important, and also the most famous,
 master's thesis of the [20th] century" --Howard Gardner

11

Truth Table

Truth table.
!! Systematic method to describe Boolean function.
!! One row for each possible input combination.
!! N inputs ! 2N rows.

AND

AND(x, y)

AND Truth Table

y x

0 0 0

0 1 0

0 0 1

1 1 1

0

1
0

1

0
0

1

1
1

0

0
0

12

Truth Table for Functions of 2 Variables

Truth table.
!! 16 Boolean functions of 2 variables.

–! every 4-bit value represents one

ZERO

Truth Table for All Boolean Functions of 2 Variables

y

0 0

0 1 0

1 0 0

1 1 0

0

0

1

0

0

1

0

0

x

0

0

1

1

AND

0

0

0

1

y

0

1

0

1

XOR

0

1

1

0

OR

0

1

1

1

x

0

NOR

Truth Table for All Boolean Functions of 2 Variables

y

0 1

0 1 0

1 0 0

1 1 0

y'

1

0

1

0

x'

1

1

0

0

1

0

1

1

EQ

1

0

0

1

1

1

0

1

NAND

1

1

1

0

ONE

1

1

1

1

x

0

13

Truth Table for Functions of 3 Variables

Truth table.
!! 16 Boolean functions of 2 variables.

–! every 4-bit value represents one
!! 256 Boolean functions of 3 variables.

–! every 8-bit value represents one
!! 2^(2^N) Boolean functions of N variables!

AND

Some Functions of 3 Variables

z

0 0

0 1 0

1 0 0

1 1 0

y

0

x

0

0

0

0

0

0 1

1 0

1 1

0 1

1

1

1

0

0

0

1

OR

0

1

1

1

1

1

1

1

MAJ

0

0

0

1

0

1

1

1

ODD

0

1

1

0

1

0

0

1

14

Universality of AND, OR, NOT

Any Boolean function can be expressed using AND, OR, NOT.

!! "Universal."

!! XOR(x,y) = xy' + x'y

Exercise. Show {AND, NOT}, {OR, NOT}, {NAND}, {AND, XOR} are universal.

Hint. Use DeMorgan’s Law: (xy)’ = (x’ + y’) and (x + y)’ = (x’y’)

1 0 0 0 0 0 0

0 0 0 1 1 1 1

1 1 1 1 0 0 1

0 1 0 0 0 1 0

x'

Expressing XOR Using AND, OR, NOT

y x'y x'y + xy' xy' y' XOR x

0

0

1

1

Meaning

NOT x

x AND y

x OR y

Notation

x'

x y

x + y

15

Sum-of-Products

Any Boolean function can be expressed using AND, OR, NOT.
!! Sum-of-products is systematic procedure.

–! form AND term for each 1 in truth table of Boolean function
–! OR terms together

x'yz

Expressing MAJ Using Sum-of-Products

z xyz' xyz xy'z MAJ y x

0

0

0

1

0

1

1

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

x'yz + xy'z + xyz' + xyz

0

0

0

1

0

1

1

1

16

Translate Boolean Formula to Boolean Circuit

Use sum-of-products form.
!! XOR(x, y) = xy' + x'y.

17

Translate Boolean Formula to Boolean Circuit

Use sum-of-products form.
!! MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz.

18

Simplification Using Boolean Algebra

Many possible circuits for each Boolean function.
!! Sum-of-products not necessarily optimal in:

–! number of gates (space)
–! depth of circuit (time)

!! MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz = xy + yz + xz.

size = 4, depth = 2 size = 8, depth = 3

19

Expressing a Boolean Function Using AND, OR, NOT

Ingredients.
!! AND gates.
!! OR gates.
!! NOT gates.
!! Wire.

Instructions.
!! Step 1: represent input and output signals with Boolean variables.
!! Step 2: construct truth table to carry out computation.
!! Step 3: derive (simplified) Boolean expression using sum-of products.
!! Step 4: transform Boolean expression into circuit.

21

ODD Parity Circuit

ODD(x, y, z).
!! 1 if odd number of inputs are 1.
!! 0 otherwise.

x'y'z

Expressing ODD Using Sum-of-Products

z xy'z' xyz x'yz' ODD y x

0

1

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

x'y'z + x'yz' + xy'z' + xyz

0

1

1

0

1

0

0

1

22

ODD Parity Circuit

ODD(x, y, z).
!! 1 if odd number of inputs are 1.
!! 0 otherwise.

23

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.
!! We build 4-bit adder: 9 inputs, 4 outputs.
!! Same idea scales to 128-bit adder.
!! Key computer component.

Step 1.
!! Represent input and output in binary.

x1 x2 x3 x0

y1 y2 y3 y0 +

z1 z2 z3 z0

1 0 0

0

1 1 0

1 +

0 0 1

1

0 1 1

8 4 2

7

7 5 3

9 +

6 0 6

6

1 1 1

x3
x2
x1
x0

y3
y2
y1
y0

z3
z2
z1
z0

+

0

0

24

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 2. (first attempt)
!! Build truth table.
!! Why is this a bad idea?

–! 128-bit adder: 2256+1 rows > # electrons in universe!

4-Bit Adder Truth Table

y2 y3

0

0

0

0

1

1

.

1

0

0

0

0

0

0

.

1

x1 x2 x3 x0

y1 y2 y3 y0 +

z1 z2 z3 z0

x0 x1

0

0

0

0

0

0

.

1

0

0

0

0

0

0

.

1

x2 x3

0

0

0

0

0

0

.

1

0

0

0

0

0

0

.

1

y0 y1

0

1

0

1

0

1

.

1

0

0

1

1

0

0

.

1

z2 z3

0

0

0

0

1

1

.

1

0

0

0

0

0

0

.

1

z0 z1

0

1

0

1

0

1

.

1

0

0

1

1

0

0

.

1

28+1 = 512 rows!

c0

0

0

0

0

0

0

.

1

c0

25

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 2. (do one bit at a time)
!! Build truth table for carry bit.
!! Build truth table for summand bit.

Carry Bit

ci ci+1 yi xi

0

0

0

1

0

1

1

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

Summand Bit

ci zi yi xi

0

1

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

x1 x2 x3 x0

y1 y2 y3 y0 +

z1 z2 z3 z0

c1 c2 c3 c0 = 0

26

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 3.
!! Derive (simplified) Boolean expression.

Carry Bit

ci ci+1 yi xi

0

0

0

1

0

1

1

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

MAJ

0

0

0

1

0

1

1

1

Summand Bit

ci zi yi xi

0

1

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

ODD

0

1

1

0

1

0

0

1

x1 x2 x3 x0

y1 y2 y3 y0 +

z1 z2 z3 z0

c1 c2 c3 c0 = 0

27

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 4.
!! Transform Boolean expression into circuit.
!! Chain together 1-bit adders.

28

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 4.
!! Transform Boolean expression into circuit.
!! Chain together 1-bit adders.

29

Subtractor

Subtractor circuit: z = x - y.
!! One approach: design like adder circuit.
!! Better idea: reuse adder circuit.

–! 2's complement: to negate an integer, flip bits, then add 1

x2

x1

x0

y3

y2

y1

y0

x3

z3

z2

z1

z0

y

x

x - y

4-Bit Subtractor Interface 4-Bit Subtractor Implementation

1

+

-

30

Arithmetic Logic Unit: Interface

ALU Interface.
!! Add, subtract, bitwise and, bitwise xor, shift left, shift right, copy.
!! Associate 3-bit integer with 5 primary ALU operations.

–! ALU performs operations in parallel
–! control wires select which result ALU outputs

ALU
select

16

16

16

Input 1

Input 2

op 1

+, - 0

& 0

^ 1

<<, >> 1

0

0

1

0

1

ALU

input 2 0 0

2

0

0

0

0

1

subtract shift
direction

3

31

Arithmetic Logic Unit: Implementation

16

Input 1

16
Input 2

16

subtract

carry in

ALU control

&

~

shift direction

3

<<
>>

 MUX

op 1

+, - 0

& 0

^ 1

<<, >> 1

0

0

1

0

1

input 2 0 0

2

0

0

0

0

1

000

001

010

011

100

+

^ ^

32

Summary

Lessons for software design apply to hardware design!
!! Interface describes behavior of circuit.
!! Implementation gives details of how to build it.

Layers of abstraction apply with a vengeance!
!! On/off.
!! Controlled switch (transistor).
!! Gates (AND, OR, NOT).
!! Boolean circuit (MAJ, ODD).
!! Adder.
!! . . .
!! Arithmetic logic unit.
!! . . .
!! TOY machine.

