2.3 Recursion

ighto 2008 - September 28, 2008 11:25 AM

Greatest Common Divisor

Gcd. Find largest integer that evenly divides into p and q.

Ex. $\operatorname{gcd}(4032,1272)=24$

$$
\begin{aligned}
4032 & =2^{6} \times 3^{2} \times 7^{1} \\
1272 & =2^{3} \times 3^{1} \times 53^{1} \\
g c d & =2^{3} \times 3^{1}=24
\end{aligned}
$$

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?

- New mode of thinking.
- Powerful programming paradigm.

Many computations are naturally self-referential.

- Mergesort, FFT, gcd.
- Linked data structures.
- A folder contains files and other folders.

Closely related to mathematical induction

Reproductive Parts
M. C. Escher. 1948

Gcd. Find largest integer that evenly divides into p and q.

Euclid's algorithm. [Euclid 300 BCE]
$\operatorname{gcd}(p, q)=\left\{\begin{array}{ll}p & \text { if } q=0 \\ \operatorname{gcd}(q, p \% q) & \text { otherwise }\end{array} \leftarrow \begin{array}{l}\text { base case } \\ \text { reduction step, } \\ \text { converges to base case }\end{array}\right.$

[^0]Applications.

- Simplify fractions: $1272 / 4032=53 / 168$.
- RSA cryptosystem.

Gcd. Find largest integer d that evenly divides into p and q.

Recursive Graphics

$p=8 x$
$\operatorname{gcd}(p, q)=x$

Gcd. Find largest integer d that evenly divides into p and q.

$$
\operatorname{gcd}(p, q)=\left\{\begin{array}{lll}
p & \text { if } q=0 & \leftarrow \\
\operatorname{gcd}(q, p \% q) & \text { otherwise case }
\end{array} \quad \leftarrow \begin{array}{l}
\text { reduction step, } \\
\text { converges to base case }
\end{array}\right.
$$

Java implementation

```
public static int gcd(int p, int q) { 
}
```


 4,

H-tree of order n.
and half the size

Draw an H.
Recursively draw 4 H -trees of order $\mathrm{n}-1$, one connected to each tip.

order 1

order 2

order 3

Animated H -tree

Animated H -tree. Pause for 1 second after drawing each H.

20\%

40\%

60\%

[^1]```
public class Htree {
 public static void draw(int n, double sz, double x, double y)
 if (}\textrm{n}==0\mathrm{) return;
 double x0 = x - sz/2, x1 = x + sz/2;
 double y0 = y - sz/2, y1 = y + sz/2;
 StdDraw. line(x0, y, x1,y); }\leftarrow\mathrm{ draw the H, centered on (}x,y\mathrm{)
 StaDraw.line (x0, y0, x0, y1)
 draw (n-1, sz/2, x0, y0);
 draw(n-1, sz/2, x0, y1)
 draw(n-1, sz/2, x1, y0)
 draw(n-1, sz/2, x1, y1)
```



```
 public static void main(String[] args)
 int n = Integer.parseInt(args[0]);
 draw(n, .5, .5, .5);
 }
```

\}


10

ttp://en. wikipedia. org/wiki/ Image: Hanoiklein. jp

Move all the discs from the leftmost peg to the rightmost one

- Only one disc may be moved at a time
- A disc can be placed either on empty peg or on top of a larger disc.


Move $\mathrm{n}-1$ smallest discs right.
Move largest disc left.
cyclic wrap-around

Move $n-1$ smallest discs right

```
public class TowersOfHanoi {
 public static void moves(int n, boolean left) {
 if (n == 0) return
 moves(n-1, !left)
 if (left) System.out.println(n + " left");
 else System.out.println(n + " right")
 moves(n-1, !left)
 }
 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 moves(N, true),
 }
}
```


Q. Is world going to end (according to legend)?

- 64 golden discs on 3 diamond pegs.
- World ends when certain group of monks accomplish task.
Q. Will computer algorithms help?


## Towers of Hanoi Legend

moves ( n , true) : move discs 1 to $n$ one pole to the left $\dagger$ moves ( $n$, false): move discs 1 to $n$ one pole to the right


Towers of Hanoi: Properties of Solution

Remarkable properties of recursive solution.

- Takes $2^{n}-1$ moves to solve $n$ disc problem.
- Sequence of discs is same as subdivisions of ruler.

Every other move involves smallest disc.
Recursive algorithm yields non-recursive solution!

- Alternate between two moves:
- move smallest disc to right if $n$ is even
- make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world

- Takes 585 billion years for $n=64$ (at rate of 1 disc per second).
- Reassuring fact: any solution takes at least this long!



## Divide-and-Conquer

Divide-and-conquer paradigm.

- Break up problem into smaller subproblems of same structure
- Solve subproblems recursively using same method.
- Combine results to produce solution to original problem

> Divide et impera. Veni, vidi, vici. - Julius Caesar

Many important problems succumb to divide-and-conquer.

- FFT for signal processing.
- Parsers for programming languages.
- Multigrid methods for solving PDEs.
- Quicksort and mergesort for sorting.
- Hilbert curve for domain decomposition.
- Quad-tree for efficient N -body simulation
. Midpoint displacement method for fractional Brownian motion

Fibonacci Numbers

A Possible Pitfall With Recursion

Fibonacci numbers. $0,1,1,2,3,5,8,13,21,34, \ldots$
$F(n)=\left\{\begin{array}{lll}0 & \text { if } n=0 & \text { FYI: classic math } \\ 1 & \text { if } n=1 & F(n)=\frac{\phi^{n}-(1-\phi)^{n}}{\sqrt{5}} \\ F(n-1)+F(n-2) & \text { otherwise }\end{array} \quad \begin{array}{l}=\left\lfloor\phi^{n} / \sqrt{5}\right\rfloor\end{array}\right.$

A natural for recursion?

```
public static long F(int n) (
 if (n == 0) return 0;
 if (n == 1) return 1;
 return F(n-1) +F(n-2);
}
```

Fibonacci numbers. $0,1,1,2,3,5,8,13,21,34, \ldots$
$F(n)= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F(n-1)+F(n-2) & \text { otherwise }\end{cases}$

L. P. Fibonacci (1170-1250)

Fibonacci rabbits
Q. Is this an efficient way to compute $F(50)$ ?

```
public static long F(int n) {
 if (n == 0) return 0;
 if (}\textrm{n}==1\mathrm{) return 1;
 if (n == 1) return 1;
}
```

A. No, no, no! This code is spectacularly inefficient.

$F(50)$ is called once. $F(49)$ is called once. $F(48)$ is called 2 times. $F(47)$ is called 3 times. $F(46)$ is called 5 times. $F(45)$ is called 8 times.
$F(1)$ is called $12,586,269,025$ times
Q. Is this an efficient way to compute $F(50)$ ?

```
public static long(int n) {
 long[] F = new long[n+1];
 F[0] = 0; F[1] = 1;
 for (int i = 2; i <= n; i++)
 F[i] = F[i-1] + F[i-2]
 return F[n];
}
```

A. Yes. This code does it with 50 additions.

Lesson. Don't use recursion to engage in exponential waste.

Context. This is a special case of an important programming technique known as dynamic programming (stay tuned).

## How to write simple recursive programs?

- Base case, reduction step.
- Trace the execution of a recursive program.
- Use pictures

Why learn recursion?

- New mode of thinking.
- Powerful programming tool.

Divide-and-conquer. Elegant solution to many important problems.


[^0]:    $\operatorname{gcd}(4032,1272)=\operatorname{gcd}(1272,216)$ $=\operatorname{gcd}(216,192)$
    $=\operatorname{gcd}(192,24)$
    $=\operatorname{gcd}(24,0)$
    $=24$.

[^1]:    
    
    
    
    

