Overview

What is recursion? When one function calls itself directly or indirectly.

2.3 Recursion

Why learn recursion?
= New mode of thinking.
« Powerful programming paradigm.

INTRODUCTION TO

Programming

in Java Many computations are naturally self-referential.
» Mergesort, FFT, gcd.

« Linked data structures.

=« A folder contains files and other folders.

Robert Sedgenick - Kevin Wayne Closely related to mathematical induction.

Reproductive Parts
M. C. Escher, 1948

ne - Copyright © 2008 - September 28,2008 11:25 AM

ion to ing in Java: An isciplinary Approach Robert Sedgewick and Ke

Greatest Common Divisor Greatest Common Divisor
Gcd. Find largest integer that evenly divides into p and q. Gcd. Find largest integer that evenly divides into p and q.
Ex. gcd(4032, 1272) = 24. Euclid's algorithm. [Euclid 300 BCE]
4032 = 26 x32x 7!
127dZ —: 2233 ><3311_><25431 d(p. g)= D if g=0 “— base case
ged = s SRS ged(g, p % q) otherwise +— reduction step,
converges fo base case
Applications. ged (4032, 1272) = ged (1272, 216)
« Simplify fractions: 1272/4032 = 53/168. = ged(216, 192)
= RSA cryptosystem. = gecd (192, 24) 4032 = 3 x 1272 + 216
= gcd (24, 0)

= 24.

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

p if g=0 “— base case

cd(p,q) =
ged(p. q) {gcd(q, p % q) otherwise «— reduction step,
converges to base case

p = 8x
q = 3x
ged(p. q) = x

Recursive Graphics

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

p if g=0 “— base case

cd(p,q) =
ged(p.q) {gcd(q, p % q) otherwise «— reduction step,
converges to base case

Java implementation.

public static int ged(int p, int q) {
if (q == 0) return p;
else return gecd(q, p % q);

“— base case
“— reduction step

[>]

o
T i it

Htree

H-tree of order n. and half the size
= DrawanH.
= Recursively draw 4 H-trees of order n-1, one connected to each tip.

tip

I N O B
0

order 1 order 2 order 3

Animated H-tree

Animated H-tree. Pause for 1 second after drawing each H.

H R

20% 40% 60% 80%. 100%

' # B

Htree in Java

Towers of Hanoi

http://en.wikipedia.org/wiki/Image:Hanoiklein. jpg

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.
= Only one disc may be moved at a time.

» A disc can be placed either on empty peg or on top of a larger disc.

| |

start finish

[D>]

Towers of Hanoi demo

Edouard Lucas (1883)

Towers of Hanoi Legend

Q. Is world going to end (according to legend)?
« 64 golden discs on 3 diamond pegs.

» World ends when certain group of monks accomplish task.

Q. Will computer algorithms help?

Towers of Hanoi: Recursive Solution

A L

Move n-1 smallest discs right.

L

Move largest disc left.

cyclic wrap-around

3 é

Move n-1 smallest discs right.

Towers of Hanoi: Recursive Solution

public class TowersOfHanoi {

public static void moves(int n, boolean left) {
if (n == 0) return;
moves (n-1, !'left);
if (left) System.out.println(n + " left");

else System.out.println(n + " right");
moves (n-1, !left);

}

public static void main (String[] args) {

int N = Integer.parselnt(args[(]);
moves (N, true);

moves (n, true) : move discs 1to none pole o the left

moves (n, false): move discs 1 to n one pole to the right

smallest disc

Towers of Hanoi: Recursive Solution

% java TowersOfHanoi 3 % java TowersOfHanoi 4
1 left 1 right
2 right 2 left
1 left 1 right
3 left 3 right
1 left 1 right
2 right 2 left
1 left /1 right
4 left
|1 right
2 left
l»1 right
3 right
every other move is smallest disc 1 right
2 left
1 right
1
\

subdivisions of ruler

Towers of Hanoi: Properties of Solution

Remarkable properties of recursive solution.
« Takes 2" - 1 moves to solve n disc problem.
« Sequence of discs is same as subdivisions of ruler.
= Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!
« Alternate between two moves:

- move smallest disc to right if n is even

- make only legal move hot involving smallest disc

- to left if nis odd

Recursive algorithm may reveal fate of world.
« Takes 585 billion years for n = 64 (at rate of 1 disc per second).
= Reassuring fact: any solution takes at least this long!

Towers of Hanoi: Recursion Tree

n, left

3, true

2, false

AN

22 27

2, false

//
4

16,21

N

1, true } 1, true 1, true § 1, true
/7 N\ | /7 N\ /7 \\ ! // N\
/3/4 : 5\5‘\ : 9 10 : 11 12 718 : 19\20\ : /724 : 25 2
1 left 2 right 1 left 3 left 1 left 2 right 1 left

Divide-and-Conquer

Divide-and-conquer paradigm.
= Break up problem into smaller subproblems of same structure.
» Solve subproblems recursively using same method.
= Combine results to produce solution to original problem.

Divide et impera. Veni, vidi, vici. - Julius Caesar

Many important problems succumb to divide-and-conquer.
« FFT for signal processing.
« Parsers for programming languages.
« Multigrid methods for solving PDEs.
= Quicksort and mergesort for sorting.
« Hilbert curve for domain decomposition.
« Quad-tree for efficient N-body simulation.
« Midpoint displacement method for fractional Brownian motion.

Fibonacci Numbers

A Possible Pitfall With Recursion

Fibonacci numbers. 0,1,1, 2, 3,5, 8,13, 21, 34, ...

FYI: classic math

0 if n=0 gy
Fr)= 11 if n =1 Foy = %
F(n-1) + F(n-2) otherwise - |05 |

¢ = golden ratio ~ 1,618

A natural for recursion?

public static long F(int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return F(n-1) + F(n-2);

Fibonacci Numbers
Fibonacci numbers. 0,1,1, 2, 3,5, 8,13, 21, 34, ..

0 if n=0
Fin)y= 141 if n =1
F(n-1) + F(n-2) otherwise

Number

88 £
uy 1
8@\\33 2
8388 85 .
8385?88883 . o

Fibonacci rabbits

Recursion Challenge 1 (difficult but important)

Q. Is this an efficient way to compute F(50)?

public static long F(int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return F(n-1) + F(n-2);

A. No, no, no! This code is spectacularly inefficient.

F(50)

o — F(50) is called once.

F(49) F(48) F(49) is called once.
— S F(48) is called 2 times.

F(48) F(47) F(47) F(46) lod s

47) i i .
PN /N PN PN F(7)fsca e fmes
F(47) F(46) F(46) F(45) F(46) F(45) F(45) F(44) F(46) is called 5 times.
/\ /\ /\ /\ /\ /\ /\ /\ F(45) is called 8 times.

F(1) is called 12,586,269,025 fimes.
AN

F(50)

recursion tree for naive Fibonacci function

Recursion Challenge 2 (easy and also important)

Q. Is this an efficient way to compute F(50)?

public static long(int n) {
long[] F = new long[n+l];
F[0] = 0; F[1] = 1;
for (int i = 2; i <= n; i++)
F[i] = F[i-1] + F[i-2];
return F[n];

A. Yes. This code does it with 50 additions.
Lesson. Don't use recursion to engage in exponential waste.

Context. This is a special case of an important programming technique
known as dynamic programming (stay tuned).

Summary

How to write simple recursive programs?
=« Base case, reduction step.
= Trace the execution of a recursive program.
= Use pictures.

Why learn recursion?
« New mode of thinking.
« Powerful programming tool.

Towers of Hanoiby W. A. Schloss.

Divide-and-conquer. Elegant solution to many important problems.

