Overview

What is recursion? When one function calls itself directly or indirectly.

2.3 Recursion

Why learn recursion?

- New mode of thinking.
- Powerful programming paradigm.

Many computations are naturally self-referential.

- Mergesort, FFT, gcd.
- Linked data structures.
- A folder contains files and other folders.

Closely related to mathematical induction.

Reproductive Parts M. C. Escher, 1948

2

4

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · September 28, 2008 11:25 AM

Greatest Common Divisor

Gcd. Find largest integer that evenly divides into p and q.

Ex. gcd(4032, 1272) = 24.

 $\begin{array}{rrrr} 4032 &=& 2^6\times 3^2\times 7^1 \\ 1272 &=& 2^3\times 3^1\times 53^1 \\ gcd &=& 2^3\times 3^1=24 \end{array}$

Applications.

- Simplify fractions: 1272/4032 = 53/168.
- RSA cryptosystem.

Greatest Common Divisor

Gcd. Find largest integer that evenly divides into p and q.

Euclid's algorithm. [Euclid 300 BCE]

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

p							
<i>q</i>			9			p % q	
x	×	x	x	x	x	x	×
						t	
				gcd			
p = 8x							
q = 3x acd(p, a) = x							

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

gcd(p,q) = -	(p	if $q = 0$	←	base case
	gcd(q, p % q)	otherwise -		reduction step,
				converges to base case

6

9

Java implementation.

5

Recursive Graphics

. 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전
- देव संयोदय प्रयोदय देवींदव देव देव संयोदय देवींदव देवींदव देव
איזא איזא איזא איזא איזא איזא איזא איזא
- संग्रासेष संग्रासेष्ठीसंस्र संग्रासेष संग्रासेष्ठीसंस्र संग्रासेष
· · · · · · · · · · · · · · · · · · ·
संसमित संसमित संसमित संसमित संसमित संसमित संसमित संसमित

Htree

/

and half the size

H-tree of order n.

- Draw an H.
- Recursively draw 4 H-trees of order n-1, one connected to each tip.

Htree in Java

Animated H-tree

Animated H-tree. Pause for 1 second after drawing each H.

Towers of Hanoi

11

http://en.wikipedia.org/wiki/Image:Hanoiklein.jpg

Towers of Hanoi

Towers of Hanoi: Recursive Solution

Move all the discs from the leftmost peg to the rightmost one.

- Only one disc may be moved at a time.
- A disc can be placed either on empty peg or on top of a larger disc.

start

finish

Edouard Lucas (1883)

14

16

Towers of Hanoi Legend

- Q. Is world going to end (according to legend)?
- 64 golden discs on 3 diamond pegs.
- World ends when certain group of monks accomplish task.
- Q. Will computer algorithms help?

Move n-1 smallest discs right.

Move largest disc left.

15

17

Move n-1 smallest discs right.

Towers of Hanoi: Recursive Solution

moves (n, true) : move discs 1 to n one pole to the left moves (n, false): move discs 1 to n one pole to the right smallest disc

Towers of Hanoi: Properties of Solution

Remarkable properties of recursive solution.

- Takes 2ⁿ 1 moves to solve n disc problem.
- Sequence of discs is same as subdivisions of ruler.
- Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!

- Alternate between two moves: _______ to left if n is odd
 - move smallest disc to right if n is even
 - make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.

- Takes 585 billion years for n = 64 (at rate of 1 disc per second).
- . Reassuring fact: any solution takes at least this long!

Divide-and-Conquer

Divide-and-conquer paradigm.

- Break up problem into smaller subproblems of same structure.
- Solve subproblems recursively using same method.
- . Combine results to produce solution to original problem.

Divide et impera. Veni, vidi, vici. - Julius Caesar

Many important problems succumb to divide-and-conquer.

- FFT for signal processing.
- Parsers for programming languages.
- Multigrid methods for solving PDEs.
- Quicksort and mergesort for sorting.
- Hilbert curve for domain decomposition.
- Quad-tree for efficient N-body simulation.
- Midpoint displacement method for fractional Brownian motion.

Fibonacci Numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

	(O		if $n = 0$
$F(n) = \langle$	1		if $n = 1$
	F(n-1) +	F(n-2)	otherwise

L. P. Fibonacci (1170 - 1250)

A Possible Pitfall With Recursion

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

A natural for recursion?

public static long F(int n)	ł
public boulde long 2 (line li)	۲
if (n == 0) return 0;	
if $(n == 1)$ return 1;	
return $F(n-1) + F(n-2);$	
}	

25

Recursion Challenge 1 (difficult but important)

Q. Is this an efficient way to compute F(50)?

A. No, no, no! This code is spectacularly inefficient.

F(50)

Q. Is this an efficient way to compute F(50)?

```
public static long(int n) {
    long[] F = new long[n+1];
    F[0] = 0; F[1] = 1;
    for (int i = 2; i <= n; i++)
        F[i] = F[i-1] + F[i-2];
    return F[n];
}</pre>
```

A. Yes. This code does it with 50 additions.
 Lesson. Don't use recursion to engage in exponential waste.

Context. This is a special case of an important programming technique known as dynamic programming (stay tuned).

Summary

How to write simple recursive programs?

- Base case, reduction step.
- Trace the execution of a recursive program.
- Use pictures.

27

Why learn recursion?

- New mode of thinking.
- Powerful programming tool.

Divide-and-conquer. Elegant solution to many important problems.

