COS 126 General Computer Science Spring 2007

Exam 2 Solutions

1. Data types.

(a) A data type is a set of values and a set of operations on those values. This definition
was given repeatedly both in lecture and in the textbook.

(b) C A data type whose representation is A. Reference type.

hidden from the client. Lo
B. Primitive type.

D After constructing an object of this

type, you cannot change its value. C. Abstract (encapsulated) data type.

B int D. Immutable data type.

A When an object of this type is passed
to a function, the function can, in
general, change its value.

(c) Programmers use data types to:

e Make programs easier to read and understand.

e Make programs easier to debug (since debugging is restricted to smaller pieces of
code).

e Make programs easier to maintain and improve.
e Make code easier to reuse (without having to copy and re-implement it).

e Make designing programs easier to manage (since each programmer can work inde-
pendently on their own part).

2. Algorithms and data structures.

A Implement recursion. Stack

E Parse an NCBI genome data file. Queue
Evaluate an arithmetic expression. Symbol table

Implement the back button in a browser.

Graph

= O a w »

Model pairwise relationships in facebook. Regular expression

Search for an IP address given a domain name.

w Q o = >

Model the buffer in the Karplus-Strong algorithm
for simulating the pluck of a guitar string.

1

3. Floating point precision.
Catastrophic cancellation. This is the same example from lecture.
The underlying reason is that only a finite number of real numbers can be exactly repre-
sented in floating point number. So calculations involving floating point numbers are subject
to roundoff error. This problem is magnified when subtracting two nearly equal numbers,
resulting in a devastating loss of precision. For example, if x = 1.1e-8, then Math.cos(x)
is about 0.999999999999999889, which is accurate to 16 decimal places. However, when we

compute 1.0 - Math.cos(x), the result is about 1.1102e-16, which isn’t even accurate to
one decimal place!

4. Creating data types.

There are 4 errors.

e Constructors have no return type, not even void.

e The constructor should not declare local variables x, y, and z since this hides the in-
stances variables with the same name.

The signature of distanceTo () should not include the modifier static.

The toString() method must return a String.

public class Point3D {
private double x, y, z;

// create a point (x0, yO, z0)
public Point3D(double x0, double y0, double z0) {

x = x0;
y = y0;
z = z0;

b

// return the Euclidean distance between this point and q
public double distanceTo(Point3D q) {

double dx = x - q.X;

double dy =y - q.y;

double dz = z - q.z;

return Math.sqrt(dx*dx + dyxdy + dz*dz);
+

// return a string representation of this point
public String toString() {
String g = n(u + x + u, "o y + u’ "4+ oz o+ ||)||;
return s;

5. Analysis of algorithms.

(a) 14050 seconds. (almost 4 hours!)
The key observation is that (for large values of N) the running time quadruples when
the input size increases by a factor of 2. This strongly suggests the running time grows
proportional to N2. Solving an instance of size 800,000 will take roughly 102 times as
long as one of size 80,000.

(b) 215
With the faster algorithm, the running time doubles when the input size increases by
a factor of 2. This strongly suggests that the running time grows proportional to N.

Solving an instance of size 800,000 will take roughly 10 times as long as one of size
80,000.

6. Linked structures.

public double distance() {
double sum = 0.0;
for (Node x = first; x.next != null; x = x.next) {
sum = sum + x.p.distanceTo(x.next.p);

}

return sum;

7. Modular programming.

public class Ball3D {
private Point3D center;
private double radius;

// construct a ball centered at c, with radius r
public Ball(Point3D c, double r) {

center = c;

radius = r;

3

// does the ball contain the point p?
public boolean contains(Point3D p) {
return p.distanceTo(center) <= radius;

3

// return the ball’s volume = 4/3 pi r"3
public double volume() {
return 4.0 / 3.0 * Math.PI * radius * radius * radius;

}

8. Theory of computation.

E

C
G
H

Ho» U

Universal
Undecidable

Duality
Church-Turing thesis
Turing machine

P

NP

NP-complete

. The set of all search problems (i.e., solution can be

checked in polynomial time).

. A set of search problems that are believed to have no

polynomial time solution.

C. A problem that cannot be solved by a Turing machine.

. The set of all search problems that can be solved in

polynomial time.

. One machine can do any computational task.

. If you can solve a problem in this class in polynomial

time, then P = NP.

. Programs and data are each encoded as sequences of

bits and can be used interchangeably.

. Anything computable in this universe can be computed

by a Turing machine.

. A simple, universal, model of computation.

9. DNA analyzer.

public class AnalyzeDNA {
public static void main(String[] args) {

// read in the command-line argument k
int k = Integer.parselnt(args[0]);

// read in the DNA string from standard input
String dna = StdIn.readString();
int N = dna.length();

// create a symbol table with String keys and Integer values
ST<String, Integer> st = new ST<String, Integer>();

// populate symbol table with kgrams and their frequencies
for (int i = 0; i <= N - k; i++) {
String kgram = dna.substring(i, i + k);
if (st.contains(kgram)) st.put(kgram, st.get(kgram) + 1);
else st.put (kgram, 1);
}

// print out kgrams and their frequencies
for (String kgram : st) {

System.out.println(kgram + " " + st.get(kgram));
}

10. Circuits

T Yy | output
0 O 1
0 1 0
1 0 0
1 1 1

(a) zy + 2"y’
(b) There are 2n = 128 inputs, so the truth table has 2'%® rows.

(c) We connect each pair of bits x; and y; to an znor gate. The output of the ith znor gates
is 1 if and only if z; = y;.

Xo

Xnor
Yo
X1

Xnor
N

and

X2

Xnor
V2
X3

Xnor
V3

