
COS 126 General Computer Science Spring 2005

Midterm 2

This test has 10 questions worth a total of 50 points. You have 120 minutes. The exam is closed
book, except that you are allowed to use a one page cheatsheet, one side only, handwritten by you.
No calculators or other electronic devices are permitted. Give your answers and show your work
in the space provided. Write out and sign the Honor Code pledge before turning in the
test.
“I pledge my honor that I have not violated the Honor Code during this examination.”

——————————-

Signature

Problem Score Possible
0 1
1 8
2 6
3 6
4 3
5 5
6 8
7 4
8 3
9 6

Total 50

Name:

NetID:

Preceptor: Dan Mona

Phil Benedict

Zafer Donna

2 PRINCETON UNIVERSITY

0. Miscellaneous. (1 point)

(a) Write your name and Princeton NetID in the space provided on the front of the exam,
and circle the name of your preceptor.

(b) Write and sign the honor code on the front of the exam.

1. Encapsulation, ADT (8 points) In this problem, we will define a simple ADT, Account,
for maintaining bank accounts. Each account has a balance, and your job is to write a
constructor, as well as methods to (1) deposit money into an account (2) withdraw money
from an account (3) transfer money between accounts, and (4) get balances. Assume all
arguments sent to the methods are ≥ 0. Make sure your methods match the comments and
the given output.

public class Account {
private int balance;

//constructor, initializing account balance to init
public Account(int init) {

}

// deposit amt into account
public void deposit(int amt) {

}

// withdraw amt from account if there is enough balance
// otherwise, print an error message and withdraw nothing
public void withdraw(int amt) {

}

COS 126 MIDTERM 2, SPRING 2005 3

// transfer amt to the account b if there is enough balance
// otherwise, print an error message and transfer nothing
public void transfer(int amt, Account b) {

}

// get current balance
public int getBalance() {

}

public static void main(String[] args) {
Account princeton = new Account(100000000);
Account student1 = new Account (1000);
Account student2 = new Account (1000);
System.out.println("Student1 account has " + student1.getBalance());
System.out.println("Student2 account has " + student2.getBalance());
System.out.println("Princeton account has " + princeton.getBalance());
student1.withdraw(100);
student2.withdraw(500);
student1.transfer(800, princeton);
student2.transfer(800, princeton);
System.out.println("Student1 account has " + student1.getBalance());
System.out.println("Student2 account has " + student2.getBalance());
System.out.println("Princeton account has " + princeton.getBalance());

}
}

The test client given in main outputs:

Student1 account has 1000
Student2 account has 1000
Princeton account has 100000000
Insufficient funds
Student1 account has 100
Student2 account has 500
Princeton account has 100000800

4 PRINCETON UNIVERSITY

2. Regular Expressions, Deterministic Finite State Automata (6 points)

We have the three letter alphabet { a, b, c } and the language of all strings that start and
end with a.

Here are some examples of strings, and whether they are in the language:

Yes No
_______ _______________

a empty string
abca abc

abacaa baca

a) Which one of these Regular Expressions generates all strings that start and end with a?
Circle the roman numeral that goes with your answer.

i) a* (a | b | c)* a

ii) a (a | b | c)* a

iii) a ((b | c)* a)*

iv) a* ((b | c)* a)*

v) a (b | c)* a

COS 126 MIDTERM 2, SPRING 2005 5

2. RE, DFA continued
b) Which one of the following DFA accepts all strings that start and end with a? Circle

the roman numeral that goes with your answer.

i)

N

N Y

N

a

a

b,ca,b,c

b,c

a

b,c

ii)

N

Y

Y

N

a

b

b,c

b

a

a

c

a

c

b,c

iii)

N Y

N Y

b,c
b,c

a

a

a
b,c

a

b,c

6 PRINCETON UNIVERSITY

3. Linked Lists (6 points) Assume you have access to the private Node class:

private class Node {
double value;
Node next;

}

Consider the following method which operates on linked lists:

public boolean linky_dink (Node head) {
Node a,b;
a = head;
if (a == null) return true;
b = a.next;

while (b != null && b != a) {
b = b.next;
if (b == null) return true;
b = b.next;
a = a.next;

}

return (b == null);
}

(a) What does linky dink return on the following lists? Circle your answer.

i) nullhead

returns true returns false does not return

ii) nullhead

returns true returns false does not return

COS 126 MIDTERM 2, SPRING 2005 7

3. Linked Lists continued

iii) head

returns true returns false does not return

iv) head

returns true returns false does not return

(b) What does linky dink do?

(c) If your linked list has N nodes, what is the complexity of linky dink? Circle your
answer.
N N log N N2 2N

8 PRINCETON UNIVERSITY

4. Analysis of Algorithms (3 points)

Each of the three Java methods below takes a positive integer N as input and returns an
integer equal to NN . Circle the complexity of the method1, method2, and method3 functions.
(Assume operations like + and * take a constant amount of time.) Don’t worry about the
numbers getting too big to fit in an int.

(a) public static int method1(int N) {
int count = N;
int toAdd = 1;
int pow = 0;

for (int i = 0; i < N; i++) {
pow = 0;
for (int j = 0; j < N; j++) {

pow = pow + toAdd;
}
toAdd = pow;

}
return pow;

}

logN N N log N N2 2N

(b) public static int method2 (int N) {
int pow = 1;
for (int i = 0; i < N; i++) {

pow = pow * N;
}
return pow;

}

logN N N log N N2 2N

(c) public static int method3 (int N) {
return method3Help(N, N);

}

public static int method3Help (int x, int N) {
if (N == 0) return 1;
int pow = method3Help (x, N/2);
pow = pow * pow;
// one more multiple of x for an odd power
if (N%2 == 1) pow = pow * x;
return pow;

}

log N N N log N N2 2N

COS 126 MIDTERM 2, SPRING 2005 9

5. QuickSort (5 points)

Computers at Hogwarts School of Magic use a variant of QuickSort named MagicSort, which
works like QuickSort except for its pivot selection strategy. Given an array containing a range
of numbers to sort, MagicSort magically “knows” the best pivot to choose. It chooses the
element that will be in the middle when the range is sorted (or the one before the middle if
there are an even number of elements).

(a) Given that MagicSort(A, i, j) sorts the range i...j (inclusive) in array A, complete the
recursion tree below for MagicSort(A, 0, 14) on

A = {7, 1, 3, 6, 0, 2, 5, 12, 9, 11, 14, 4, 8, 13, 10}
Each node in your tree should contain [i, j, pivot value].
You may omit nodes where i equals j.

[0, 14, 7]

(b) If picking the pivot element takes constant time, what is the complexity of MagicSort?
Circle your answer.
log N N N log N N2 2N

10 PRINCETON UNIVERSITY

6. Queue (8 points)

If the maximum capacity for a queue is known beforehand, it can be implemented using a
“wrap-around” array. Two indices in the array are stored: front and rear. During queue
operations, either index only moves “forward” in a cyclic fashion through the array; i.e., if it
needs to move forward when at the very end, it goes back to the beginning.

When the queue is empty or full, front equals rear, so it is necessary to keep a count of the
items in order to distinguish between the empty and full cases.

Here is a diagram of the queue with four elements, A, B, C, and D. front is the index of
the first element in the queue. rear is the index where a new element should be put.

A B C D

Front Rear

Here is a class ArrayQueue. The instance variables and constructor are complete. Write the
code for the ArrayQueue methods enqueue, dequeue, isEmpty, and isFull.

public class ArrayQueue {
private double[] queue; // Array that holds the queue elements
private int capacity; // maximum size of the queue
private int numItems; // number of items currently in queue
private int front; // index of front of queue
private int rear; // index of rear of queue

// Constructor
public ArrayQueue(int maxSize) {

queue = new double[maxSize];
capacity = maxSize;
numItems = 0; // nothing in queue yet
front = 0; // index of front of queue
rear = 0; // index of rear of queue

}

// Add an element to the rear of this queue if there is room.
// If there is no room left on the queue, just return.
public void enqueue(double item) {

}

COS 126 MIDTERM 2, SPRING 2005 11

6. Queue continued

// Remove and return the element from the front of this queue
// If there are no elements on the queue, return 0.
public double dequeue() {

}

// Check if this queue is empty
public boolean isEmpty() {

}

// Check if this queue is full
public boolean isFull() {

}
}

12 PRINCETON UNIVERSITY

7. Turing Machine (4 points)

LR R

0:0 1:1

X:X

1:0

0:1

0:0 1:1

X:X
H

a) The Turing Machine above starts in the leftmost state. If this Turing Machine is run on
the tape below, with the tape head starting at the position marked by the arrow, what
will be the contents of the tape when it halts, AND where will the head be?
Write your answer in the empty tape below.
.0 0 1 0 1 1 0 1 1 1 X X X. 00 0

b) What computation does this Turing Machine perform?

COS 126 MIDTERM 2, SPRING 2005 13

8. Data Structures (3 points) Circle your answer.

Circle the data structure that is most appropriate choice for the described problem.

(a) Store and retrieve student records, which have unique usernames.
Array Linked List Binary Search Tree Symbol Table

(b) Store all student grades and retrieve all grades higher than 90.
Linked List Binary Search Tree Symbol Table Stack

(c) Represent the relationships between the professors, their classes, and the students in
those classes.
Graph Binary Search Tree Parallel Arrays Circular Linked List

9. True or False (6 points) Circle your answer.

T F (a) P is the set of decision problems solvable in Polynomial time by a deterministic Turing
Machine.

T F (b) NP is the set of decision problems not solvable in Polynomial time by a deterministic
Turing Machine.

T F (c) For proper encapsulation, instance variables should always be declared public.

T F (d) Because the Halting Problem is unsolvable, it is impossible to tell if your TSP program
for Assignment 6 has an infinite loop.

T F (e) A Universal Turing Machine can compute anything that any other Turing Machine could
possibly compute.

T F (f) If Bob wants to send a message to Alice using RSA encryption, he would first encrypt
his message with his own public key, and then encrypt the result with Alice’s public key.

T F (g) If P equals NP, then the Traveling Salesperson Problem can be solved in polynomial
time by a deterministic Turing Machine.

T F (h) If P does not equal NP, then there is no case of the Traveling Salesperson Problem for
which you can find the optimal tour in polynomial time.

T F (i) In a symbol table implementation using a hash table, a good hash function would dis-
tribute the keys more or less evenly over the symbol table positions.

T F (j) Factoring is known to be in NP but has not been proven to be NP-complete, so the
discovery of a polynomial-time algorithm for factoring would mean that P equals NP.

T F (k) Factoring is known to be in NP but has not been proven to be NP-complete, so no
polynomial-time algorithm for factoring is possible.

T F (l) The Turing Test is a test of whether a problem can be solved by a Turing Machine.

