
COS 126 EXAM 1 SOLUTIONS, FALL 2004 1

COS 126 General Computer Science Fall 2004

Exam 1 Solutions

1. Number systems.

(a) 5410

(b) 11011112

(c) AB16

(d) a = 0, b = −231. Note that 231 is not representable in 32-bit two’s complement notation;
it gets wrapped around to −231. More generally, any pair of integers a and b that satisfy
(i) a ≥ 0, (ii) b < 0, and (iii) a − b ≥ 231 will also overflow a 32-bit int and lead to the
same result.

2. Debugging.

(a) Line 6: array should be of size 100 to accommodate entries between 0 and 99; otherwise
you will get an array out-of-bounds exception if the user enters 99.

Lines 8–11: need curly braces around body of while loop or the a[i]++ statement only
gets executed once (after the loop is finished).

Line 12: remove semicolon at the end of the line. Otherwise, the if statement only gets
executed once (after the loop is finished).

(b) It will print out the smallest such one.

3. Loops and conditionals.

0 1 2 3 4 5

5 0 1 2 3 4

4 5 0 1 2 3

3 4 5 0 1 2

2 3 4 5 0 1

1 2 3 4 5 0

Remark: a recent immunity challenge on Survivor asked the contestants to arrange copies of
4 elements in a 4-by-4 grid so that no row or column contained two or more copies of the
same element. This program produces an N-by-N solution.

2 PRINCETON UNIVERSITY

4. Java basics.

public class SignalAnalyzer {

public static void main(String[] args) {

double sum = 0.0; // sum of absolute values

int N = 0; // number of inputs

while (!StdIn.isEmpty()) {

double x = StdIn.readDouble();

sum += Math.abs(x);

N++;

}

System.out.println(sum / N);

}

}

5. Recursive graphics.

(a) ii

(b) v

(c) iii

(d) i

(e) iv

(f) vi

6. TOY.

(a) 00: 60

01: BE

(b) Sorts the two integers in ascending order. Note: it may fail if the integers are allowed
to be negative (e.g., see question 1d).

(c) 00: 000D

01: 0060

02: 00BE

(d) Sorts the three integers in ascending order.

COS 126 EXAM 1 SOLUTIONS, FALL 2004 3

7. Functions.

public static boolean majority(boolean a, boolean b, boolean c) {

return (a && b) || (a && c) || (b && c);

}

8. Arrays.

(a) 2 0 1 4 5 3

(b) int[] binv = new int[N];

for (int i = 0; i < N; i++)

binv[b[i]] = i;

(c) (ainv[i] < ainv[j])

(d) int tau = 0;

for (int i = 0; i < N; i++) {

for (int j = i + 1; j < N; j++) {

boolean a = (ainv[i] < ainv[j]); // does i appear before j in a?

boolean b = (binv[i] < binv[j]); // does i appear before j in b?

if (a != b) tau++;

}

}

9. Input, output.

The body of the loop counts the number of consecutive occurrences of each integer, and prints
out that number followed by the digit. This is a crude form of data compression known as
run-length encoding (RLE); it is effective when the input contains lots of runs of the same
digit.

(a) 3 1 3 2 5 3 3 6 6 1

(b) 1 3 1 1 1 3 1 2 1 5 2 3 2 6 1 1

(c) 1 1 1 3 3 1 1 3 1 1 1 2 1 1 1 5 1 2 1 3 1 2 1 6 2 1

Remark: if you start the sequence with the value 1, and repeatedly pipe the results through
java Conway, you obtain Conway’s look-and-say sequence: 1, 11, 21, 1211, 111221, 312211,
13112221, 1113213211, which has some rather amazing properties.

