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1 Introduction

We first review the concepts of Vapnik-Chervonenkis dimension and ε-nets defined in last
class. Then we look at an application to detection of failures in networks. Finally we will
look at approximate nearest neighbour searching in metric spaces. Here the term ε-net is
used in a somewhat different sense.

1.1 Review of VC-Dimension

Definition 1 A range space is defined by the pair (X,R), where X is an arbitrary set and
R ⊆ 2X .

Definition 2 A set Y ⊆ X is said to be shattered by R if for every subset T of Y , there
exists an A in R such that T = A ∩X.

Definition 3 The Vapnik Chervonenkis (VC) dimension of a range space (X,R) is defined
to be the size of the largest Y ⊆ X that is shattered by R.

A simple example of a range space we had seen last time was when X = [0, 1]2 and R
is the set of all axis parallel rectangles contained in [0, 1]2. It can easily be seen that the
VC-dimension of this range space is 3. We now recall the definition of an ε-net.

Definition 4 Suppose (X,R) is a range space of finite V C dimension d. A set S ⊆ X is
called an ε-net if for every A ⊆ X with |A| ≥ ε|X|, we have S ∩X 6= φ.

We also recall the “sampling theorem” we proved last time.

Theorem 1
Suppose (X,R) is a range space of finite V C dimension d, and suppose S is a random set
of m elements from X, where m satisfies

m ≥ max
{4
ε

log
2
δ
,
8d
ε

log
8d
ε

}
Then with probability at least 1− δ, S is an ε-net for (X,R).

The theorem is quite surprising because the bound on m depends only on ε and δ, and not
on |X|, as is typically the case when we use any sort of Chernoff or Union bounds.

We will now look at an application of the VC dimension theory to the problem of
detecting failures in networks, from a paper of Kleinberg [1].
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2 Detecting Failures in Networks

Suppose we have a large network and we want to find out how ‘well-connected’ it is. More
precisely, we want to find out if the network is remains connected when some k of the edges
fail. Suppose the way we want to detect this is to have ‘detectors’ at some of the nodes,
and check if all pairs of detectors are still connected. Naturally, the aim is to minimize the
number of detectors we need to use while being able to say that the network is connected
with high probability.

It is easy to see that if we want something this strong, we would need a detector at
every node. For this, just consider a two-connected graph with each vertex of degree k.
Now suppose all edges connected to a vertex fail. Clearly, the vertex has to be one of the
detectors if we want to conclude the graph is not connected. This is true for all vertices, so
we need a detector at each node.

Now say we relax the requirement and not want ‘large chunks’ of the network to be
disconnected from each other. More precisely, we want to be able to find if removal of k
edges divides the graph into two pieces each large enough.

Definition 5 Suppose G is a graph with n vertices. A set Z of at most k edges is said to
be an (ε, k)-separation if after removing Z, there exist two sets of vertices A,B of size at
least εn such that no vertex in A is connected to a vertex in B.

We will prove that for this weaker requirement, it suffices to have detectors at only a constant
(i.e., depending on ε, k and not the size of the graph) number of nodes. In particular, we
show
Theorem 2
A random set of O

(
k
ε log k

ε

)
nodes is with probability at least 1

2 a ‘detector set’ for all
(ε, k)-separations of the underlying graph G.

To prove this, we will bound the VC dimension of an appropriately defined range space and
then appeal to the sampling theorem (Thm. 1).

Denote the vertex set of the graph by V . Define a range space (V,R) with R ∈ R iff R
is a union of connected components of G \ Z, for a set Z of at most k edges. This choice
of R is critical. We will show that the VC dimension of this range space is at most 2k + 1,
in particular that no set of size 2k + 2 can be shattered. We will need the following simple
lemma.
Lemma 3
Suppose S is a set of 2l vertices in a connected graph G(V,E). Then there exist l pairwise
edge-disjoint paths P1, P2, . . . , Pl (in G) such that each vertex in S is an end-point of
precisely one of the Pi.

Proof: Consider l paths P1, P2, . . . , Pl in G such that each vertex in S is an endpoint of
precisely one of the Pi, and such that sum of lengths of the paths Pi is minimized. We claim
two paths Pi and Pj can have at most one vertex in common. This is because if say Pi
(end points i1, i2) and Pj (end points j1, j2) have two common vertices, we could find paths
from i1 to j1 and i2 to j2 with total length less than sum of lengths of Pi and Pj . This
contradicts the minimality of the sum of lengths of Pi. Thus Pi’s are pairwise edge-disjoint.
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It is now rather easy to see that no subset of V of size 2k+2 can be shattered. Consider
an S ⊆ V of size 2k + 2, and find paths P1, P2, . . . , Pk+1 as guaranteed by Lemma 3.
Suppose the endpoints of Pi are s2i−1, s2i. We claim that there is no R ∈ R such that R∩V
is {s1, s3, . . . , s2k+1}. R is in R implies there is a set Z of at most k edges such that R is
the union of some of the connected components of G \ Z. Now suppose s2i−1 is in R and
s2i is not (for all i). Then at least one edge of Pi must be in Z. Since Pi are edge disjoint,
it follows that |Z| ≥ k + 1, a contradiction.

This completes the proof of Theorem 2. We will now look at metric spaces and approx-
imate nearest neighbor searching, where a different notion of ε-net is used.

3 Nearest Neighbors in Metric Spaces

We start be recalling the definition of a metric space.

Definition 6 A metric space is defined by a pair (X, d), where X is a set of points and
d : X ×X → R+ ∪ {0} is a distance function that satisfies the following properties.

1. d(x, y) = d(y, x) for all x, y ∈ X

2. d(x, y) = 0 iff x = y

3. d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

Some typical examples of metric spaces are Rn with `p norm, shortest paths in graphs, and
so on.

The problem of Nearest neighbor searching in metric spaces is a central one, with lots
of applications. Formally the problem is the following: we are given a set of points A ⊆ X,
and a query point q. The goal is to find a point a ∈ A minimizing d(a, q). The aim of
course, is to do this in time much smaller than |A|, preferably polylog(|A|).

Later in this section we will see a 3-factor approximation algorithm due to [2] for this
problem. We will now define some of the terms needed to specify the algorithm and analyze
it.

3.1 ε-Nets in Metric Spaces and Dimension

Definition 7 Given a metric space (X, d), a subset Y of X is said to be an ε-net if

1. For a, b ∈ Y , we have d(a, b) ≥ ε.

2. For all x ∈ X, there exists an a ∈ Y such that d(x, a) < ε.

For every finite metric space X and every ε > 0, it is clear that there exists an ε-net. It
can easily be found by the following greedy algorithm: Start with a single point in the net
N . While there exists a point x ∈ X such that mina∈N d(a, x) > ε, add x to N , and repeat.
Clearly since X is finite this terminates, and we are left with an ε-net at the end. Using
Zorn’s lemma one can argue this even for infinite metric spaces, but we will not go into the
proof.
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Another ‘natural’ parameter of metric spaces is the dimension. For say Rd with any
`p norm, it is clear that the dimension is d, but how can one define it for arbitrary metric
spaces?

A first attempt would be to define the dimension using the intuition that |B(x, r)| ≈ rd,
where B(x, r) denotes the ball of radius r around the point x (i.e., the set of points at a
distance < r from x). A trouble with this is that the choice of r could critically affect the
value of the dimension. A notion that is more commonly used is the following.

Definition 8 (Doubling Dimension) The doubling dimension of a metric space (X, d) is
defined as the smallest k such that every subset S ⊆ X can be covered by 2k sets of diameter
at most half the diameter of S.

It can be shown that replacing the phrase ‘sets of diameter’ everywhere in the definition
above by ‘balls of radius’ would change the value by at most a factor of 2.1 Also, it is clear
that for the case of Rd, the doubling dimension is Θ(d).

Consider constant degree expanders, say d-uniform (α, d/2)-vertex expanders for some
constant α. Given such an expander on n vertices, we can show that the doubling dimension
of the metric space with the shortest path metric is Ω(log n). Another important notion in
metric spaces is that of the aspect ratio, which we define now.

Definition 9 Given a metric space (X, d), the aspect ratio ∆ is defined by

∆ =
Diam(X)

minx,y∈X d(x, y)

We now give a bound on the size of a metric space in terms of the aspect ratio and the
doubling dimension.

Lemma 4
Suppose (X, d) is a metric space with aspect ratio ∆ and doubling dimension m. Then

|X| ≤ ∆O(m).

Proof: We may assume w.l.o.g. that minx,y∈X d(x, y) = 1 (we can rescale d appropriately),
so the diameter is ∆. Thus X can be covered by at most 2m sets of diameter ∆/2. Repeating
this log ∆ times, we get X covered by at most 2m log ∆ sets of diameter < 1, and each such
set has at most one point. This gives the desired bound. 2

Note that this immediately implies that if the diameter of a metric space is D and
doubling dimension is m, the size of an ε-net is

(
D
ε

)O(m) (which exactly corresponds to the
natural grid in Rd). We now present the algorithm of [2].

3.2 A 3-factor Approximation to Nearest-Neighbor Search

We will assume the underlying metric space is (X, d), the set of points is S and the query
point is q. The algorithm will return a s ∈ S such that d(q, s) ≤ 3 mint∈S d(q, t). We also
assume that minx,y∈S d(x, y) = 1, and Diam(S) = ∆ = 2k (say).

1There is a technical issue here. If one needs B(x, r) ≤ 2dB(x, r/2) for all x, r, then this is no longer true.
All we say is that there are 2d balls (different centers) that cover B(x, r). See [2] for more on comparision
between notions of dimension.
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The algorithm maintains a data structure quite similar to quad-trees that are used in
orthogonal range searching. But one crucial difference is that a point not only maintains
children in it’s ‘cell’, but also some from neighboring cells.

More formally, we maintain ε-nets of different ‘scales’. Let Yi be a 2i-net for S, for
1 ≤ i ≤ k. Further, for y ∈ Yi, we maintain

Ly,i = {z ∈ Yi−1 : d(y, z) ≤ 7× 2i}

The 7 is for the analysis to work out. The algorithm, given a query point q is the following.

1. Set y to the unique point in Yk, and i = k.

2. Find the point in Ly,i that is closest to q (say this is z).

3. If d(q, z) > 3 × 2i−1, return the current y; else set y = z, decrement i and continue
with Step (2).

Theorem 5
The algorithm above gives a 3-factor approximation to the Nearest-neighbor problem.

Proof: We now proceed with the analysis. Suppose the algorithm returns y and i is the
value of the variable at that point. This means we have d(q, y) ≤ 3 × 2i, but d(q, Ly,i) >
3 × 2i−1. Suppose a is the true optimum, i.e., d(q, a) = mins∈S d(q, s). Consider the point
p in the 2i−1-net Yi−1 that is closest to a. We first argue that p ∈ Ly,i.

Clearly we have d(a, p) ≤ 2i−1. Thus d(p, y) ≤ d(p, a) + d(a, q) + d(q, y) ≤ d(p, a) +
2d(q, y), by definition of a. Combining with d(q, y) ≤ 3 × 2i, we get d(p, y) < 7 × 2i, thus
p ∈ Ly,i.

It is now easy to complete the argument. By the above and the fact that d(q, Ly,i) >
3 × 2i−1, it follows that d(q, a) ≥ d(q, p) − d(p, a) ≥ 3 × 2i−1 − 2i−1 ≥ 2i. This shows that
the algorithm gives a 3-approximation. 2

Observe that assuming the data structures (the Yi and Ly,i) are constructed, the query
time is just proportional to k, i.e., log ∆. This is because the Ly,i have a size dependent
just on the doubling dimension, which we assumed is a constant (however the dependance is
exponential in the dimension, which is a problem hard to avoid). The paper of [2] proceeds
to give a (1 + ε)-factor approximation, but we do not go into this.
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