
Scribe Notes

11/30/07

Lauren Hannah reviewed salient points from “Some Developments of the
Blackwell-MacQueen Urn Scheme” by Jim Pitman. The paper links exist-
ing ideas on Dirichlet Processes (Chinese Restaurant Process, stick breaking
construction, etc.) to the Poisson-Dirichlet distribution. Lauren reviewed
measure theory, described the Poisson-Dirichlet distribution, and reviewed
theorems from the paper. Peter Frazier then presented a novel extension
from a theorem in the paper to Dirichlet hyperparameters.

1 Measure theory review

E is a state space and E is a σ-algebra (a collection of subsets) on E if

• A ∈ E ⇒ E \ A ∈ E , i.e. the collection of subsets E is closed under
complements.

• A1, A2, . . . ∈ E ⇒
⋃∞

i=1 Ai ∈ E , i.e. the collection of subsets E is closed
under countable unions.

Examples

• E = {∅, E}, i.e. the trivial σ-algebra

• B(), i.e. the Borel σ-algebra generated by the collection of all open sets,
most often on the real line R, denoted by BR

(E, E) is a measurable space. µ is the function E 7→ R̄+ : [0,∞]. µ is a
measure if

• µ(∅) = 0
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• µ(
⋃

n An) =
∑

n µ(An) if all subsets Ai and Aj are pairwise disjoint
∀i 6= j.

1.1 Lebesgue Measure

R = length of interval. R2 = area. Usually denoted by Leb(A)

1.2 Dirac Measure

Dirac : δx(A) =

{
1 x ∈ A
0 x /∈ A

, i.e. a point measure [or delta measure] at

point x.

2 Random measures

Recall that a random variable X is defined as a [deterministic] function that
maps the outcome to a state space, e.g. X = f : Ω 7→ R. Assume state space
(E, E) and outcome [or sample] space (Ω,H). M : Ω× E 7→ R̄+ is a random
measure if

• For fixed A ∈ E , ω 7→ M(ω,A) is a random variable.

• For fixed ω ∈ Ω, A 7→ M(ω,A) is a measure on E.

To understand the equations above it helps to temporarily drop all notions
of randomness. In a purely deterministic world, we have two subsets ω and
A. We assign a mapping from ω, a “state of the world” to A, our subset of E ,
the σ-algebra on the state space that we care about in a random experiment.
Furthermore, we additionally have another function M(ω,A) that maps any
combination of ω and A to the positive portion of the real line, R̄+. In formal
measure-theory terms, M is a transition kernel from the product space Ω×E
to R̄+. See figs. 1, 2, and 3.

“Randomness” comes about by stating that some other agent fixed ω in
advance, yielding the observed A and corresponding M(ω,A). 1

1or rather, as Prof. Cinlar likes to say, the Greek Goddess of chance, Tyche, fixes ω
for you. “Doesn’t it seem unnecessarily complex and unproductive to describe the source
of randomness in a model through ω and then map it to another variable of interest, A?
Why not just represent probabilities, etc. directly on the values of the variable of interest,
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Figure 1: Fixing ω ∈ Ω. The resulting cdf of M(ω, ·) on (E, E) is depicted
here. The cdf is a deterministic measure dependent on ω.
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Figure 2: Fixing A ∈ E . The area of A is a random variable dependent on
the underlying measure, which itself depends on ω.
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Figure 3: Fixing A ∈ E . Let M(ω,A) = Poisson(λ). The measure of A
[# dots in A, here 4] is a Poisson randomly distributed variable. The dot
pattern on E is a realization of outcome ω.

An example of a random measure that we’ve seen is a Dirichlet Random
Measure DRM. In a DRM, realizations of M are almost surely purely atomic
measures on E. Fixing ω while varying A, we obtain a R̄+-valued scalar
M(ω,A) for each A ∈ E , which is a deterministic measure, here a probability
distribution, on (E, E). This would look like fig. 4. Similarly [as is often
done in Poisson random measures, although not commonly with Dirichlet
Processes] we can isolate a specific subset A ∈ E , i.e. restrict ourselves to

e.g. through a probability density function?” Well, the relationship between states of
the world and experiment realizations may be more complicated than just a 1:1 bijection,
e.g. consider an experiment where the cardinality of H and E differ substantially: many
states of the world influencing the outcome of a binary-valued variable of interest vs. only
two states of the world influencing the outcome. As more complex issues arise, one finds
additional comforts modeling a random experiment in a measure-theoretical terms. Joint
probabilities and conditional expectations may be interpreted as the sequential composi-
tion of functions, mapping a value from one space to another, and to the next, and so
on. Thus, by positing the existence of ω c. 1920, the forefathers of probability theory
(Kolmogorov et al.) allowed us to retain deterministic tools of math to analyze seemingly
random or undeterministic systems. Flowery notions of “chance” and “dice throws” were
violently usurped, seemingly overnight, by the strict formalism of measure theory and
calculus - the very elements of probability theory as we know them today. One can only
imagine the bewilderment of haggardly gambling-types upon initial confrontation with a
presumably equally-bewildered camp of geeky Russian mathematicians. This mixing phe-
nomenon still resonates within the halls of the Princeton Graduate School, a.k.a “Where
the Nerd World Meets the Third World.”
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Figure 4: DRM realization fixing ω ∈ Ω. Discrete stick-valued probability
atoms sitting on A ∈ E having

∑
= 1.
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Figure 5: Fixing A ∈ E .
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only a portion of our state space, while varying ω. This yields a R̄+-valued
scalar random variable ω 7→ M(ω,A). See fig. 5.

3 Poisson random measures

Let ν be a measure on (E, E). A random measure N is a Poisson random
measure with mean measure ν if

• A ∈ E , N(A) is a Poisson random variable.

• P(N(A) = k) =
e−ν(A)(ν(A))k

k!

• when A1, A2, . . . , An are disjoint then random variables N(A1), N(A2), . . . , N(An)
are independent.

Examples of Poisson random measures
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Figure 6: Poisson arrival process.
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Figure 7: Compound Poisson Process.
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• Poisson Process. See fig. 6. T1 ∼ exp(λ). The number of arrivals in
each disjoint subinterval of time space is independent. A is an arbitrary
subset, e.g. A = {(Xi, Γi) : Γ2

i > Xi − 2}.

• Compound Poisson Process. See fig. 7. Xi Poisson, Γi ⊥⊥ gamma dis-
tributed. A is a region of the x-y space. # dots in A ∼ Poisson(

∫
A

dtλdxax−1e−cx),
or in other words, a Poisson random variable with parameter p where
p is the integral of the mean measure over the region A. Here, A ∈
[0,∞]× [0,∞], i.e. a Lebesgue measure on x-axis [time] and a gamma
measure on the y-axis [a value]. For a pictoral understanding of the
y-axis, see fig. 8.

4 Theorems from the paper

We now review some theorems from the paper.

4.1 Theorem 1 and 2

Let (Xn) be a sample from F . Then

F |X1, . . . , Xn ∼ Dirichlet(µn)

µn = µ +
n∑

i=1

δ(xi)

Measure 0 < µ(S) < ∞, ν =
µ

θ
, θ = µ(S).

Note: here, µ = αG0 from before.

4.2 Theorem 3

Let Γ(1) > Γ(2) > . . . be the points of a Poisson random measure on (0,∞)
with mean measure θx−1e−xdx. To further aid our understanding of what
a gamma measure might look like, we isolate the y-axis from fig. 7 above.
Plotting the y-values now horizontally, we observe a dense clustering of points
[raindrops] nearer the origin, thinning out as x →∞. See fig. 8. If we were
to count the # of points falling in each subinterval of the x-axis, or in other
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Figure 8: y-values, Γi in fig. 7 are reordered and labeled Γ(i), here plotted
horizontally. The dotted line, the resulting pdf of Γ(i) is a gamma distribu-
tion.

words integrating mean measure θx−1e−xdx over subintervals [0, ε] and [ε,∞]
we get ∫ ∞

ε

θx−1e−xdx ≤ θ

ε

∫ ∞
ε

e−xdx < ∞. (1)∫ ε

0

θx−1e−xdx ≥ θe−ε

∫ ε

0

1

x
dx = ∞. (2)

(1) reveals that there are a finite # of points as x → ∞ while (2) reveals
that there an infinite # of points on [0, ε]. Note that the ∞ on the right-
hand side of (2) does not render the measure invalid since we are not using
the Lebesgue measure but instead the gamma measure. Also note that θx−1

gives us (1) ⇒ (2) since as x →∞ the mean measure θx−1e−xdx → 0 [i.e. the
intensity of “rain drops” decreases]. Peter illustrated how we would simulate
these raindrops on a computer:

1. Choose an interval of the x-axis [ε,∞]. For example, [1,∞].

2. To determine the # of points in the subinterval, draw a sample N
from a Poisson distribution with rate θx−1e−xdx. That is, compute
N =

∫∞
1

θx−1e−xdx. Let’s assume that N = 3.

3. Obtain the x-values for these N points by taking N # of samples from
this gamma distribution, conditioned on the interval [1,∞]. Here, we
sample 3 values from the conditional gamma distribution. We then
plot the 3 points along the x-axis at those values.
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4. Choose the interval of the x-axis [
ε

2
, ε), e.g. [

1

2
, 1). Repeat step 2.

As ε → 0, we achieve our x-axis raindrop plot as depicted above. Thus, the
density parameter θx−1 controls both the number of points and location of
points in each subinterval. Generating a sequence of (xi, yi) values using the
recipe above for yi while drawing xi ∼ exp(λ) yields the Compound Poisson
process depicted above.

D. Blei provided some intuition on relating the θ parameter in this Com-
pound Poisson process with the α parameter as we traditionally have seen
it. θ, α large = more points having a smaller height. In fig. 7 this would
correspond to many raindrops clustered around y = 0 which, in a Dirichlet
stick-breaking figure, looks like many low-probability stick lengths spread
out evenly along the x-axis. θ, α small = fewer points having a larger height.
In fig. 7 this would correspond to fewer raindrops around y = 0 and more
raindrops around higher y-values which, in fig. 4 , would look like a few
highly-varying probability stick lengths with a larger degree of clustering.
Continuing with the theorem, put

Pi =
Γ(i)

Σ
, Σ =

∞∑
i=1

Γ(i)

Finally, define

F =
∞∑
i=1

Piδ(X̂i) (3)

where the X̂i are i.i.d. (ν), independent also of the Γ(i). It may be worth
nothing that we only use the Poisson random measure to generate the gamma
random variables (rather than just drawing gamma random variables) to
get an ordering of the gamma random variables. Otherwise, try to answer
the question: have we drawn the largest random variable yet? The second
largest? etc. Then F has Dirichlet(θν) distribution, independently of Σ
which has gamma(θ) distribution.

How does a gamma distribution emerge from a Poisson random measure?
Specifically, how do we have Σ ∼ gamma(θ, 1)? Let

f(x) = x
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And

Nf =

∫
R̄+

f(x)N(ω, dx) [dx is a measure]

=

∫ ∞
0

x(
∞∑
i=1

1Γi
(dx))

Then

Ee−rΣ = Ee−rNf (4)

= exp

(
−
∫ ∞

0

dxθx−1e−x(1− e−rx)

)
(5)

= exp(−θ log(1 + r)) (6)

=

(
1

1 + r

)θ

⇒ Nf ∼ gamma(θ, 1) (7)

Note: 4⇒ 5 is a property of Poisson random measure, Ee−rNf = exp
(
−
∫

ν(1− e−rf )
)
.

Thus using this setup we are able to order our stick breaks such that they
follow a gamma distribution. Each data point Xi has an associated value
Γi drawn from a Poisson random measure with mean measure θx−1e−xdx.
Reordering Γi yields a gamma distribution with scale parameter θ as a re-
sult as shown in eqn. 7. Integrating Γ(i) over ω ∈ Ω and normalizing such
that

∑
= 1 gives the posterior probability stick-lengths. The scale of the ob-

tained gamma distribution θ is exactly the hyperparameter α of the posterior
Dirichlet distribution.

5 Theorem 5

[Definition 4 and 6, as well as Theorem 5 and associated corollaries from the
paper were written].

6 Species sampling

We demonstrate how the previous definition can be applied to species sam-
pling models. First, let
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(Pi) be the frequencies (of each species);

(X̂i) be the tags (of each species);

Xn be the species of the nth observation;

X̃j be the jth species to be observed;

Njn be the number of times the jth species appears in the sample X1, . . . , Xn,
i.e.
∑n

m=1 1(Xm = X̃j);

Kn be the number of distinct species in the first n observations, i.e. max{j |Njn > 0}.

Further assume that ν is drawn from a uniform distribution U [0, 1]. Using
the Blackwell-MacQueen prediction rule, the predictive distribution can be
written as

P(Xn+1 ∈ A |X1, . . . , Xn, Kn = k) =
k∑

j=1

Njn

n + θ
1(X̃j ∈ A) +

θ

n + θ
ν(A). (8)

Observe that the terms
Njn

n+θ
and θ

n+θ
can be seen as functions of the partition.

This leads to generalizations of Equation 8 wherein the aforementioned terms
are replaced by other functions of the partition.

Define
Nn ≡ (N1n, N2n, . . .) ≡ (n1, . . . , nk) ≡ n,

and

pj(n) = P(Xn+1 = X̃j |Nn = n) 1 ≤ j ≤ k(n) + 1 (9)

P(X1 ∈ A) = ν(A). (10)

With these definitions in place, (Xn) now has a distribution determined by
pj(n). The Blackwell-MacQueen rule can then be seen as a special case of
this formulation, with

pj(n) =
nj

n + θ
1(1 ≤ j ≤ k) +

θ

n + θ
1(j = k + 1) (11)

A statement about this more general case is given by Proposition 11. It
assumes that

1. (Xn) is an exchangeable sequence;
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2. (Xn) obeys the predictive rules given by Equation 9 and Equation 10.

Then the predictive distribution converges (in total variation norm) a.s. as
n →∞ to

F =
∑

j

P̃jδ(X̃j) +

(
1−

∑
j

P̃j

)
ν, (12)

where X̃j is drawn i.i.d. from ν and

P̃j = lim
n→∞

Njn

n
. (13)

This proposition implies that

• the number of values may be finite;

• F is almost surely discrete iff
∑

j P̃j = 1;

• the form of F is not specified.

7 Exchangeable partition probability functions

(EPPFs)

Let [n] = {1, . . . , n} be partitioned into k non-empty subsets A1, . . . , Ak. If
(Xn) is exchangeable then

P

(
k⋂

j=1

(Xl = X̃j,∀l ∈ Aj)

)
= p(#A1, . . . , #Ak), (14)

where p is symmetric and #Aj denotes the number of elements of Aj. p is
called the exchangeable partition probability function (EPPF) derived from
the exchangeable sequence (Xn). Now denote

n = (n1, . . . , nk, 0, 0, . . .) (15)

nj+ = (n1, . . . , nj + 1, . . . , nk, . . .). (16)

An EPPF must then satisfy

p(1) = 1 (17)

p(n) =

k(n)+1∑
j=1

p(nj+). (18)
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Therefore, a p defined in such a way is an EPPF of an exchangeable sequence
(Xn). Such a p can thus be used to define the predictive rules given in
Equation 9 and Equation 10 in such a way as to satisfy the condition for
Proposition 11(Equation 12). The pj governing the prediction rule can be
written in terms of p as

pj(n) =
p(nj+)

p(n)
1 ≤ j ≤ k(n) + 1, p(n) > 0. (19)

The previous statement can be clarified by Proposition 13,

Corresponding to each pair (p, ν) where p is an EPPF and ν is a
diffuse probability distribution, there is a unique distribution for
a sampling sequence (Xn) such that p is the EPPF of (Xn) and
ν is the distribution of X1.

The implication of all this is the stronger Theorem 14 which states that

Given a diffuse probability distribution ν and a sequence of func-
tions pj which satisfy Equation 15 and Equation 16, let (Xn) be
a sequence governed by Equation 9 and Equation 10. (Xn) is
exchangeable iff there exists a non-negative, symmetric function
p defined such that Equation 19 holds. Then (Xn) is a sample
from F as in Equation 12 and the EPPF of (Xn) is the uniquely
p.

Finally, we can once again return to the Blackwell-MacQueen Urn Scheme
we are familiar with. For a given θ, we can write the EPPF pθ as

pθ(n) =
θk−1

∏k
i=1(ni − 1)!

[1 + θ]n−1

, (20)

where [x]m =
∏m

j=1(x + j − 1). The result of Theorem 14 is that pθ is the
EPPF of a sample from a Dirichlet process with parameter θν.
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