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Grouped Data

Let’s consider grouped data, which is drawn from a mixture model, and share mixture
components between groups. Although the data are separated into groups, there are a
underlying links between data so that the data ”shares statistical strength”. This setting is
consistent with the setting of ”transfer learning”, where learning the statistic in one group
enhance the learning in another group.

An example of grouped data is from the field of information retrieval (IR) of modeling of
relationships among sets of documents. A document can be commonly viewed as a collection
of words. It is also common to view the words in a document as arising from a number of
latent clusters or ”topics, where a topic is generally modeled as a multinomial probability
distribution on words from some basic vocabulary. Finally, topics are usually shared among
the documents in the corpus. As a second example, consider a set of images, each image
can also be view as a collection of pixels, patches, or features. It’s also common to view
each of them as a drawn from a number of hidden topics. Finally, topics are shared among
the set of images as well.

Hierarchical Dirichlet Process

Data generated from Hierarchical Dirichlet Process (HDP) mixture models exactly satisfy
the grouped data characteristic described above. From the graphical model of HDP mixture
models shown in 1(a), we know HDP is built on multiple DPs. By adding one more level
of DP over G0, HDP enables data in groups to share countable infinite cluster identities
and to exhibit unique cluster propositions. But why is the second level of DP important
to guaranty sharing clusters among groups? Let’s consider a naive multiple DPs mixture
models without the second level of DP (in figure 1(b)). The model models each group as
DP mixture and each DP shares the same concentration parameter α and base measure
G0. However, this model doesn’t allow groups to share cluster identities when G0 is not a
discrete distribution. By simply adding a second level of DP over G0 with concentration
parameter γ and base measure H , HDP guaranties the discreteness of G0. Therefore, HDP
mixture models yields exactly the grouped data characteristic.

Chinese restaurant franchise(CRF)

In this section we describe an analog of the Chinese restaurant process (CRP) for hierarchical
Dirichlet processes which we refer to as the Chinese restaurant franchise. Consider each
restaurant serves a group of costumers and all restaurants of the franchise share the same
menu of dishes. This is exactly the same setting as grouped data where costumers having
the same dishes across restaurants is the analog of data sharing the same cluster identities
across groups. In another way, we can imagine HDP as two level of CRP as in figure 2.
At the first level, the table assignment θji

1 of costumer i in restaurant j is drawn from

1Notice each integer i around tables of group j in Figure 2(a) represent θji
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Figure 1: Graphical model representation of an HDP mixture models(a), and an naive
multiple DPs mixture models (b).

CRP with parameter α and Gj . Since Gj is drawn from DP (γ,H) in the HDP model, the
dishes θ∗jt of restaurant j and table t can be model as drawn from the second level CRP
with parameter γ and H. And θ∗∗ is a unique dish/identity in second level CRP.

Notice that, in CRF model, dishes in different tables might be the same in each group.
For example, in figure 2(b), θ∗23 and θ∗21 share the same dish/identity θ∗∗1 . This is different
from CRP model when different tables represent different cluster identity. However, in CRF,
the probability of the next costumer having dish d (no matter in what table) is the same as
if there is a big table merging all the customers having dish d in different tables. Therefore,
dish index works as the cluster identity in each group of CRF model, compares to table
index works as cluster identity in CRP model. The subtlety further makes HDP have two
different stick-breaking constructions which will be discussed in the following section.

The stick-breaking construction

The HDP construction can also be represented in the stick-breaking interpretations as

β ∼ GEM(γ)

θ∗∗i ∼ H

G0 =

∞
∑

i=1

βiδ(θ
∗∗

i )

πj ∼ GEM(α)

θ∗ji ∼ G0
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Figure 2: Chinese restaurant franchise representation of HDP. Each group as a 1st level
CRP in (a). 2nd level CRP in (b).

Gj =

∞
∑

i=1

πjiδ(θ
∗

ji) . (1)

Because G0 has support at the points θ∗∗i , Gj has support at these points as well, and
therefore can also be written as

Gj =
∞
∑

i=1

ωjiδ(θ
∗∗

i ) . (2)

Since Gj ∼ DP(α,G0), then for a measurable partition (A1, . . . , Ar) of Θ

(Gj(A1), . . . , Gj(Ar)) ∼ Dir(αG0(A1), . . . , αG0(Ar)) (3)

Therefore, if for l = 1, . . . , r let Il = {i : θ∗∗i ∈ Al}

(

∑

i∈I1

ωji, . . . ,
∑

i∈Ir

ωji

)

∼ Dir

(

α
∑

i∈I1

βi, . . . , α
∑

i∈Ir

βi

)

(4)

Hence, ωj ∼ DP(α, β).
The random probability measure ωj is also produced with the stick-breaking construc-

tion

ω′

ji ∼ beta

(

αβi, α

(

1 −

i
∑

l=1

βl

))

ωji = ω′

ji

i−1
∏

l=1

(1 − ω′

jl) , (5)

and also by
ωji ∼ beta(αβi, α(1 − βi)) . (6)

To arrive at eq. 6 and eq. 5, note that for partition (1, . . . , i − 1, i, i + 1, i + 2, . . .) by eq. 4

( i−1
∑

l=1

ωjl, ωji,

∞
∑

l=i+1

ωjl

)

∼ Dir

(

α

i−1
∑

l=1

βl, αβi, α

∞
∑

l=i+1

βl

)

(7)
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Figure 3: Random draw for β and γ. The top row shows 9 draws for β for γ of 0.4, 1.2 and
3.6. Below each draw of β, 4 draws for ω are show given the draw of β.

Eq. 6 follows by standard properties of Dirichlet distribution. Also by standard properties
of Dirichlet distribution,

(

ωji

1 −
∑i−1

l=1 ωjl

,

∑

∞

l=i+1 ωjl

1 −
∑i−1

l=1 ωjl

)

∼ Dir

(

αβi, α

∞
∑

l=i+1

βl

)

. (8)

Then defining,

ω′

ji =
ωji

1 −
∑i−1

l=1 ωjl

, (9)

and therefore,

ωji = ω′

ji

i−1
∏

l=1

(1 − ω′

jl) . (10)

Together with

1 −

i
∑

l=1

βl =

∞
∑

l=i+1

βl (11)

arrive at eq. 5.
The concentration parameters γ, α and the baseline probability measure H are the

hyperparameters of an HDP. For small values of γ, the mass is concentrated on a few atoms
of H, as the value of γ increases, mass shifts away to be more spread out. This can be
observed on the top row of figure 3 with draws for different values of γ. Similarly, for small
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Figure 4: A Graphical representation of the HDP-HMM model.

values of α, mass is concentrated on few atoms of G0, and as it increases the mass is less
concentrated and more spread out. Since the distribution of G0 is govern by the parameter
γ, the parameter α can be interpreted as a refinement of the concentration on H set by γ.
This can be seen in figure 3 with draws of ω for different values of α given a particular draw
of β.

To formulate the HDP mixture model in the stick-breaking representation, let θji be the
factors corresponding to a single observation xij, and let :

θji ∼ Gj

xji ∼ F (θji)

where F (θji) denotes the distribution of the observation xji.

Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM)

One application of the HDP model is to construct a variant of the Hidden Markov Model
(HMM) that is not restricted to a fixed number of states. In the HMM model, a sequence
of multinomial state variables (z1, z2, . . . , zT ) is linked through a state transition matrix.
Each row of the state transition matrix describes the mixing proportions of the choice of
following state value (zt+1) for a particular current state zt. In he HMM model, the number
of states is fixed, and therefore the transition matrix is fixed in size, in the HDP-HMM
model, the number of states is unbounded, and so is the size of matrix, see figure 5. The
observations (x1, x2, . . . , xT ) are independent conditional on zt. Figure 4 shows a graphical
representation of the HDP-HMM model.

The model can be describe as follows :

β|γ ∼ GEM(γ)

πk|α0, β ∼ DP (α0, β)

φk|H ∼ H (12)

for all k. The state transition distribution at time step t,

zt+1|zt, (πk)
∞

k=1 ∼ πzt

(13)
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Figure 5: A view of the state transition matrix P (Zt+1|Zt) of the HDP-HMM. A row of the
transition matrix indexed by the value zt represents the distribution for Zt, the state at the
next time step. In contrast to the classical HMM, in HDP-HMM the number of states is
unbounded.

and the observation distribution at time step t,

xt|zt, (φk)∞k=1 ∼ F (φzt) (14)

.
The resulting HDP-HMM is a strongly connected automata with countably infinite

number of states. However its strength lies in the fact that the base distribution for all of
the state transition distributions is shared. Because of this, all of the transition distributions
can be viewed as refinements of a common transition distribution, resulting in models that
favor fewer common states.

The model parameters are γ, α0, and H. Intuitively, the parameter γ influences how
concentrated is the distribution over states in the model. The parameter α0 influences the
tendency of each transition distribution to be focused on reaching a few other states. The
parameter H is the distribution over priors for the observation distributions.
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