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Abstract

We show that the beta process is the de Finetti mixing distribution underlying the Indian
buffet process of [2]. This result shows that the beta process plays the role for the Indian buffet
process that the Dirichlet process plays for Chinese restaurant process, a parallel that guides us
in deriving analogs for the beta process of the many known extensions of the Dirichlet process.
In particular we define Bayesian hierarchies of beta processes and use the connection to the beta
process to develop posterior inference algorithms for the Indian buffet process. We also present
an application to document classification, exploring a relationship between the hierarchical beta
process and smoothed naive Bayes models.
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1 Introduction

Mixture models provide a well-known probabilistic approach to clustering in which the data are
assumed to arise from an exchangeable set of choices among a finite set of mixture components.
Dirichlet process mixture models provide a nonparametric Bayesian approach to mixture modeling
that does not require the number of mixture components to be known in advance [1]. The basic
idea is that the Dirichlet process induces a prior distribution over partitions of the data, a distri-
bution that is readily combined with a prior distribution over parameters and a likelihood. The
distribution over partitions can be generated incrementally using a simple scheme known as the
Chinese restaurant process.

As an alternative to the multinomial representation underlying classical mixture models, facto-
rial models associate to each data point a set of latent Bernoulli variables. The factorial represen-
tation has several advantages. First, the Bernoulli variables may have a natural interpretation as
“featural” descriptions of objects. Second, the representation of objects in terms of sets of Bernoulli
variables provide a natural way to define interesting topologies on clusters (e.g., as the number of
features that two clusters have in common). Third, the number of clusters representable with m
features is 2m, and thus the factorial approach may be appropriate for situations involving large
numbers of clusters.

As in the mixture model setting, it is desirable to consider nonparametric Bayesian approaches
to factorial modeling that remove the assumption that the cardinality of the set of features is known
a priori. An important first step in this direction has been provided by Griffiths and Ghahramani
[2], who defined a stochastic process on features that can be viewed as a factorial analog of the
Chinese restaurant process. This process, referred to as the Indian buffet process, involves the
metaphor of a sequence of customers tasting dishes in an infinite buffet. Let Zi be a binary vector
where Zi,k = 1 if customer i tastes dish k. Customer i tastes dish k with probabilitymk/i, wheremk

is the number of customers that have previously tasted dish k; that is, Zi,k ∼ Ber(mk/i). Having
sampled from the dishes previously sampled by other customers, customer i then goes on to taste an
additional number of new dishes determined by a draw from a Poisson(α/i) distribution. Modulo
a reordering of the features, the Indian buffet process can be shown to generate an exchangeable
distribution over binary matrices (that is, P (Z1, . . . Zn) = P (Zσ(1), . . . Zσ(n)) for any permutation
σ).

Given such an exchangeability result, it is natural to inquire as to the underlying distribution
that renders the sequence conditionally independent. Indeed, De Finetti’s theorem states that the
distribution of any infinitely exchangeable sequence can be written

P (Z1, . . . Zn) =

∫

[

n
∏

i=1

P (Zi|B)

]

dP (B),

where B is the random element that renders the variables {Zi} conditionally independent and where
we will refer to the distribution P (B) as the “de Finetti mixing distribution.” For the Chinese
restaurant process, the underlying de Finetti mixing distribution is known—it is the Dirichlet
process. As this result suggests, identifying the de Finetti mixing distribution behind a given
exchangeable sequence is important; it greatly extends the range of statistical applications of the
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exchangeable sequence.
In this paper we make the following three contributions:

1. We identify the de Finetti mixing distribution behind the Indian buffet process. In particular,
in Sec. 4 we show that this distribution is the beta process. We also show that this connection
yields a two-parameter generalization of the Indian buffet process. While the beta process
has been previously studied for its applications in survival analysis, this result shows that it
is also the natural object of study in nonparametric Bayesian factorial modeling.

2. In Sec. 5 we exploit the link between the beta process and the Indian buffet process to provide
a new algorithm to sample beta processes.

3. In Sec. 6 we define the hierarchical beta process, an analog for factorial modeling of the
hierarchical Dirichlet process [9]. The hierarchical beta process makes it possible to specify
models in which features are shared among a number of groups. We present an example of
such a model in an application to document classification in Sec. 7, where we also explore the
relationship of the hierarchical beta process to naive Bayes models.

2 The beta process

The beta process was defined by Hjort [3] for applications in survival analysis. In those applications,
the beta process plays the role of a distribution on functions (cumulative hazard functions) defined
on the positive real line. In our applications, the sample paths of the beta process need to be
defined on more general spaces. We thus develop a nomenclature that is more suited to these more
general applications.

Definition. A beta process B ∼ BP(c,B0) is a distribution on positive random measures over
a space Ω (e.g., R). The beta process has two parameters: c is a positive function over Ω that we
call the concentration function, and B0 is a fixed measure on Ω, called the base measure. In the
special case where c is a constant it will be called the concentration parameter.

A beta process is a particular kind of independent increment process, or Lévy process:

S ∩R = ∅ =⇒ B(S) and B(R) are independent.

The Lévy-Khinchine theorem [4, 6] states that a Lévy process is characterized by its Lévy measure.
The Lévy measure of the beta process BP(c,B0) is:

ν(dω, dp) = c(ω)p−1(1− p)c(ω)−1dpB0(dω). (1)

The Lévy measure has the following elegant interpretation. It is a measure on Ω× [0, 1], where Ω
is a space of atoms, and [0, 1] is the space of weight associated with these atoms. To draw B from
the beta process distribution, draw a set of points (ωi, pi) ∈ Ω× [0, 1] from a Poisson process with
base measure ν (see Fig. 2), and let:

B =
∑

i

piδωi
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Figure 1: Top. A beta process is a random discrete measure, a collection of atoms with random
locations and weight. The top figure shows a measure sampled from a beta process, along with the
corresponding cumulative distribution function. Bottom. 100 samples from this measure, one per
line. Samples are sets of points, obtained by including each point independently with probability
given by the weight of the measure at that point.

which implies

B(S) =
∑

i:ωi∈S

pi

for all S ∈ Ω. As this representation shows, B is discrete (with probability one). Note, however,
that because ν has infinite mass near b = 0, the Poisson process will generate infinitely many
points with small weight.

When the base measure B0 is discrete: B0 =
∑

i qiδωi
, then B has atoms at the same locations

B =
∑

i piδωi
with pi ∼ Beta(c(ωi)qi, c(ωi)(1 − qi)). This imposes qi ∈ [0, 1]. If B0 is mixed

discrete-continuous, B is the sum of the two independent contributions.

3 The Bernoulli process

Definition. Let B be a measure on Ω. We define a Bernoulli process with hazard measure B,
written X ∼ BeP(B), as follows. If B is continuous, X is simply a Poisson process with intensity
B, which we represent as a sum of delta functions at the jumps of the sample path. If B is discrete,
then B =

∑

i piδωi
then X =

∑

i biδωi
where the bi are independent Bernoulli variables with the

probability that bi = 1 equal to pi. A Bernoulli process is also a particular kind of Lévy process.
As for the beta process, a Bernoulli process with mixed discrete-continuous measure is the sum of
the two independent contributions.

We can intuitively think of Ω as a space of potential “features,” and X as an object defined by
the features it possesses. The random measure B encodes the probability that X possesses each
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particular feature. In the Indian buffet metaphor, X is a customer and its features are the dishes
it tastes.

Conjugacy. Let B ∼ BP(c,B0), and let Xi|B ∼ BeP(B) for i = 1, . . . n be n independent
Bernoulli process draws from B. Let X1...n denote the set of observations {X1, . . . , Xn}. Refor-
mulating a result of Hjort [3] using the language of Bernoulli processes, the posterior distribution
of B after observing X1...n is still a beta process with modified parameters:

B|X1...n ∼ BP

(

c+ n,
c

c+ n
B0 +

1

c+ n

n
∑

i=1

Xi

)

. (2)

That is, the beta process is conjugate to the Bernoulli process.

4 Connection to the Indian buffet process

We now present the connection between the beta process and the Indian buffet process. The
first step is to marginalize out B to obtain the marginal distribution of X1. Independence of
X1 on disjoint intervals is preserved, so X1 is still a Bernoulli process, and its expectation is
E(X1) = E(E(X1|B)) = E(B) = B0, so its hazard measure is B0.

1

Combining this with Eq. (2) and using P (Xn+1|X1...n) = EB|X1...n
P (Xn+1|B) gives us the

following formula, which we rewrite using the notation mn,j , the number of customers among X1...n

having tried dish ωj :

Xn+1|X1...n ∼ BeP

(

c

c+ n
B0 +

1

c+ n

n
∑

i=1

Xi

)

(3)

= BeP





c

c+ n
B0 +

∑

j

mn,j

c+ n
δωj



 . (4)

To make the connection to the Indian buffet process let us first assume that c is a constant and
B0 is continuous with finite total mass B0(Ω) = γ. Observe what happens when we generate X1...n

sequentially using Eq. (4). Since X1 ∼ BeP(B0) and B0 is continuous, X1 is a Poisson process with
intensity B0. In particular, the total number of features of X1 is X1(Ω) ∼ Poi(γ). This corresponds
to the first customer trying a Poi(γ) number of dishes.

Separating the base measure of Eq. (3) into its continuous and discrete parts, we see that Xn+1

is the sum of two independent Bernoulli processes: Xn+1 = U+V where U ∼ BeP(
∑

j
mn,j

c+n
δωj

) has

an atom at ωj (tastes dish j) with independent probability
mn,j

c+ n
and V ∼ BeP( c

c+n
B0) is a Poisson

process with intensity c
c+n

B0, generating a Poi

(

cγ

c+ n

)

number of new features (new dishes).

This is a two-parameter (c, γ) generalization of the Indian buffet process of Griffiths and Ghahra-
mani, which we recover when we let (c, γ) = (1, α). We call c the concentration parameter and γ

1We show that E(B) = B0 in the Appendix.
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Figure 2: Draws from a beta process with concentration c and uniform base measure with mass γ,
as we vary c and γ. For each draw, 20 samples are shown from the corresponding Bernoulli process,
one per line.

the mass parameter. The customers together try a Poi(nγ) number of dishes, but because they

tend to try the same dishes the number of unique dishes is only Poi
(

γ
∑n−1

i=0
c

c+i

)

, roughly

Poi

(

γ + γc log(
c+ n

c+ 1
)

)

. (5)

This quantity becomes Poi(γ) if c→ 0 (all customers share the same dishes) or Poi(nγ) if c→ ∞
(no sharing), justifying the name concentration. The effect of c and γ is illustrated in Fig. 2.

5 An algorithm to generate beta processes

Eq. (2) shows that the weight pj of an atom at location ωj that has been sampled at least once,
that is for which mn,j > 0, is beta-distributed:

pj |X1...n ∼ Beta(mn,j , c+ n−mn,j)

If we draw pj as soon as we observe ωj , that is when mn,j = 1, we obtain the following algorithm
to build B. Call B̂n the approximation of B obtained after n steps of this algorithm, starting with
B̂0 = 0. At each step n ≥ 1:

• sample Kn ∼ Poi( cγ
c+n−1),

• sample Kn new locations ωj from 1
γ
B0 independently,
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• sample their weight pj ∼ Beta(1, c+ n− 1) independently,

• B̂n = B̂n−1 +
∑Kn

j=1 pjδωj
.

B̂n is justified as an approximation of B since limn→∞ B̂n = B with probability one. The
expected mass added at step n is E(B̂n(Ω)− B̂n−1(Ω)) = cγ

(c+n)(c+n−1) , and the expected remaining

mass after step n is E(B(Ω)− B̂n(Ω)) = cγ
c+n

.
Other algorithms exist to build approximations of beta processes. The Inverse Levy Measure

algorithm of Wolpert and Ickstadt [10] is very general and can generate atoms in decreasing order of
weight, but requires inverting the incomplete beta function at each step, which is computationally
intensive. The algorithm of Lee and Kim [5] bypasses this difficulty by approximating the beta
process by a compound Poisson process but requires a fixed approximation level. This means that
their algorithm only converges in distribution.

Our algorithm is a simple and efficient alternative. It is closely related to the stick-breaking
construction of Dirichlet processes [8], in that it generates the atoms of B in a size-biased order.

6 The hierarchical beta process

The parallel with the Dirichlet Process leads us to consider hierarchies of beta processes in a manner
akin to the hierarchical Dirichlet processes of [9]. To motivate our construction, let us consider the
following application to document classification (to which we return in Sec. 7).

Suppose that our training data X is a list of documents, where each document is classified
by one of n topics. We model a document by the set of words it contains. In particular we do
not take the number of appearances of each word into account. We assume that document Xi,j is

generated by including each word ω independently with a probability pj
ω specific to topic j. These

probabilities form a discrete measure Aj over the space of words Ω, and we put a beta process
BP(cj , B) prior on Aj .

If B is a continuous measure, implying that Ω is infinite, with probability one the Aj ’s will
share no atoms, an undesirable result in the practical application to documents. For topics to share
words, B must be discrete. On the other hand, B is unknown a priori, so it must be random. This
suggests that B should itself be generated as a realization of a beta process. We thus put a beta
process prior BP(c0, B0) on B. This allows sharing of statistical strength among topics.

In summary we have the following model, whose graphical representation is shown in Fig. 3.

Baseline B ∼ BP(c0, B0)

Topics Aj ∼ BP(cj , B) ∀ j ≤ n (6)

Documents Xi,j ∼ BeP(Aj) ∀ i ≤ nj

We want to perform posterior inference in this model. In particular to classify a new document Y
we need to compare its probability under each topic: P (Xnj+1,j = Y |X) where Xnj+1,j is a new
document in topic j. The next two subsections give a Monte Carlo inference algorithm to do this
for hierarchies of arbitrarily many levels.
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Figure 3: Left. Graphical model for the hierarchical beta process. Right. Example draws from
this model with c0 = cj = 1 and B0 uniform on [0, 1] with mass γ = 10. From top to bottom are
shown a sample for B0, Aj and 25 samples X1,j , . . .X25,j .

6.1 The discrete part

Since all elements of our model are Lévy processes, we can choose a partition of the space Ω and
perform inference separately on each part. In particular, we choose the partition that has cells
{ω} for each of the features ω that have been observed at least once, and has a single (large) cell
containing the rest of the space. We first consider inference with respect to the singletons {ω}, and
return to inference over the remaining cell in the following subsection.

Inference for {ω} deals only with the values b0 = B0({ω}), b = B({ω}), aj = Aj({ω}) and
xij = Xi,j({ω}). Let x denote the set of all xij and let a denote the set of all aj . These variables
form a slice of the hierarchy of their respective processes, and they have the following distributions:

b ∼ Beta(c0b0, c0(1− b0))

aj ∼ Beta(cjb, cj(1− b)) (7)

xij ∼ Ber(aj).

Strictly speaking, if B0 is continuous, we have b0 = 0 and so the prior over b is improper. We treat
this by considering b0 to be non-zero and taking the limit as b0 approaches zero. This is justified
under the limit construction of the beta process (see Theorem 3.1 of [3]).

For a fixed value of b, we can average over a using conjugacy. To average over b, we use
Metropolis-Hastings; that is, we sample b from an approximation of its conditional distribution and
correct for the difference by rejection.

Let mj =
∑nj

i=1 xij . Marginalizing out a in Eq. (7) and using Γ(x+1) = xΓ(x), the log posterior
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distribution of b given x is (up to a constant):

f(b) = (c0b0 − 1) log(b) + (c0(1− b0)− 1) log(1− b)

+
n
∑

j=1

mj−1
∑

i=0

log(cjb+ i)

+

n
∑

j=1

nj−mj−1
∑

i=0

log(cj(1− b) + i). (8)

This posterior is log concave and has a maximum at b∗ ∈ (0, 1) which we can obtain by binary
search. Using the concavity of log(cjb + i) for i > 0, log(cj(1 − b) + i) for i ≥ 0 and log(1 − b)
tangentially at b∗ we obtain the following upper bound on f (up to a constant):

g(b) = (α− 1) log(b)−
b

β

where α = c0b0 +
n
∑

j=1

1mj>0

and
1

β
=

c0(1− b0)− 1

1− b∗
−

n
∑

j=1

mj−1
∑

i=1

cj
cjb∗ + i

+
n
∑

j=1

nj−mj−1
∑

i=0

cj
cj(1− b∗) + i

.

The function g is, up to a constant, the log density of a Gamma(α, β) variable. We can therefore use
g as a Metropolis-Hastings proposal distribution; that is, sample b′ ∼ Gamma(α, β), and correct
for the difference between f and g by accepting the move with probability min(1, eρ) where

ρ = f(b′)− f(b)− (g(b′)− g(b)).

The fact that g is, up to a constant, an upper bound on f means that f/g is bounded. This
ensures that using reweighted samples of g as an estimate of f has finite variance. The fact that
it is tangent to f at its maximum makes g a good approximation of f , maximizing the acceptance
probability.

Setting u = 1−b in Eq. (8) maintains the form of f , only exchanging the coefficients. Therefore
we can choose instead to approximate 1 − b by a gamma variable. We may pick the best of these
two possible approximations. We choose the one with the lowest variance αβ2.

This algorithm gives us samples from P (b|x). In particular, with T samples, b1, . . . bT , we can
compute the following approximation:

P (xnj+1,j = 1|x) = E(E(aj |b, x)|x)

=
cjE(b|x) +mj

cj + nj

where E(b|x) ≈
1

T

∑

t

bt.
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In the end if we want samples of a we can obtain them easily. By conjugacy of Bernoulli and
beta, the conditional distribution of aj is beta, from which we can sample easily:

aj |b, x ∼ Beta (cjb+mj , cj(1− b) + nj −mj) .

6.2 The continuous part

Let’s now look at the rest of the space, where all observations are equal to zero. We choose to
approximate B on that part of the space by B̂N obtained after N steps of the algorithm of Sec. 5.
That is B̂N consists of Kk ∼ Poi( cγ

c+k−1) atoms at each level k where k = 1, . . . N . For each atom
(ω, b) out of the Kk atoms of level k, we have the following hierarchy, which is similar to Eq. (7)
except that it refers to a random location ω chosen in size-biased order.

b ∼ Beta(1, c0 + k − 1))

aj ∼ Beta(cjb, cj(1− b)) (9)

xij ∼ Ber(aj)

We want to infer the distribution of the next observation Xnj+1,j from group (or topic) j, given
that all other observations from all other groups are zero, that is X = 0. The locations of the
atoms of Xnj+1,j will be B0

γ
distributed so we only need to know the distribution of Xnj+1,j(Ω), the

number of atoms. X = 0 implies that all levels k have generated zero observations. Since each level
is independent, we can reason on each level separately, where we want the posterior distribution of
Kk and of the variables in Eq. (9).

Let x = {xij |j ≤ n, i ≤ nj} and a = {aj |j ≤ n}. Let Pk be the probability over b, a and x
defined by Eq. (9) and let qk = Pk(x = 0). The posterior distribution of Kk is

P (Kk = m|X = 0) ∝ qm
k Poi

(

c0γ

c0 + k − 1

)

(m)

so Kk|X = 0 ∼ Poi

(

c0γ

c0 + k − 1
qk

)

.

Let pk = Pk(xnj+1,j = 1, x = 0), then Pk(xnj+1,j = 1|x = 0) = pk

qk
. Let Dk be the number of atoms

of Xnj+1,j from level k

Dk ∼ Poi

(

c0γ

c0 + k − 1
qk
pk

qk

)

= Poi

(

c0γ

c0 + k − 1
pk

)

.

Adding the contributions of all levels we get the following result (which is exact for N =∞):

Xnj+1,j(Ω) ∼ Poi

(

N
∑

k=1

c0γ

c0 + k − 1
pk

)
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Using T samples bk,1, . . . bk,T from Eq. (9) we can compute pk:

Let r(b) = Ek

(

ajt

∏

j′

(1− aj′t)
nj′

∣

∣

∣

∣

b

)

=
cjb

cj + nj

n
∏

j′=1

Γ(cj′)Γ(cj′(1− b) + nj′)

Γ(cj′(1− b))Γ(cj′ + nj′)

then pk = Ek [r(b)] ≈
1

T

T
∑

t=1

r(bk,t). (10)

6.3 Larger hierarchies

We now extend model Eq. (6) to larger hierarchies such as:

Baseline B ∼ BP(c0, B0)

Topics Aj ∼ BP(cj , B) ∀ j ≤ n

Subtopics Sl,j ∼ BP(cl,j , Aj) ∀ l ≤ nj

Documents Xi,l,j ∼ BeP(Sl,j) ∀ i ≤ nl,j

To extend the algorithm of Sec. 6.2 we draw samples of a from Eq. (9) and replace b by a in Eq. (10).
Extending the algorithm of Sec. 6.1 is less immediate since we can no longer use conjugacy to
integrate out a. The Markov chain must now instantiate a and b. Sec. 6.1 lets us sample a|b, x,
leaving us with the task of sampling b|b0, a.

Up to a constant the log conditional probability of b is

f2(b) = (c0b0 − 1) log(b) + (c0(1− b0)− 1) log(1− b)

−
n
∑

j=1

[log(Γ(cjb)) + log(Γ(cj(1− b)))]

+
n
∑

j=1

cjb log

(

aj

1− aj

)

. (11)

Since − log(Γ(x))− log x is concave, f2 itself is concave with a maximum b∗ in (0, 1) which we can
obtain by binary search. Tangentially at a point x∗ we can again use this concavity to obtain this
upper bound, tight at x = x∗:

− log

(

Γ(x)

Γ(x∗)

)

≤ log
( x

x∗

)

−

(

ψ(x∗) +
1

x∗

)

x

where ψ(x) =
Γ′(x)

Γ(x)
.

We apply this bound to Eq. (11) with x∗ = cjb
∗ and x∗ = cj(1−b

∗), and also upper bound log(1−b)
with its tangent at b∗, obtaining the following upper bound g2 of f2 (omitting the constant):

g2(b) = (α− 1) log(b)−
b

β
where
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α = c0b0 + n

1

β
=

c0(1− b0)− n− 1

1− b∗
+
n

b∗
−

n
∑

j=1

cj log

(

aj

1− aj

)

+
n
∑

j=1

[cjψ(cjb
∗)− cjψ(cj(1− b

∗))] .

We can use this Gamma(α, β) variable, or the one obtained by setting u = 1 − b in Eq. (11) as
a proposal distribution as in Sec. 6.1. The case of b|b0, a is the general case for nodes of large
hierarchies, so this algorithm can handle hierarchies of arbitrary depth.

7 Application to document classification

Naive Bayes is a very simple yet powerful probabilistic model used for classification. It models
documents as lists of features, and assumes that features are independent given the topic. Bayes’
rule can then be used on new documents to infer their topic. This method has been used successfully
in many domains despite its simplistic assumptions.

Naive Bayes does suffer however from several known shortcomings. Consider a binary feature
ω and let pj,ω be the probability that a document from topic j has feature ω. Estimating pj,ω as

its maximum likelihood
mj,ω

nj,ω
leads to many features having probability 0 or 1 and makes inference

impossible. To prevent such extreme values, pj,ω is generally estimated with Laplace smoothing,
which can be interpreted as placing a common Beta(a, b) prior on pj,ω:

p̂j,ω =
mj,ω + a

nj,ω + a+ b

Laplace smoothing also corrects for unbalanced training data by imposing greater smoothing on
the probabilities of small topics, for which we have low confidence. Nonetheless, Laplace smoothing
can lead to paradoxes, in particular with unbalanced data [7]. Consider the situtation where most
topics u have enough data to show with confidence that pu,ω is close to a very small value p̄. The
impact on classification of pj,ω is relative to pu,ω for u 6= j so if topic j has little data, we expect pj,ω

to be close to p̄ for it to have little impact. Laplace smoothing however brings it close to a
a+b

, very
far from p̄, where it will have an enormous impact. This inconsistency makes rare features hurt
performance, and leads to the practice of combining naive Bayes with feature selection, potentially
wasting information.

We propose instead to use a hierarchical beta process (hBP) as a prior over the probabilities
pj,ω. Such a hierarchical Bayesian model allows sharing among topics by shrinking the maximum
likelihood probabilities p̂1,ω, . . . p̂1,ω towards each other rather than towards a

a+b
.

Such an effect could in principle be achieved using a finite model with a hierarchical beta prior;
however, such an approach would not permit new features that do not appear in the training data.
The model in Eq. (6) allows the number of known features to grow with data, and the number of
unknown features to serve as evidence for belonging to a poorly known topic, one for which we have
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little training data. A hBP gives a consistent prior for varying amounts of data, whereas Laplace
smoothing amounts to changing the prior every time a new feature appears.

We compared the performance of hBP and naive Bayes on 1000 posts from the 20 Newsgroups
dataset2, grouped into 20 topics. We chose an unbalanced dataset, with the number of documents
per topic decreasing linearly from 100 to 2. We randomly selected 40% of these papers as a test
set for the task of classifying them into their correct area. We encoded the documents Xij as a set
of binary features representing the presence of words. All words were used without any pruning or
feature selection.

We used the model in Eq. (6), setting the parameters c0, γ and cj a priori in the following way.
Since we expect a lot of commonalities between topics, with differences concentrated on a few words
only, we take cj to be small. Therefore documents drawn from Eq. (6) are close to being drawn
from a common BP(c0, γ) prior, under which the expected number of features per document is γ.
Estimating this value from the data gives γ = 150. Knowing γ we can solve for c0 by matching
the expectation of Eq. (5) to the number of unique features N in the data. This can be done by
interpreting Eq. (5) as a fixed point equation:

c0 ←−
F − γ

γ

(

log

(

c0 + n

c0 + 1

))−1

leading to c0 = 70. Finally we selected the value of cj by cross-validation on a held-out portion of
the training set, giving us cj = 10−4.

We then ran our Monte Carlo inference procedure and classified each document Y of the test
set by finding the class for which P (Xnj+1,j = Y |X) was highest, obtaining 58% accuracy. The
acceptance rate of the Metropolis-Hastings moves was above 90%, showing the quality of the gamma
approximation.

By comparison, we performed a broad grid search over the space of Laplace smoothing parame-
ters a, b ∈ [10−11, 107] for the best performing naive Bayes model. For a = 10−8 and b = 107, naive
Bayes reached 50% accuracy.

The classification of documents is often tackled with a multinomial models under the bag-of-
words assumption. The advantage of a feature-based model is that it becomes very natural to add
other non-text features such as “presence of a header,” “the text is right-justified,” “the font is
red,” etc. The favorable properties of the hBP with regards to rare features implies that we can
safely include a much larger set of features than would be possible for a naive Bayes model.

8 Conclusions

In this paper we have shown that the beta process—originally developed for applications in survival
analysis—is the natural object of study for nonparametric Bayesian factorial modeling. Represent-
ing data points in terms of sets of features, factorial models provide substantial flexibility relative
to the multinomial representations associated with classical mixture models. We have shown that

2The data are available at http://people.csail.mit.edu/jrennie/20Newsgroups/.
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the beta process is the de Finetti mixing distribution underlying the Indian buffet process, a dis-
tribution on sparse binary matrices. This result parallels the relationship between the Dirichlet
process and the Chinese restaurant process.

We have also shown that the beta process can be extended to a recursively-defined hierarchy of
beta processes. This representation makes it possible to develop nonparametric Bayesian models
in which unbounded sets of features can be shared among multiple nested groups of data.

Compared to the Dirichlet process, the beta process has the potential advantage of being an
independent increments process (the Gaussian process is another example of an independent in-
crements process). However, some of the simplifying features of the Dirichlet process do not carry
over to the beta process, and in particular we have needed to design new inference algorithms
for beta process and hierarchical beta process mixture models rather than simply borrowing from
Dirichlet process methods. Our inference methods are elementary and additional work on inference
algorithms will be necessary to fully exploit beta process models.

9 Appendix

9.1 Moments of the beta process

Hjort [3] derives the following moments for any set S ⊂ Ω. If B0 is continuous,

EB(S) =

∫

S×[0,1]
bν(dω, db)

=

∫

S

c(ω)Bc
0(dω)

∫

[0,1]
(1− b)c(ω)−1db

= B0(S).

If B0 is discrete:

EB(S) =
∑

i:ωi∈S

E(bi)δωi
=
∑

i:ωi∈S

b0δωi
= B0(S)

and V ar B(S) =

∫

S

B0(dω)(1−B0(dω))

c(ω) + 1
.

Thus despite being discrete, B can be viewed as an approximation of B0, with fluctuations going
to zero as c→∞.
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