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Abstract

We present a nonparametric Bayesian model
of tree structures based on the hierarchical
Dirichlet process (HDP). Our HDP-PCFG
model allows the complexity of the grammar
to grow as more training data is available.
In addition to presenting a fully Bayesian
model for the PCFG, we also develop an ef-
ficient variational inference procedure. On
synthetic data, we recover the correct gram-
mar without having to specify its complex-
ity in advance. We also show that our tech-
niques can be applied to full-scale parsing
applications by demonstrating its effective-
ness in learning state-split grammars.

1 Introduction

Probabilistic context-free grammars (PCFGs) have
been a core modeling technique for many as-
pects of linguistic structure, particularly syntac-
tic phrase structure in treebank parsing (Charniak,
1996; Collins, 1999). An important question when
learning PCFGs is how many grammar symbols
to allocate to the learning algorithm based on the
amount of available data.

The question of “how many clusters (symbols)?”
has been tackled in the Bayesian nonparametrics
literature via Dirichlet process (DP) mixture mod-
els (Antoniak, 1974). DP mixture models have since
been extended to hierarchical Dirichlet processes
(HDPs) and HDP-HMMs (Teh et al., 2006; Beal et
al., 2002) and applied to many different types of
clustering/induction problems in NLP (Johnson et
al., 2006; Goldwater et al., 2006).

In this paper, we present the hierarchical Dirich-
let process PCFG (HDP-PCFG). a nonparametric

Bayesian model of syntactic tree structures based
on Dirichlet processes. Specifically, an HDP-PCFG
is defined to have an infinite number of symbols;
the Dirichlet process (DP) prior penalizes the use
of more symbols than are supported by the training
data. Note that “nonparametric” does not mean “no
parameters”; rather, it means that the effective num-
ber of parameters can grow adaptively as the amount
of data increases, which is a desirable property of a
learning algorithm.

As models increase in complexity, so does the un-
certainty over parameter estimates. In this regime,
point estimates are unreliable since they do not take
into account the fact that there are different amounts
of uncertainty in the various components of the pa-
rameters. The HDP-PCFG is a Bayesian model
which naturally handles this uncertainty. We present
an efficient variational inference algorithm for the
HDP-PCFG based on a structured mean-field ap-
proximation of the true posterior over parameters.
The algorithm is similar in form to EM and thus in-
herits its simplicity, modularity, and efficiency. Un-
like EM, however, the algorithm is able to take the
uncertainty of parameters into account and thus in-
corporate the DP prior.

Finally, we develop an extension of the HDP-
PCFG for grammar refinement (HDP-PCFG-GR).
Since treebanks generally consist of coarsely-
labeled context-free tree structures, the maximum-
likelihood treebank grammar is typically a poor
model as it makes overly strong independence as-
sumptions. As a result, many generative approaches
to parsing construct refinements of the treebank
grammar which are more suitable for the model-
ing task. Lexical methods split each pre-terminal
symbol into many subsymbols, one for each word,
and then focus on smoothing sparse lexical statis-



tics (Collins, 1999; Charniak, 2000). Unlexicalized
methods refine the grammar in a more conservative
fashion, splitting each non-terminal or pre-terminal
symbol into a much smaller number of subsymbols
(Klein and Manning, 2003; Matsuzaki et al., 2005;
Petrov et al., 2006). We apply our HDP-PCFG-GR
model to automatically learn the number of subsym-
bols for each symbol.

2 Models based on Dirichlet processes

At the heart of the HDP-PCFG is the Dirichlet pro-
cess (DP) mixture model (Antoniak, 1974), which is
the nonparametric Bayesian counterpart to the clas-
sical finite mixture model. In order to build up an
understanding of the HDP-PCFG, we first review
the Bayesian treatment of the finite mixture model
(Section 2.1). We then consider the DP mixture
model (Section 2.2) and use it as a building block
for developing nonparametric structured versions of
the HMM (Section 2.3) and PCFG (Section 2.4).
Our presentation highlights the similarities between
these models so that each step along this progression
reflects only the key differences.

2.1 Bayesian finite mixture model
We begin by describing the Bayesian finite mixture
model to establish basic notation that will carry over
the more complex models we consider later.

Bayesian finite mixture model

β ∼ Dirichlet(α, . . . , α) [draw component probabilities]
For each component z ∈ {1, . . . , K}:
−φz ∼ G0 [draw component parameters]

For each data point i ∈ {1, . . . , n}:
−zi ∼ Multinomial(β) [choose component]
−xi ∼ F (·; φzi) [generate data point]

The model has K components whose prior dis-
tribution is specified by β = (β1, . . . , βK). The
Dirichlet hyperparameter α controls how uniform
this distribution is: as α increases, it becomes in-
creasingly likely that the components have equal
probability. For each mixture component z ∈
{1, . . . ,K}, the parameters of the component φz are
drawn from some prior G0. Given the model param-
eters (β,φ), the data points are generated i.i.d. by
first choosing a component and then generating from
a data model F parameterized by that component.

In document clustering, for example, each data
point xi is a document represented by its term-
frequency vector. Each component (cluster) z
has multinomial parameters φz which specifies a
distribution F (·;φz) over words. It is custom-
ary to use a conjugate Dirichlet prior G0 =
Dirichlet(α′, . . . , α′) over the multinomial parame-
ters, which can be interpreted as adding α′−1 pseu-
docounts for each word.

2.2 DP mixture model
We now consider the extension of the Bayesian finite
mixture model to a nonparametric Bayesian mixture
model based on the Dirichlet process. We focus
on the stick-breaking representation (Sethuraman,
1994) of the Dirichlet process instead of the stochas-
tic process definition (Ferguson, 1973) or the Chi-
nese restaurant process (Pitman, 2002). The stick-
breaking representation captures the DP prior most
explicitly and allows us to extend the finite mixture
model with minimal changes. Later, it will enable us
to readily define structured models in a form similar
to their classical versions. Furthermore, an efficient
variational inference algorithm can be developed in
this representation (Section 2.6).

The key difference between the Bayesian finite
mixture model and the DP mixture model is that
the latter has a countably infinite number of mixture
components while the former has a predefined K.
Note that if we have an infinite number of mixture
components, it no longer makes sense to consider
a symmetric prior over the component probabilities;
the prior over component probabilities must decay in
some way. The stick-breaking distribution achieves
this as follows. We write β ∼ GEM(α) to mean
that β = (β1, β2, . . . ) is distributed according to the
stick-breaking distribution. Here, the concentration
parameter α controls the number of effective com-
ponents. To draw β ∼ GEM(α), we first generate
a countably infinite collection of stick-breaking pro-
portions u1, u2, . . . , where each uz ∼ Beta(1, α).
The stick-breaking weights β are then defined in
terms of the stick proportions:

βz = uz

∏
z′<z

(1− uz′). (1)

The procedure for generating β can be viewed as
iteratively breaking off remaining portions of a unit-



0 1β1 β2 β3 ...

Figure 1: A sample β ∼ GEM(1).

length stick (Figure 1). The component probabilities
{βz} will decay exponentially in expectation, but
there is always some probability of getting a smaller
component before a larger one. The parameter α de-
termines the decay of these probabilities: a larger α
implies a slower decay and thus more components.

Given the component probabilities, the rest of the
DP mixture model is identical to the finite mixture
model:

DP mixture model

β ∼ GEM(α) [draw component probabilities]
For each component z ∈ {1, 2, . . . }:
−φz ∼ G0 [draw component parameters]

For each data point i ∈ {1, . . . , n}:
−zi ∼ Multinomial(β) [choose component]
−xi ∼ F (·; φzi) [generate data point xn]

2.3 HDP-HMM

The next stop on the way to the HDP-PCFG is the
HDP hidden Markov model (HDP-HMM) (Beal et
al., 2002; Teh et al., 2006). An HMM consists of a
set of hidden states, where each state can be thought
of as a mixture component. The parameters of the
mixture component are the emission and transition
parameters. The main aspect that distinguishes it
from a flat finite mixture model is that the transi-
tion parameters themselves must specify a distribu-
tion over next states. Hence, we have not just one
top-level mixture model over states, but also a col-
lection of mixture models, one for each state.

In developing a nonparametric version of the
HMM in which the number of states is infinite, we
need to ensure that the transition mixture models
of each state share a common inventory of possible
next states. We can achieve this by tying these mix-
ture models together using the hierarchical Dirichlet
process (HDP) (Teh et al., 2006). The stick-breaking
representation of an HDP is defined as follows: first,
the top-level stick-breaking weights β are drawn ac-
cording to the stick-breaking prior as before. Then,

a new set of stick-breaking weights β′ are generated
according based on β:

β′ ∼ DP(α′,β), (2)

where the distribution of DP can be characterized
in terms of the following finite partition property:
for all partitions of the positive integers into sets
A1, . . . , Am,

(β′(A1), . . . ,β′(Am)) (3)

∼ Dirichlet
(
α′β(A1), . . . , α′β(Am)

)
,

where β(A) =
∑

k∈A βk.1 The resulting β′ is an-
other distribution over the positive integers whose
similarity to β is controlled by a concentration pa-
rameter α′.

HDP-HMM

β ∼ GEM(α) [draw top-level state weights]
For each state z ∈ {1, 2, . . . }:
−φE

z ∼ Dirichlet(γ) [draw emission parameters]
−φT

z ∼ DP(α′, β) [draw transition parameters]

For each time step i ∈ {1, . . . , n}:
−xi ∼ F (·; φE

zi
) [emit current observation]

−zi+1 ∼ Multinomial(φT
zi

) [choose next state]

Each state z is associated with emission param-
eters φE

z . In addition, each z is also associated
with transition parameters φT

z , which specify a dis-
tribution over next states. These transition parame-
ters are drawn from a DP centered on the top-level
stick-breaking weights β according to Equations (2)
and (3). Assume that z1 is always fixed to a special
START state, so we do not need to generate it.

2.4 HDP-PCFG
We now present the HDP-PCFG, which is the focus
of this paper. For simplicity, we consider Chomsky
normal form (CNF) grammars, which has two types
of rules: emissions and binary productions. We con-
sider each grammar symbol as a mixture component
whose parameters are the rule probabilities for that
symbol. In general, we do not know the appropriate
number of grammar symbols, so our strategy is to
let the number of grammar symbols be infinite and
place a DP prior over grammar symbols.

1Note that this property is a specific instance of the general
stochastic process definition of Dirichlet processes.



HDP-PCFG

β ∼ GEM(α) [draw top-level symbol weights]
For each grammar symbol z ∈ {1, 2, . . . }:
−φT

z ∼ Dirichlet(αT ) [draw rule type parameters]
−φE

z ∼ Dirichlet(αE) [draw emission parameters]
−φB

z ∼ DP(αB , ββT ) [draw binary production parameters]

For each node i in the parse tree:
−ti ∼ Multinomial(φT

zi
) [choose rule type]

−If ti = EMISSION:
−−xi ∼ Multinomial(φE

zi
) [emit terminal symbol]

−If ti = BINARY-PRODUCTION:
−−(zL(i), zR(i)) ∼ Multinomial(φB

zi
) [generate children symbols]

β

φB
z

φT
z

φE
z

z ∞

z1

z2

x2

z3

x3

T

Parameters Trees

Figure 2: The definition and graphical model of the HDP-PCFG. Since parse trees have unknown structure,
there is no convenient way of representing them in the visual language of traditional graphical models.
Instead, we show a simple fixed example tree. Node 1 has two children, 2 and 3, each of which has one
observed terminal child. We use L(i) and R(i) to denote the left and right children of node i.

In the HMM, the transition parameters of a state
specify a distribution over single next states; simi-
larly, the binary production parameters of a gram-
mar symbol must specify a distribution over pairs
of grammar symbols for its children. We adapt the
HDP machinery to tie these binary production distri-
butions together. The key difference is that now we
must tie distributions over pairs of grammar sym-
bols together via distributions over single grammar
symbols.

Another difference is that in the HMM, at each
time step, both a transition and a emission are made,
whereas in the PCFG either a binary production or
an emission is chosen. Therefore, each grammar
symbol must also have a distribution over the type
of rule to apply. In a CNF PCFG, there are only
two types of rules, but this can be easily generalized
to include unary productions, which we use for our
parsing experiments.

To summarize, the parameters of each grammar
symbol z consists of (1) a distribution over a finite
number of rule types φT

z , (2) an emission distribu-
tion φE

z over terminal symbols, and (3) a binary pro-
duction distribution φB

z over pairs of children gram-
mar symbols. Figure 2 describes the model in detail.

Figure 3 shows the generation of the binary pro-
duction distributions φB

z . We draw φB
z from a DP

centered on ββT , which is the product distribution
over pairs of symbols. The result is a doubly-infinite
matrix where most of the probability mass is con-

state

right child state

left child state

right child state

left child state

β ∼ GEM(α)

ββT

φB
z ∼ DP(ββT )

Figure 3: The generation of binary production prob-
abilities given the top-level symbol probabilities β.
First, β is drawn from the stick-breaking prior, as
in any DP-based model (a). Next, the outer-product
ββT is formed, resulting in a doubly-infinite matrix
matrix (b). We use this as the base distribution for
generating the binary production distribution from a
DP centered on ββT (c).

centrated in the upper left, just like the top-level dis-
tribution ββT .

Note that we have replaced the general



G0 and F (φE
zi

) pair with Dirichlet(αE) and
Multinomial(φE

zi
) to specialize to natural language,

but there is no difficulty in working with parse
trees with arbitrary non-multinomial observations
or more sophisticated word models.

In many natural language applications, there is
a hard distinction between pre-terminal symbols
(those that only emit a word) and non-terminal sym-
bols (those that only rewrite as two non-terminal or
pre-terminal symbols). This can be accomplished
by letting αT = (0, 0), which forces a draw φT

z to
assign probability 1 to one rule type.

An alternative definition of an HDP-PCFG would
be as follows: for each symbol z, draw a distribution
over left child symbols lz ∼ DP(β) and an inde-
pendent distribution over right child symbols rz ∼
DP(β). Then define the binary production distribu-
tion as their cross-product φB

z = lzr
T
z . This also

yields a distribution over symbol pairs and hence de-
fines a different type of nonparametric PCFG. This
model is simpler and does not require any additional
machinery beyond the HDP-HMM. However, the
modeling assumptions imposed by this alternative
are unappealing as they assume the left child and
right child are independent given the parent, which
is certainly not the case in natural language.

2.5 HDP-PCFG for grammar refinement
An important motivation for the HDP-PCFG is that
of refining an existing treebank grammar to alle-
viate unrealistic independence assumptions and to
improve parsing accuracy. In this scenario, the set
of symbols is known, but we do not know how
many subsymbols to allocate per symbol. We in-
troduce the HDP-PCFG for grammar refinement
(HDP-PCFG-GR), an extension of the HDP-PCFG,
for this task.

The essential difference is that now we have a
collection of HDP-PCFG models for each symbol
s ∈ S, each one operating at the subsymbol level.
While these HDP-PCFGs are independent in the
prior, they are coupled through their interactions in
the parse trees. For completeness, we have also in-
cluded unary productions, which are essentially the
PCFG counterpart of transitions in HMMs. Finally,
since each node i in the parse tree involves a symbol-
subsymbol pair (si, zi), each subsymbol needs to
specify a distribution over both child symbols and

subsymbols. The former can be handled through
a finite Dirichlet distribution since all symbols are
known and observed, but the latter must be handled
with the Dirichlet process machinery, since the num-
ber of subsymbols is unknown.

HDP-PCFG for grammar refinement (HDP-PCFG-GR)

For each symbol s ∈ S:
−βs ∼ GEM(α) [draw subsymbol weights]
−For each subsymbol z ∈ {1, 2, . . . }:
−−φT

sz ∼ Dirichlet(αT ) [draw rule type parameters]
−−φE

sz ∼ Dirichlet(αE(s)) [draw emission parameters]
−−φu

sz ∼ Dirichlet(αu) [unary symbol productions]
−−φb

sz ∼ Dirichlet(αb) [binary symbol productions]
−−For each child symbol s′ ∈ S:
−−−φU

szs′ ∼ DP(αU , βs′) [unary subsymbol prod.]
−−For each pair of children symbols (s′, s′′) ∈ S × S:
−−−φB

szs′s′′ ∼ DP(αB , βs′βT
s′′) [binary subsymbol]

For each node i in the parse tree:
−ti ∼ Multinomial(φT

sizi
) [choose rule type]

−If ti = EMISSION:
−−xi ∼ Multinomial(φE

sizi
) [emit terminal symbol]

−If ti = UNARY-PRODUCTION:
−−sL(i) ∼ Multinomial(φu

sizi
) [generate child symbol]

−−zL(i) ∼ Multinomial(φU
sizisL(i)

) [child subsymbol]
−If ti = BINARY-PRODUCTION:
−−(sL(i), sR(i)) ∼ Mult(φsizi) [children symbols]
−−(zL(i), zR(i)) ∼ Mult(φB

sizisL(i)sR(i)
) [subsymbols]

2.6 Variational inference
We present an inference algorithm for the HDP-
PCFG model described in Section 2.4, which can
also be adapted to the HDP-PCFG-GR model with
a bit more bookkeeping. Most previous inference
algorithms for DP-based models involve sampling
(Escobar and West, 1995; Teh et al., 2006). How-
ever, we chose to use variational inference (Blei
and Jordan, 2005), which provides a fast determin-
istic alternative to sampling, hence avoiding issues
of diagnosing convergence and aggregating samples.
Furthermore, our variational inference algorithm es-
tablishes a strong link with past work on PCFG re-
finement and induction, which has traditionally em-
ployed the EM algorithm.

In EM, the E-step involves a dynamic program
that exploits the Markov structure of the parse tree,
and the M-step involves computing ratios based on
expected counts extracted from the E-step. Our vari-
ational algorithm resembles the EM algorithm in
form, but the ratios in the M-step are replaced with
weights that reflect the uncertainty in parameter es-
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Figure 4: We approximate the true posterior p over
parameters θ and latent parse trees z using a struc-
tured mean-field distribution q, in which the distri-
bution over parameters are completely factorized but
the distribution over parse trees is unconstrained.

timates. Because of this procedural similarity, our
method is able to exploit the desirable properties of
EM such as simplicity, modularity, and efficiency.

2.7 Structured mean-field approximation
We denote parameters of the HDP-PCFG as θ =
(β,φ), where β denotes the top-level symbol prob-
abilities and φ denotes the rule probabilities. The
hidden variables of the model are the training parse
trees z. We denote the observed sentences as x.

The goal of Bayesian inference is to compute the
posterior distribution p(θ, z | x). The central idea
behind variational inference is to approximate this
intractable posterior with a tractable approximation.
In particular, we want to find the best distribution q∗

as defined by

q∗
def= argmin

q∈Q
KL(q(θ, z)||p(θ, z | x)), (4)

where Q is a tractable subset of distributions. We
use a structured mean-field approximation, meaning
that we only consider distributions that factorize as
follows (Figure 4):

Q def=
{

q(z)q(β)
K∏

z=1

q(φT
z )q(φE

z )q(φB
z )

}
. (5)

We further restrict q(φT
z ), q(φE

z ), q(φB
z ) to be

Dirichlet distributions, but allow q(z) to be any
multinomial distribution. We constrain q(β) to be a

degenerate distribution truncated at K; i.e., βz = 0
for z > K. While the posterior grammar does have
an infinite number of symbols, the exponential de-
cay of the DP prior ensures that most of the proba-
bility mass is contained in the first few symbols (Ish-
waran and James, 2001).2 While our variational ap-
proximation q is truncated, the actual PCFG model
is not. As K increases, our approximation improves.

2.8 Coordinate-wise ascent
The optimization problem defined by Equation (4)
is intractable and nonconvex, but we can use a sim-
ple coordinate-ascent algorithm that iteratively op-
timizes each factor of q in turn while holding the
others fixed. The algorithm turns out to be similar in
form to EM for an ordinary PCFG: optimizing q(z)
is the analogue of the E-step, and optimizing q(φ)
is the analogue of the M-step; however, optimizing
q(β) has no analogue in EM. We summarize each
of these updates below (see (Liang et al., 2007) for
complete derivations).

Parse trees q(z): The distribution over parse trees
q(z) can be summarized by the expected suffi-
cient statistics (rule counts), which we denote as
C(z → zl zr) for binary productions and C(z →
x) for emissions. We can compute these expected
counts using dynamic programming as in the E-step
of EM.

While the classical E-step uses the current rule
probabilities φ, our mean-field approximation in-
volves an entire distribution q(φ). Fortunately, we
can still handle this case by replacing each rule prob-
ability with a weight that summarizes the uncer-
tainty over the rule probability as represented by q.
We define this weight in the sequel.

It is a common perception that Bayesian inference
is slow because one needs to compute integrals. Our
mean-field inference algorithm is a counterexample:
because we can represent uncertainty over rule prob-
abilities with single numbers, much of the existing
PCFG machinery based on EM can be modularly
imported into the Bayesian framework.

Rule probabilities q(φ): For an ordinary PCFG,
the M-step simply involves taking ratios of expected

2In particular, the variational distance between the stick-
breaking distribution and the truncated version decreases expo-
nentially as the truncation level K increases.



counts:

φB
z (zl, zr) =

C(z → zl zr)
C(z → ∗∗)

. (6)

For the variational HDP-PCFG, the optimal q(φ) is
given by the standard posterior update for Dirichlet
distributions:3

q(φB
z ) = Dirichlet(φB

z ;αBββT + ~C(z)), (7)

where ~C(z) is the matrix of counts of rules with left-
hand side z. These distributions can then be summa-
rized with multinomial weights which are the only
necessary quantities for updating q(z) in the next it-
eration:

WB
z (zl, zr)

def= exp Eq[log φB
z (zl, zr)] (8)

=
eΨ(C(z→zl zr)+αBβzl

βzr )

eΨ(C(z→∗∗)+αB)
, (9)

where Ψ(·) is the digamma function. The emission
parameters can be defined similarly. Inspection of
Equations (6) and (9) reveals that the only difference
between the maximum likelihood and the mean-field
update is that the latter applies the exp(Ψ(·)) func-
tion to the counts (Figure 5).

When the truncation K is large, αBβzl
βzr is near

0 for most right-hand sides (zl, zr), so exp(Ψ(·)) has
the effect of downweighting counts. Since this sub-
traction affects large counts more than small counts,
there is a rich-get-richer effect: rules that have al-
ready have large counts will be preferred.

Specifically, consider a set of rules with the same
left-hand side. The weights for all these rules only
differ in the numerator (Equation (9)), so applying
exp(Ψ(·)) creates a local preference for right-hand
sides with larger counts. Also note that the rule
weights are not normalized; they always sum to at
most one and are equal to one exactly when q(φ) is
degenerate. This lack of normalization gives an ex-
tra degree of freedom not present in maximum like-
lihood estimation: it creates a global preference for
left-hand sides that have larger total counts.

Top-level symbol probabilities q(β): Recall that
we restrict q(β) = δβ∗(β), so optimizing β is
equivalent to finding a single best β∗. Unlike q(φ)

3Because we have truncated the top-level symbol weights,
the DP prior on φB

z reduces to a finite Dirichlet distribution.
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Figure 5: The exp(Ψ(·)) function, which is used in
computing the multinomial weights for mean-field
inference. It has the effect of reducing a larger frac-
tion of small counts than large counts.

and q(z), there is no closed form expression for
the optimal β∗, and the objective function (Equa-
tion (4)) is not convex in β∗. Nonetheless, we can
apply a standard gradient projection method (Bert-
sekas, 1999) to improve β∗ to a local maxima.

The part of the objective function in Equation (4)
that depends on β∗ is as follows:

L(β∗) = log GEM(β∗;α)+ (10)
K∑

z=1

Eq[log Dirichlet(φB
z ;αBβ∗β∗T )]

See Liang et al. (2007) for the derivation of the gra-
dient. In practice, this optimization has very little ef-
fect on performance. We suspect that this is because
the objective function is dominated by p(x | z) and
p(z | φ), while the contribution of p(φ | β) is mi-
nor.

3 Experiments

We now present an empirical evaluation of the HDP-
PCFG(-GR) model and variational inference tech-
niques. We first give an illustrative example of the
ability of the HDP-PCFG to recover a known gram-
mar and then present the results of experiments on
large-scale treebank parsing.

3.1 Recovering a synthetic grammar
In this section, we show that the HDP-PCFG-GR
can recover a simple grammar while a standard



S → X1X1 | X2X2 | X3X3 | X4X4

X1 → a1 | b1 | c1 | d1

X2 → a2 | b2 | c2 | d2

X3 → a3 | b3 | c3 | d3

X4 → a4 | b4 | c4 | d4

S

Xi Xi

{ai,bi, ci,di} {ai,bi, ci,di}

(a) (b)

Figure 6: (a) A synthetic grammar with a uniform
distribution over rules. (b) The grammar generates
trees of the form shown on the right.

PCFG fails to do so because it has no built-in con-
trol over grammar complexity. From the grammar in
Figure 6, we generated 2000 trees. The two terminal
symbols always have the same subscript, but we col-
lapsed Xi to X in the training data. We trained the
HDP-PCFG-GR, with truncation K = 20, for both
S and X for 100 iterations. We set all hyperparame-
ters to 1.

Figure 7 shows that the HDP-PCFG-GR recovers
the original grammar, which contains only 4 sub-
symbols, leaving the other 16 subsymbols unused.
The standard PCFG allocates all the subsymbols to
fit the exact co-occurrence statistics of left and right
terminals.

Recall that a rule weight, as defined in Equa-
tion (9), is analogous to a rule probability for stan-
dard PCFGs. We say a rule is effective if its weight
is at least 10−6 and its left hand-side has posterior
is also at least 10−6. In general, rules with weight
smaller than 10−6 can be safely pruned without af-
fect parsing accuracy. The standard PCFG uses all
20 subsymbols of both S and X to explain the data,
resulting in 8320 effective rules; in contrast, the
HDP-PCFG uses only 4 subsymbols for X and 1 for
S, resulting in only 68 effective rules. If the thresh-
old is relaxed from 10−6 to 10−3, then only 20 rules
are effective, which corresponds exactly to the true
grammar.

3.2 Parsing the Penn Treebank
In this section, we show that our variational HDP-
PCFG can scale up to real-world data sets. We ran
experiments on the Wall Street Journal (WSJ) por-
tion of the Penn Treebank. We trained on sections
2–21, used section 24 for tuning hyperparameters,
and tested on section 22.

We binarize the trees in the treebank as follows:
for each non-terminal node with symbol X , we in-
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Figure 7: The posteriors over the subsymbols of the
standard PCFG is roughly uniform, whereas the pos-
teriors of the HDP-PCFG is concentrated on four
subsymbols, which is the true number of symbols
in the grammar.

troduce a right-branching cascade of new nodes with
symbol X . The end result is that each node has at
most two children. To cope with unknown words,
we replace any word appearing fewer than 5 times
in the training set with one of 50 unknown word to-
kens derived from 10 word-form features.

Our goal is to learn a refined grammar, where each
symbol in the training set is split into K subsym-
bols. We compare an ordinary PCFG estimated with
maximum likelihood (Matsuzaki et al., 2005) and
the HDP-PCFG estimated using the variational in-
ference algorithm described in Section 2.6.

To parse new sentences with a grammar, we com-
pute the posterior distribution over rules at each span
and extract the tree with the maximum expected cor-
rect number of rules (Petrov and Klein, 2007).

3.2.1 Hyperparameters
There are six hyperparameters in the HDP-PCFG-

GR model, which we set in the following manner:
α = 1, αT = 1 (uniform distribution over unar-
ies versus binaries), αE = 1 (uniform distribution
over terminal words), αu(s) = αb(s) = 1

N(s) , where
N(s) is the number of different unary (binary) right-
hand sides of rules with left-hand side s in the tree-
bank grammar. The two most important hyperpa-
rameters are αU and αB , which govern the sparsity
of the right-hand side for unary and binary rules.
We set αU = αB although more performance could
probably be gained by tuning these individually. It
turns out that there is not a single αB that works for
all truncation levels, as shown in Table 1.

If the top-level distribution β is uniform, the value
of αB corresponding to a uniform prior over pairs of
children subsymbols is K2. Interestingly, the opti-
mal αB appears to be superlinear but subquadratic



truncation K 2 4 8 12 16 20
best αB 16 12 20 28 48 80

uniform αB 4 16 64 144 256 400

Table 1: For each truncation level, we report the αB

that yielded the highest F1 score on the development
set.

K PCFG PCFG (smoothed) HDP-PCFG
F1 Size F1 Size F1 Size

1 60.47 2558 60.36 2597 60.5 2557
2 69.53 3788 69.38 4614 71.08 4264
4 75.98 3141 77.11 12436 77.17 9710
8 74.32 4262 79.26 120598 79.15 50629

12 70.99 7297 78.8 160403 78.94 86386
16 66.99 19616 79.2 261444 78.24 131377
20 64.44 27593 79.27 369699 77.81 202767

Table 2: Shows development F1 and grammar sizes
(the number of effective rules) as we increase the
truncation K.

in K. We used these values of αB in the following
experiments.

3.2.2 Results

The regime in which Bayesian inference is most
important is when training data is scarce relative to
the complexity of the model. We train on just sec-
tion 2 of the Penn Treebank. Table 2 shows how
the HDP-PCFG-GR can produce compact grammars
that guard against overfitting. Without smoothing,
ordinary PCFGs trained using EM improve as K in-
creases but start to overfit around K = 4. Simple
add-1.01 smoothing prevents overfitting but at the
cost of a sharp increase in grammar sizes. The HDP-
PCFG obtains comparable performance with a much
smaller number of rules.

We also trained on sections 2–21 to demon-
strate that our methods can scale up and achieve
broadly comparable results to existing state-of-the-
art parsers. When using a truncation level of K =
16, the standard PCFG with smoothing obtains an
F1 score of 88.36 using 706157 effective rules while
the HDP-PCFG-GR obtains an F1 score of 87.08 us-
ing 428375 effective rules. We expect to see greater
benefits from the HDP-PCFG with a larger trunca-
tion level.

4 Related work

The question of how to select the appropriate gram-
mar complexity has been studied in earlier work.
It is well known that more complex models nec-
essarily have higher likelihood and thus a penalty
must be imposed for more complex grammars. Ex-
amples of such penalized likelihood procedures in-
clude Stolcke and Omohundro (1994), which used
an asymptotic Bayesian model selection criterion
and Petrov et al. (2006), which used a split-merge
algorithm which procedurally determines when to
switch between grammars of various complexities.
These techniques are model selection techniques
that use heuristics to choose among competing sta-
tistical models; in contrast, the HDP-PCFG relies on
the Bayesian formalism to provide implicit control
over model complexity within the framework of a
single probabilistic model.

Johnson et al. (2006) also explored nonparamet-
ric grammars, but they do not give an inference al-
gorithm for recursive grammars, e.g., grammars in-
cluding rules of the form A → BC and B → DA.
Recursion is a crucial aspect of PCFGs and our
inference algorithm does handle it. Finkel et al.
(2007) independently developed another nonpara-
metric model of grammars. Though their model is
also based on hierarchical Dirichlet processes and is
similar to ours, they present a different inference al-
gorithm which is based on sampling. Kurihara and
Sato (2004) and Kurihara and Sato (2006) applied
variational inference to PCFGs. Their algorithm is
similar to ours, but they did not consider nonpara-
metric models.

5 Conclusion

We have presented the HDP-PCFG, a nonparametric
Bayesian model for PCFGs, along with an efficient
variational inference algorithm. While our primary
contribution is the elucidation of the model and algo-
rithm, we have also explored some important empir-
ical properties of the HDP-PCFG and also demon-
strated the potential of variational HDP-PCFGs on a
full-scale parsing task.
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