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(a) Disk brake (b) Neck

Figure 1: Cutaway views generated by our system. To create these illustrations, we “rigged” 3D models of a disk brake and human neck using
the authoring component of our system. The illustrations were then generated automatically from the rigged models to expose user-selected
target structures (shown in red).

Abstract

We present a system for authoring and viewing interactive cutaway
illustrations of complex 3D models using conventions of traditional
scientific and technical illustration. Our approach is based on the
two key ideas that 1) cuts should respect the geometry of the parts
being cut, and 2) cutaway illustrations should support interactive
exploration. In our approach, an author instruments a 3D model
with auxiliary parameters, which we call “rigging,” that define how
cutaways of that structure are formed. We provide an authoring in-
terface that automates most of the rigging process. We also provide
a viewing interface that allows viewers to explore rigged models us-
ing high-level interactions. In particular, the viewer can just select a
set of target structures, and the system will automatically generate
a cutaway illustration that exposes those parts. We have tested our
system on a variety of CAD and anatomical models, and our re-
sults demonstrate that our approach can be used to create and view
effective interactive cutaway illustrations for a variety of complex
objects with little user effort.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry & Object Modeling; I.3.8 [Computer Graphics]: Applications

Keywords: cutaway illustration, interactive, visualization

1 Introduction

Complex geometric models composed of many distinct parts and
structures arise in a number of domains, including medicine, engi-
neering, and industrial manufacturing. Illustrations of such complex
models are often essential for helping viewers understand the spa-
tial relationships between the constituent parts that make up these
datasets. Well designed illustrations reveal not only the shape and
appearance of important parts, but also the position and orientation
of these parts in the context of the surrounding structures.

(b) Transparency

(a) Naive cutaway
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Figure 2: Techniques for re-
ducing occlusions.

Yet creating illustrations that clearly
depict the spatial relationships be-
tween parts is not an easy task.
The primary problem is occlusion.
Most complex 3D objects contain
many tightly connected and inter-
twined parts that occlude one an-
other. Thus, illustrators often use cut-
aways to reduce occlusions and ex-
pose important internal parts. How-
ever, naively cutting a hole through
the occluding parts usually does not
reveal the context of the surround-
ing structures. Although the cutaway
in Figure 2a exposes the brakepad
(in red), it does not show how the
brakepad is situated with respect to
nearby parts. Another approach is to
increase the transparency of the oc-
cluding parts as in Figure 2b. While
the resulting image reveals the com-
plexity of the chest, it is extremely difficult to distinguish the layer-
ing relationships between the transparent parts, especially because
there is more than one layer of transparency. The best cutaways
clearly expose the target parts but also preserve some context from
occluding structures so that viewers can better understand the spa-
tial relationships between all parts (see Figure 1).



In this paper, we present a system for authoring and viewing inter-
active cutaway illustrations of complex 3D models. Our system is
based on two key ideas:

Cuts should respect geometry of occluding parts. After analyz-
ing a variety of well-designed cutaway illustrations [Hodges 1989;
Netter 1989; Agur and Lee 2003; Biesty and Platt 1992], we have
found that the most effective cuts are carefully designed to partially
remove occluding parts so that viewers can mentally reconstruct
the missing geometry. Thus, the shape and location of cuts depend
as much on the geometry of the occluding parts as they do on the
position of the target internal parts that are to be exposed. As we
will show, illustrators use different cutting conventions depending
on the geometry of the occluding structures. For example, tubu-
lar structures are cut differently than rectangular parts. In addition,
occluding structures that are farther away from the viewer are cut
away less than parts that are closer to the viewer. Such insetting re-
veals the layers of occluders that hide the target parts. We instantiate
these conventions in a set of cutting tools that can be used in com-
bination to produce effective cutaway illustrations like those shown
in Figure 1.

Cutaway illustrations should support interactive exploration.
Static cutaway illustrations can reveal only a limited amount of in-
formation and may not always depict the structures of interest. In-
teractive control over the viewpoint and cutting parameters make
it easier for viewers to understand the complex spatial relationships
between parts. Yet low-level controls that force viewers to precisely
position individual cutting tools (e.g., cutting planes) are tedious to
use and assume viewers have the expertise to place the cuts in a way
that reveals structures of interest. At the other end of the spectrum
are pre-rendered atlases of anatomy [A.D.A.M. Inc. 2005; Höhne
et al. 2003], which allow viewers to interactively control a few cut-
ting parameters (e.g., sliding a cutting plane along a fixed axis) but
do not allow users to freely navigate the model. We provide an in-
teractive viewing interface that falls between these two extremes.
Viewers are free to set any viewpoint and directly manipulate the
model with the mouse to create, resize, and move cuts dynamically.
However, these cuts are parameterized such that they always ad-
here to the conventions of traditional illustration, making it easy to
produce useful cutaways. Alternatively, viewers can select a set of
target parts, and the system will automatically generate a set of cuts
from an appropriate viewpoint to reveal the specified targets.

Our work makes several new contributions. We identify a set of con-
ventions for creating effective cutaway illustrations. In addition, we
describe an approach for algorithmically encoding these conven-
tions in a set of interactive cutaway tools. Finally, we demonstrate
how our system can be used to create effective cutaways for a vari-
ety of complex 3D objects including human anatomy and mechan-
ical assemblies.

2 Related work

There is a vast body of work on illustrative visualization algorithms.
A recent report by Viola et al. [2005a] is an excellent overview of
current techniques. We touch on previous techniques designed to
expose internal structure.

Interactive cutting. Interactive techniques for cutting 3D models
allow users to directly specify the cuts they would like to make.
Höhne et al. [1992] limit users to placing cutting planes oriented
along principal axes. Bruyns et al. [2002] survey a number of mesh
cutting algorithms that allow users to directly draw the cut they
would like to make. The goal of these algorithms is to simulate sur-
gical tools such as scalpels and scissors. More recently, Igarashi
et al. [1999] and Owada et al. [2003; 2004] have presented com-
plete sketch-based systems for creating and cutting solid models. A

drawback of such techniques is that there is little support for plac-
ing the cutting strokes. To expose a specific internal structure, users
may have to cut the object multiple times just to find it. Moreover,
the strokes have to be drawn very carefully to produce precise cuts.

Another approach is to interactively deform parts of the model
to expose the internal structures. LaMar et al. [2001] and Wang et
al. [2005] extend Magic Lenses [Bier et al. 1993; Viega et al. 1996]
to perform non-linear deformations that push away outer structures
and increase the relative size of important inner structures. How-
ever, such deformations can significantly distort the spatial relation-
ships in the model. McGuffin et al. [2003], Correa et al. [2006], and
Bruckner and Gröller [2006] have developed techniques for interac-
tively cutting and deforming outer surfaces of volumetric models.
However, these algorithms are designed primarily to expose per-
fectly layered structures in the volume, and as a result they can-
not separate the intertwined structures often found in complex 3D
datasets (e.g., anatomical models).

Automatic cutting. Many automatic techniques for cutting 3D
models ask users to specify the important internal structures of in-
terest and then automatically design the appropriate cuts to reveal
them. Feiner and Seligmann [1992] and Diepstraten et al. [2003]
have demonstrated such importance-based automatic cutting for
surface models, while Viola et al. [2005b] apply a similar approach
to volumetric data. VolumeShop [Bruckner and Gröller 2005] ex-
tends the latter approach into a complete volume illustration system
with support for insets and labeling. In all of these systems the cuts
are completely based on the geometric shape of the important parts.
Because the occluding parts and structures have no influence on the
cutting geometry, it can be difficult for viewers to reconstruct the
spatial relationships between the structures that are removed and
the remaining parts.

Rendering and shading. Many algorithms have focused on sim-
ulating illustrative rendering styles [Dooley and Cohen 1990; Ebert
and Rheingans 2000; Lum and Ma 2002; Burns et al. 2005]. We
borrow the approach of rendering silhouette lines [Gooch et al.
1998] to make it easier to differentiate structures from one another.
Tietjen et al. [2005] and, more recently, Cole et al. [2006], high-
light important structures in illustrations by rendering them in a
different style from the less important structures. We similarly use
brighter colors to emphasize selected parts. Illustrators often use in-
consistent lighting to emphasize shape and surface features [Akers
et al. 2003]. Based on this idea researchers have developed syn-
thetic shading techniques [Lee et al. 2004; Cignoni et al. 2005;
Rusinkiewicz et al. 2006] that enhance depth discontinuities and
surface orientation. We borrow the technique of Luft et al. [2006]
to emphasize depth discontinuities and better reveal the layering of
parts. We also develop a new shading technique to emphasize the
orientation of the surfaces that are exposed after a cut.

3 Overview

Our system consists of two components. The authoring interface
allows an author to equip a 3D geometric model with additional
information (or rigging) that enables the formation of dynamic cut-
aways. The viewing interface takes a rigged model as input and en-
ables viewers to explore the dataset with high-level cutaway tools.
Although we do not make any assumptions about the viewer’s fa-
miliarity with the object, we assume the author knows the struc-
ture of the object well enough to specify the geometric type of each
part (e.g., tube, rectangular parallelepiped, etc.) and to identify good
viewpoints for generating cutaway illustrations.



The remainder of this paper is organized as follows. We summa-
rize common illustration conventions that characterize effective cut-
away visualizations (Section 4) before presenting the techniques
and algorithms we developed to incorporate these conventions into
our interactive visualization system (Section 5). We then outline the
typical workflow required for a human author to specify this rigging
using our authoring interface (Section 6) and describe the interac-
tion modes provided by our viewing interface for exploring rigged
models (Section 7).

4 Conventions from traditional illustration

Effective cutaway illustrations exhibit a variety of conventions that
help emphasize the shape and position of structures relative to
one another. However, books on scientific and technical illustra-
tion techniques [Hodges 1989; Loechel 1964; Wood 1979; Zweifel
1961] mainly present low-level drawing and rendering methods.
Thus, to identify cutaway conventions, we worked with scientific
illustrators and analyzed illustrations from well-known anatomy at-
lases [Netter 1989; Agur and Lee 2003], technical manuals [Hoyt
1981; Elliott et al. 1924], and books on visualizing complex build-
ings and machinery [Biesty and Platt 1992; Biesty and Platt 1993].
Despite differences in artistic style, we noted a number of similar
cutting techniques across these sources.

4.1 Geometry-based conventions

The geometric shape of a part often determines the most appropri-
ate cutting strategy. We consider several common shapes and the
cutting conventions appropriate to each of them.
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Figure 3: Object-aligned box cut.

Object-aligned box cuts. Illus-
trators often use box cuts that
are aligned with the principal
Cartesian coordinate frame of
a part. For man-made objects
the shape of the part usually
implies the orientation of this
frame. Such objects are typi-
cally designed with respect to
three orthogonal principal axes
and in many cases they resem-
ble rectangular solids. Aligning
a box cut to the principal axes
of a part helps to accentuate its geometric structure (Figure 3) and
makes it easier to infer the shape of the missing geometry.

In some domains, models are oriented with respect to a canoni-
cal coordinate frame. For example, in anatomy the canonical frame
is defined by the saggital, coronal, and transverse viewing direc-
tions. Box cuts are often aligned with these canonical axes to pro-
duce cross-sections that are familiar to viewers who have some ex-
perience with the domain.
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Figure 4: Transverse tube cut.

Tube cuts. 3D models of both
biological and man-made objects
contain many structures that re-
semble tubes, either because they
exhibit radial symmetry (e.g.,
pipes, gears), or because they are
long and narrow (e.g., long mus-
cles and bones, plumbing). In cut-
ting such parts, illustrators usu-
ally align the cut with the primary
axis running along the length of
the part. Often, illustrators will
remove a section of the structure using a transverse cutting plane
that is perpendicular to the primary axis (Figure 4). The orienta-

tion of the cutting plane provides a visual cue about the direction
in which the tube extends and thereby helps viewers mentally com-
plete the missing part of the tube.

wedge
tube cut

B
ac

kg
ro

u
n

d
 C

re
d

it
:  

N
ic

k 
Li

p
sc

o
m

b
e,

 G
ar

ry
 B

ig
g

in
 (c

) D
o

rl
in

g
 K

in
d

er
sl

eyprimary axis

Figure 5: Wedge tube cut.

A second variant of the tube
cut removes a wedge from the
object (Figure 5) to expose in-
terior parts while removing less
of the tube than the transverse
tube cut. Since more of the ex-
terior structure remains visible,
the viewer has more context for
understanding the tube’s position
and orientation in relation to the
exposed internal parts. In addi-
tion, the wedge shape of the cut
emphasizes the cylindrical struc-
ture of the tube and makes it eas-
ier for the viewer to mentally re-
construct the missing geometry. Wedge cuts are typically used for
radially symmetric (or nearly symmetric) parts.

Window cuts. Many complex 3D models include thin extended en-
closing structures (e.g., skin, the chassis of a car) that occlude much
of the model’s internal detail. To expose internal parts, illustrators
often cut windows out of these structures.
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Figure 6: Four-sided window cut.

The window boundaries
can also provide a useful cue
about the shape of the enclos-
ing structure. Boundary edges
near silhouettes of the object
help emphasize these contours
(Figure 6). Similarly, bound-
ary edges that are further from
silhouettes often bend accord-
ing to surface curvature. An-
other convention, usually re-
served for technical illustra-
tions, is to make the window
jagged. This approach empha-
sizes that a cut was made and
distinguishes the boundaries of
the cut from other edges in the
scene. All three of these boundary conventions help viewers men-
tally reconstruct the shape of the enclosing structure.

4.2 Viewpoint conventions

Illustrators carefully choose viewpoints that help viewers see the
spatial relationships between the internal target parts they are inter-
ested in and the occluding parts. Typically, the viewpoint not only
centers the target parts in the illustration, but also minimizes the
number of occluding structures. This strategy makes it possible to
expose the parts of interest with relatively few cuts, leaving more of
the surrounding structures intact for context. In addition, illustrators
often choose domain-specific canonical views, such as the saggital,
coronal, and transverse views used for human anatomy.

4.3 Insetting cuts based on visibility

Some models contain many layers of occluding structures between
the internal target part and the exterior of the model. Illustrators of-
ten reveal such layering by insetting cuts. Occluded parts are cut
to a lesser extent than (i.e., inset from) occluding parts, thus or-
ganizing the structures into a series of terraces that accentuate the
layering (see Figure 7). Since the layering of the parts depends on
viewpoint, such inset cuts are viewpoint dependent.



4.4 Rendering conventions

Shading is a strong cue for conveying surface orientation and depth
relationships between structures. Illustrators often exaggerate shad-
ing to emphasize object shape. We describe two such illustrative
shading techniques that are shown in Figure 7.
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Figure 7: Inset cuts and illus-
trative shading techniques.

Edge shadows. Cast shadows
provide strong depth cues at dis-
continuity edges. However, phys-
ically accurate shadows may also
darken and obscure important
parts. Instead, illustrators often
darken a thin region of the far
surface along the discontinuity
edge. Such edge shadows [Fran-
cis 1987] pull the near surface
closer to the viewer while push-
ing back the far surface. The
width and softness of edge shad-
ows usually vary with the dis-
crepancy in depth at the discontinuity edge; overlapping structures
that are close to one another have a tighter, darker shadow than
structures that are farther apart.

Edge shading. While simple diffuse shading provides information
about surface orientation, it can also cause planar surfaces that
face away from the light source to be rendered in a relatively dark
shadow, making it difficult to see surface detail. Some illustrators
solve this problem by darkening only the edges of the cut surface to
suggest diffuse shading [Hodges 1989]. As with edge shadows, the
width and softness of the darkened region may vary, but, in general,
the overall darkness depends on the surface orientation.

5 Implementation of illustration conventions

In this section, we introduce a parametric representation for cut-
aways of individual parts that makes it easy to create the differ-
ent types of cuts outlined in Section 4.1. We then describe how
our system determines good views for exposing user-selected tar-
get structures, based on the conventions discussed in Section 4.2.
Next, we explain our constraint-based approach for generating
view-dependent inset cuts, as described in Section 4.3. Finally, we
present simple rendering algorithms for generating the effects dis-
cussed in Section 4.4.

5.1 Cutaway representation

The input to our system is a 3D solid model in which each part or
structure is a separate geometric object. Our system cuts the model
by removing volumetric regions — cutting volumes — using CSG
constructive solid geometry (CSG) subtraction. Each volume cuts
exactly one part. As shown in Figure 8, we parameterize each of
the conventional cuts described in Section 4.1 using a 1D, 2D, or 3D
parameter space that is mapped to a volume in model space (i.e., the
local coordinates of the structure to be cut). Under these mappings,
cutting volumes are specified as simple parametric ranges that get
transformed to model space cutting volumes, which we represent as
polyhedral solids.

Object-aligned box cutting volumes
For object-aligned box cuts, we map a 3D parameter space u,v,w
to three orthogonal model space axes, u′,v′,w′ (Figure 8a). Under
this mapping an axis-aligned box in parameter space transforms to
an axis-aligned box in model space.

As noted in Section 4.1, object-aligned cuts are often oriented along
the principal axes of a part. To compute these axes, the system sam-
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Figure 8: Cutting volumes. In our system, a cut is represented as a
cutting volume that is defined in a one-, two-, or three-dimensional
parameter space (left column) and then mapped to the model’s local
coordinate system (right column). For each type of cut, the cutting
volume (purple) and its maximum extents (pink) are shown in both
parameter and model space. The model space mappings u′,v′,w′ of
the parametric dimensions u,v,w are also illustrated on the right.

ples the convex hull of the object and then performs principal com-
ponents analysis (PCA) on the resulting point cloud to determine
the three principal directions of variance. We also allow users to
directly specify three orthogonal model space axes as the principal
axes.

Tubular cutting volumes
Tube cuts are generally defined using a 3D parameter space. The u
axis in parameter space maps to the primary axis of the tube. The v
and w axes then map to the angular and radial components of a polar
coordinate system defined on the normal plane of the Frenet frame
of the primary axis (Figure 8c). Under this mapping, an axis-aligned
u,v,w box corresponds to a cutting volume that removes a wedge
from the structure. To create transverse cutting planes, the v and w
ranges are set to their maximum extents. Thus, transverse tube cuts
are fully parameterized using a 1D parameter space (Figure 8b).

To compute tubular cutting volumes efficiently from their paramet-
ric representation, the system precomputes the primary axis for
each tubular part. At runtime, the system constructs the cutting



volume for a transverse cut by extruding a rectangle at uniformly
spaced intervals along the specified portion of the axis. At each
point along the axis, the rectangle is placed in the normal plane and
made large enough to enclose the tube’s cross-section. To form a
polyhedral solid, the system creates faces connecting the edges of
consecutive rectangles and caps the cutting volume at both ends.
Wedge cutting volumes are computed in a similar fashion by ex-
truding a planar wedge along the primary axis.

Our system computes the primary axis for long, narrow parts us-
ing the skeletal curve construction of Verroust and Lazarus [2000].
They define a skeletal curve as the locus of centroids of the level
sets of surface points computed with respect to their geodesic dis-
tance from an extremal point on the surface. To find an extremal
point, the algorithm picks an arbitrary query point on the surface
and then selects the point that is furthest away from it, in terms of
geodesic distance. The surface vertices are grouped into level set
intervals of increasing geodesic distance from the extremal point,
and the centroids of the vertices within each interval are connected
to form a piecewise linear skeletal curve, which runs along the
length of the tube and roughly passes through its center. The system
computes Frenet frames at the vertices of this curve using discrete
derivatives.

For short, radially symmetric tubes, the skeletal curve is usually not
a good approximation of the primary axis (i.e., the axis of radial
symmetry). For such structures, the system samples the convex hull
of the part and then computes the cylinder that best fits the resulting
point cloud using an iterative least-squares approach [Eberly 2003].
The user can also override the automatic computation and directly
specify the primary axis. In this case the user orients the model so
that the view direction coincides with the desired axis, and then
clicks the point where the axis should be positioned. In this mode,
the author can tell the system to snap the orientation of the specified
axis to run parallel to a nearby canonical axis. Users can also snap
the position of the axis so that it intersects the centroid of the entire
model or the centroid of any individual part.

Window cutting volumes
The mapping for window cuts is defined with respect to a closed
bounding curve on the surface of the part being cut. The bounding
curve represents the maximum extents of the cutting volume. Our
system supports two variants of window cuts.

eroded
curves

u=1

u=0

interpolated
window boundary

Figure 9: Precomputed bounding
curves.

Freeform window cuts are de-
fined by a bounding curve and
a single parameter u that rep-
resents the size of the window
(Figure 8d). Each value of u de-
fines a window boundary that is
computed by eroding the bound-
ing curve along the surface of
the part toward the curve’s cen-
troid, using u as the erosion
parameter. The erosion is per-
formed by moving curve points
inwards along the curve’s normal direction and then smoothing
the curve (by averaging nearby points) to help eliminate self-
intersections. At u = 0, the bounding curve is fully eroded and the
window is fully closed. At u = 1, the window is fully open. To ac-
celerate the computation of this mapping, the system precomputes
bounding curves at uniformly spaced u values (Figure 9) and then
interpolates between them at runtime. From a given window bound-
ary, the system forms a polyhedral cutting volume by first triangu-
lating the region R of the surface enclosed by the window boundary,
and then creating a second copy of these triangles. The two sheets
of triangles are then offset a small amount (we use the average tri-
angle edge length of the surface) in opposite directions normal to

the surface so that they lie on either side of R. Finally, the sheets are
sewn together with triangles to form a closed cutting volume that
completely encloses R.

geodesic
curves

v=0

v=1

u=1

u=0

interpolated
window boundary

Figure 10: Precomputed grid of
geodesic paths.

Four-sided window cuts are de-
fined by a bounding curve that is
partitioned into four segments,
as shown in Figure 8e. Each seg-
ment is an arc-length parameter-
ized curve (normalized to a to-
tal length of one) corresponding
to one of the four surface curves
along u = 0, u = 1, v = 0, and
v = 1, as illustrated in Figure 10.
For a given u,v point, the cor-
responding model space point is the intersection of two geodesic
paths, one connecting the model space points at (u,0) and (u,1),
the other connecting points at (0,v) and (1,v). Thus, a rectangle in
parameter space is mapped to a window boundary in model space
by transforming the four corners into model space points that are
then connected using geodesics. As with freeform window cuts, the
system uses the four-sided boundary to construct a closed polyhe-
dral cutting volume.

To accelerate the mapping for four-sided window cuts, the system
precomputes a grid of geodesic paths that connect the two pairs
of opposing segments at uniformly spaced values of u and v, as
shown in Figure 10. By interpolating within this grid, the system
can quickly compute a model space window boundary from its
parametric representation without having to compute geodesics at
runtime.

sketched
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sketched
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silhouette
segments

computed
geodesic
segment

computed
geodesic
segment

(a) Sketched curves and
computed segments

(b) Four-sided window cut
(fully expanded)

Figure 11: Sketch-based bound-
ing curve construction.

For both freeform and win-
dow cuts, the user can draw
the initial, outermost bound-
ing curve directly on the sur-
face of the part. We also pro-
vide more automated interfaces
for specifying these curves. The
system can automatically com-
pute a freeform window bound-
ary by first determining the re-
gions of the surface that occlude
underlying parts (with respect
to the current viewpoint), and
then computing a closed win-
dow boundary that completely
encloses all of these occluding
regions. For four-sided window
boundaries, the user can sketch
two curves that roughly denote
the extent of the window. The system projects the sketched curves
onto the structure (again using the current viewpoint) and discards
the portions that do not project onto the surface. The system then
computes the four bounding curve segments by connecting the
endpoints of the projected curves using paths that either follow
geodesics or hug the silhouette of the surface, as shown in Fig-
ure 11. A silhouette curve is chosen only if the corresponding end-
points are near the silhouette and the length of the silhouette curve is
within a threshold of the geodesic distance between the endpoints.
Otherwise, the endpoints are connected with the geodesic path.

5.2 Viewpoints

To generate effective cutaway illustrations, our system asks the au-
thor to specify a set of good candidate views during the rigging
process. When the model is examined using our viewing interface,
the system chooses amongst the candidates to determine the best



view for exposing the user-selected set of target structures. The
view selection algorithm takes into account the layering relation-
ships between parts, which we encode as an occlusion graph that is
computed for each viewpoint. The system also uses the occlusion
graph to create inset cuts (Section 5.3).

5.2.1 Occlusion graph

To compute an occlusion graph from a given viewpoint, the sys-
tem first assigns each part to a visibility layer based on the mini-
mum number of occluding structures that must be removed before
the part in question becomes sufficiently visible. This assignment is
performed using an iterative procedure. We begin by initializing the
current set of parts S to include all the parts in the model. We then
repeat three steps until all the parts have been placed in a layer:

1. Render all parts in S
2. Create new layer containing visible parts
3. Remove visible parts from S

In step two, we use an approximate visibility test whereby a part is
considered visible if its visibility ratio (i.e., the ratio of its visible
screen space to its maximum unoccluded screen space) is greater
than an author-specified threshold. For most of our examples, we
set this threshold to 0.9, which ensures that parts that are mostly,
but not entirely visible are placed in the same layer as parts that are
fully visible. If no parts are sufficiently visible to be added to the
current visibility layer, the algorithm adds the part with the high-
est visibility ratio. Figure 12c illustrates the visibility layers for an
example model.

After computing the layering, the system computes an occlusion
graph. For each part P, the algorithm steps through the visibility
layers starting from the layer containing the part and moving to-
wards the viewer. In each layer, the system identifies parts that di-
rectly occlude P with no intervening occluding structures. As with
the visibility test described above, we use an approximate notion of
occlusion whereby a part is identified as an occluder if it occludes
more than 20% of P’s visible screen space area. For each occluder,
a directed edge from the occluder to P is added to the graph. As
shown in Figure 12d, this construction guarantees that edges flow
only from shallower to deeper visibility layers, resulting in a di-
rected acyclic graph (DAG).

5.2.2 View selection

For a given set of target structures, the system evaluates each saved
viewpoint v using a simple metric that considers the projected
screen space pixel area av and the average number of occluders
ov for the targets. To compute av, the system renders just the target
parts from the given viewpoint and counts the number of corre-
sponding pixels. To compute ov, the system considers each target
and traverses the occlusion graph upwards (i.e., against the flow
of the edges) starting at the node corresponding to the target part.
Since the graph is a DAG, this traversal will not encounter any cy-
cles. The system counts the number of traversed nodes and then
computes the average number of occluders for all the targets.

Given these definitions, we define the energy Ev of a viewpoint v as

Ev = 2ov +
Amax −av

Amax
, (1)

where the normalization constant Amax is the size of the applica-
tion window. In accordance with the conventions described earlier,
our energy function penalizes views that result in more occluders.
The ov term is scaled by two so that the number of occluders al-
ways takes precedence over the projected screen space area of the
targets. If ov is the same for two views, the area term breaks the tie.
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Figure 12: Computing constraint graph. (a)-(b) Forearm cross-
section viewed from front and side. (c) Structures sorted into vis-
ibility layers based on depth complexity from specified viewpoint.
(d) Directed edges from occluders to occluded parts are added to
graph. Edges flow only from lower to higher layers. (e) Nodes are
sorted in topological order to produce a set of inset cuts.

After computing Ev for each view, the system chooses the minimum
energy viewpoint.

5.3 Inset constraints

To generate inset cuts from a given viewpoint, the system applies
an inset constraint at each edge of the occlusion graph. Given the
model space cutting volume C of a part, the cutting volume of each
occluded part is constrained to be smaller than C; conversely, the
cutting volume of each occluder is constrained to be larger than
C. Our system supports the propagation of constraints both up and
down the graph to enable the constrained manipulation of cuts, as
described later in Section 7.1. Propagating constraints in both di-
rections allows the system to maintain insets for both the occluded
and occluding structures of the part being manipulated. Based on
the structure of the graph, inset constraints can produce a cascade
of inset cuts, as shown in Figure 12e.

Our system evaluates an inset constraint as follows. Let b2 and m3
be two structures, where m3 is constrained to be inset from b2 (see
Figure 12e). To update m3’s cutting volume given b2’s cutting vol-



(a) No shading (b) Edge shading

(c) Edge shadows (d) Edge shading and shadows

Figure 13: Illustrative shading techniques. Some depth relation-
ships are difficult to interpret when the scene is rendered with a
standard lighting model (a). Edge shading helps convey the orien-
tation of cutting surfaces (b). Edge shadows disambiguate depth
relationships at occlusion boundaries (c). Combining these tech-
niques produces a more comprehensible depiction (d).

ume, the system determines the unoccluded region of m3 and com-
putes the smallest model space cutting volume (i.e., the tightest cut-
ting parameter ranges) for m3 that encloses this region. These cut-
ting parameters are then shifted inwards by a specified inset amount
to ensure that a portion of m3 is visible behind b2. By default, we
set the inset amount to be 5% of the largest dimension of the cutting
volume’s maximum model space extents. This amount is mapped to
parameter space in order to compute the inset. To evaluate the con-
straint in the opposite direction, the system uses a similar method
to ensure that b2’s cutting volume is expanded enough to reveal a
portion of m3.

5.4 Rendering algorithms

Our system renders cutaways using OpenCSG [Kirsch and Döllner
2005], a freely available hardware-accelerated CSG library. If the
input dataset includes 3D textures that model the appearance inside
of parts (e.g., muscle fibre), these textures are mapped onto cut sur-
faces to add visual detail to cross-sectional faces.

In addition, we have implemented several stylized rendering tech-
niques that can make it easier for viewers to understand the shape
and orientation of parts as well as the layering between the parts.
The first two techniques, edge shadows and edge shading, take sev-
eral seconds to compute and therefore are only produced when the
users asks for a high-quality rendering. Real-time depth-cueing and
label layouts are computed at interactive rates in our viewer.

Edge shadows. To render edge shadows, our system scans the depth
buffer to identify pixels that lie on the near side of depth disconti-
nuities (i.e., the side that is closer to the viewer). For each of these
discontinuity pixels, the system determines the set of neighboring
pixels that lie on the far side of the discontinuity and identifies them
as being in the edge shadow. Our system then darkens each edge
shadow pixel based on its image space distance dimg and depth dis-

crepancy ddepth from the near side depth discontinuity pixel. These
values are clamped to [0,Dimg] and [0,Ddepth] respectively. Typi-
cally, we set Dimg to 10 pixels and Ddepth to 0.5% of the entire
model’s average bounding box dimension. For each shadow pixel,
the system computes a scale factor γ that is multiplied with the
pixel’s current color.

γ = s∗
(
|Dimg −dimg|

Dimg

)t
where

s = (1−α)∗ smax −α ∗ smin
t = (1−α)∗ tmax −α ∗ tmin

α = ddepth
Ddepth

The parameter s scales the overall amount of darkening linearly,
and t controls how quickly the shadow falls off with respect to dimg.
Both s and t are restricted to user-specified ranges ([smin,smax] and
[tmin, tmax] respectively), and they both get smaller as ddepth gets
larger. By default, we set the range for s to [0.6,0.9] and for t to
[1,3]. As a result, edge shadows are darker and tighter where the
depth discontinuity is small and are more diffuse where the depth
discontinuity is large.

Edge shading. To generate edge shading, our system identifies pix-
els that correspond to creases (in model space) where two faces of
the same cutting volume meet, or where a cutting surface meets
the exterior surface of a part. For each of these crease pixels, the
system determines the set of neighboring pixels that correspond to
a cutting surface and identifies them as edge shading pixels. The
system computes diffuse shading for each such edge shading pixel
by looking up surface normals that are stored in a corresponding
per-pixel normal map. The pixel’s color is then determined by in-
terpolating between its unshaded (i.e., fully lit) color and its diffuse
shaded value. The interpolation is performed with respect to dimg
so that the edge shading fades farther away from the edge.

Real-time depth-cueing. Our system supports two real-time depth-
cueing effects that make it easier to distinguish parts from one an-
other and to see how they layer in depth. To emphasize silhouettes
and sharp creases, the system first detects these contours by finding
edges in the depth buffer (for silhouettes) and a normal map (for
creases). These edges are then darkened in the final shaded ren-
dering of the scene. To emphasize the relative depth of parts in the
model, the system dims and desaturates objects proportional to their
distance from the viewer. Both effects are implemented as fragment
shaders on the GPU.

Label layout. To generate label layouts in real-time we have im-
plemented the labeling algorithm of Ali et al. [2005]. Their ap-
proach organizes labels into two vertical columns on the left and
right of the illustration and then stacks them in a way that avoids
intersections between leader lines. To make the layout more com-
pact, the system positions labels near the silhouette of the object.
Figures 1,15, and 16 show label layouts produced by our system.

6 Authoring workflow

To create an interactive cutaway illustration, the author rigs the in-
put model using our authoring interface. The rigging process has
two stages. First, each structure is instrumented with the appropri-
ate mapping. Second, the author identifies good viewpoints for gen-
erating cutaway views of the model.

To specify the mappings, the author first categorizes each structure
as either a rectangular parallelepiped, a long narrow tube, a short
radially symmetric tube, or an extended shell. Based on these cat-
egories, the system automatically constructs the appropriate map-
ping for every part in the dataset using the automatic techniques
described in Section 5.1. This operation usually takes just a few
seconds per part.



(a) Unbeveled cuts (b) Beveled cuts

Figure 14: Beveled cuts. The viewer adjusts the amount of bevel-
ing to examine the cut surfaces of three tubular muscles and the
surrounding fat.

After examining the results of the automatic computation, the au-
thor decides which mappings he wants to edit. These modifications
can be performed quickly using the interactive tools described in
Section 5.1. In practice, however, this type of manual editing is
rarely necessary. As reported in Section 8, the automatically con-
structed mapping was used for 90% of the parts for the datasets
shown in this paper.

Next, the author specifies good views for generating cutaway illus-
trations. To save a view, the author simply manipulates the model
to the desired orientation and then clicks a button. The system
automatically constructs an occlusion graph, as described in Sec-
tion 5.2.1, and associates the graph with the specified viewpoint.
In many cases, we envision the author would have enough domain
knowledge to identify good viewpoints a priori. However, the au-
thor can also evaluate a viewpoint by generating cutaways of a few
parts from that view using the automatic cutaway generation inter-
face described in the next section. Typically, two or three views are
sufficient to produce effective cutaway illustrations of all the parts
in the model.

7 Viewing interactive cutaway illustrations

Our viewing interface allows the viewer to interactively explore a
rigged model using both direct manipulation and higher-level inter-
action modes.

7.1 Direct manipulation

Our system allows users to directly resize and move cuts. Dragging
with the left mouse button resizes the cut by snapping the near-
est cutting face to the surface point directly below the mouse posi-
tion. Dragging with the middle mouse button slides the cut without
changing its extent, and holding down a control key constrains the
direction of motion to just one of the free parameter dimensions.

For complicated models, directly manipulating cuts one at a time
can become tedious. Activating inset constraints allows users to
make multiple cuts at once. In this mode when the viewer resizes
or moves a cutting volume, the system updates all the cuts by en-
forcing the inset constraints in both directions throughout the oc-
clusion graph, starting from the part being manipulated. This two-
way propagation of constraints ensures that the insets (and thus, the
layering relationships) both above and below the manipulated part
remain clear during the interaction.

The user can also expand or collapse cuts just by clicking on a
structure. In one mode, the system smoothly opens or closes the
cutting volume of the clicked structure as much as possible with
respect to the inset constraints. In another mode, the system cuts
away or closes entire layers of structures either above or below the
clicked part in the occlusion graph. Expanding cuts in this man-
ner allows the viewers to quickly expose underlying parts. Fast,
animated transitions help emphasize the layering relationships be-
tween structures.

Our system also allows the viewer to bevel (i.e., adjust the angle of)
cuts to expose cross-sectional surfaces, as shown in Figure 14. The
viewer controls the amount of beveling by adjusting a single slider.
In response, the system rotates the faces of the selected cutting vol-
umes towards the viewer.

7.2 Automatic cutaway generation

Although direct interaction enables an immediate exploration ex-
perience, in some situations a higher-level interface may be prefer-
able. For instance, a mechanic might want to see all of the bolts that
fasten two parts together, or an anatomy student might want to ex-
amine a particular muscle without knowing where it is located. To
support such exploration, we developed an automated algorithm for
generating cutaways that expose user-specified target structures.

Once the viewer has selected a set of target parts from a list, the
system chooses a viewpoint using the view selection algorithm de-
scribed in Section 5.2.2 and then solves for a set of cutting parame-
ters in the following way. The model space cutting volume for each
part above a target structure in the occlusion graph is fully expanded
subject to the inset constraints. Conversely, the cuts for the target
structures and all of their descendants are completely closed. This
initialization step exposes the target structures as much as possible.
Next, to provide some context from occluding structures, the algo-
rithm works upwards from the leaves of the occlusion graph, visit-
ing each non-target part and closing its corresponding cutting vol-
ume as much as possible subject to the inset constraints and without
occluding any portion of any target structure.

To make it easier for the viewer to see which parts must be cut to
form the final solved cutaway, the system smoothly animates cuts
by interpolating cutting parameters from their current values. In the
current implementation, the system animates all of the cuts simul-
taneously. As future work, we plan to investigate techniques for
animating the cuts in sequence based on the visibility layers of the
parts in order to emphasize layering relationships.

Once the cuts have been updated, the system partitions the model
into connected components of touching parts and then detects small
components that have been separated from the rest of the model by
the cuts. Since it is difficult for a viewer to interpret how such com-
ponents attach to the rest of the model, they are removed from the
illustration. For the examples shown, we used a threshold of 10% of
the volume of the entire model’s bounding box to identify “small”
components. Finally, the system highlights the target structures by
desaturating the other objects and labels the illustration.

8 Results

We have tested our system on a variety of 3D models as shown
in Figures 1 and 15. All of these results are rendered with edge
shadows, edge shading, depth-cueing and labels. In each cutaway
visualization, the orientation and insetting of the cuts help convey
the geometry and layering of the parts that have been removed. For
example, the wedge cuts in Figure 15c that remove the occluding
portions of the turbine’s nose cone and outer shell also accentuate
the radial symmetry of these parts. In Figure 1b, the insetting of
the long tubular muscles emphasizes the fact that there are multiple
layers of muscle in the neck.

To evaluate the operating range of our system, we automatically
generated cutaway illustrations that expose each part of several
models. Figure 16 shows four of the 27 results for the disk brake
model. Out of the 27 illustrations, we found artifacts in only two,
one of which is shown on the right of Figure 16. In these two cases,
on close inspection we found that the cuts generated by our system
to expose the target part also leave it disconnected from the sur-



(a) Arm (b) Thorax

(c) Turbine (d) Engine

Figure 15: Illustrations generated using our automatic cutaway generation interface. A combination of window and transverse tube cuts
removes the layers of skin, muscle and bone that occlude the target muscle in (a) and the internal organs of the thorax in (b). Extruded angle
tube cuts expose target parts within the turbine (c). Axis-aligned and transverse tube cuts reveal the engine’s crank shaft (d). In (c) and (d),
cut surfaces are highlighted in red.

Model Nlong Nshort Nrect Nshell Nauto Trig
Disk brake 1 24 2 0 24 3m

Turbine 0 37 3 0 36 5m
Engine 22 84 28 0 122 20m
Thorax 39 0 6 4 37 10m

Arm 20 0 0 1 20 3m
Neck 58 0 0 1 58 8m

Table 1: Rigging statistics. For each model, we report the num-
ber of long tubes Nlong, short radially symmetric tubes Nshort , rect-
angular parallelepipeds Nrect , and shells Nshell . We also indicate
the number of parts for which the automatically computed mapping
was used in the final rigged model Nauto. Finally, we report the user
time (in minutes) required to rig each model Trig.

rounding parts, making it difficult for viewers to understand how
the target relates spatially to its neighbors.

In terms of authoring effort, none of the models took more than 20
minutes to rig (see Table 1). The most time-consuming step was
identifying the type of cut to use for each part in the dataset. How-
ever, even for the engine model, which contains well over one hun-
dred parts, this entire process took less than 5 minutes.

As shown in Table 1, the system automatically computes good map-
pings for 90% of the parts. For the remaining 10% of parts, we were
able to specify a suitable mapping interactively in just a few sec-
onds. In most cases, this manual rigging was used to create wedge
cut mappings for parts that are clearly derived from cylinders but
exhibit a low degree of radial symmetry (e.g., parts that resemble
incomplete cylinders). In a few cases, we manually oriented the box
cut mappings for parts whose principal axes do not correspond to
the desired box cut axes. Finally, for some parts, we overrode the
automatically computed window cut mappings using our system’s
sketch-based rigging tools, which give the author more control over
the shape of the window boundary.

Although we have not conducted a formal user study, we have
demonstrated our system to medical educators and illustrators, ar-
chitects, and airplane engineers. All of the people we spoke with
were excited about the system’s ability to effectively expose the
internal structure of complex 3D datasets. Furthermore, the medi-
cal educators we interviewed said they would be willing to invest
some of the effort that they typically spend preparing class materi-
als to creating interactive cutaway illustrations that could be used
as teaching aids and study guides. This informal feedback suggests
that our system could be a useful and practical tool for creating and
viewing 3D datasets in a variety of scenarios. As future work, we



Figure 16: Automatically generated cutaway views of disk brake model. We generated an illustration for each of the 27 parts in the model.
Here, we show four representative images that use both saved viewpoints. The image on the right shows an artifact; the cuts that expose the
target part also leave it disconnected from the surrounding parts. Out of the 27 illustrations, one other exhibited a similar artifact.

would like to further validate our system with a more formal user
evaluation.

9 Conclusions and future work

In this paper, we have introduced an approach for incorporating cut-
ting conventions from traditional illustration into an interactive vi-
sualization system. The authoring and viewing techniques we have
developed allow interactive cutaway illustrations of complex mod-
els to be authored with a small amount of user effort, and to be
explored in a simple and natural way. We believe our interactive
cutaway illustrations would be invaluable in educational material
for medical students, repair documentation for airplanes and cars,
technical manuals for complex machinery, and in fact, any scenario
where static illustrations are currently used.

We see several opportunities for future work:

Figure 17: Illustration of Boy’s
surface with window cuts.

Experimenting with other types
of 3D models. We are eager
to extend our techniques to
work for complex 3D models
in more specialized domains,
including mathematics and ar-
chitecture. Although in some
cases our cutting tools can al-
ready be used to create rea-
sonable illustrations of such
datasets (see Figure 17), we
believe more domain-specific
techniques could be developed
to generate better visualizations.
For instance, visualizations of
mathematical surfaces exhibit a
variety of interesting cutting and shading conventions for conveying
surface orientation and self-intersections.

Extending authoring tools. Although our authoring interface
makes it possible to create interactive cutaway illustrations with
little user effort, we believe the rigging process could be further
streamlined. We would like to explore more automatic techniques
for determining the geometric type of parts. In addition, we believe
we could leverage existing work on view selection algorithms to
suggest good viewpoints to the author. We would also like to inves-
tigate geometric filtering techniques that would allow our system
to handle a wider range of datasets, including those that contains
cracks.

Exploring other illustration modalities. Finally, we would like to
experiment with and integrate other illustration modalities, such as
peeled-away structures, exploded views, and so on. In many illus-

trations, these other techniques are combined with cuts to produce
effective visualizations.
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