
Line drawings via abstracted shading
Yunjin Lee, Lee Markosian

University of Michigan
Seungyong Lee

POSTECH
John F. Hughes

Brown University

(a) tone image (b) toon shading (c) toon shading + lines (d) new lighting (e) new lighting and view

Figure 1: (a) A tone image. (b) Toon shading captures broad tonal regions, and some thin ones. (c) Lines complement toon shading,
emphasizing thin tone regions and tone boundaries. (d) Lines respond to new lighting, or (e) to new lighting and viewpoint.

Abstract

We describe a GPU-based algorithm for rendering a 3D model as
a line drawing, based on the insight that a line drawing can be
understood as an abstraction of a shaded image. We thus render
lines along tone boundaries or thin dark areas in the shaded image.
We extend this notion to the dual: we render highlight lines along
thin bright areas and tone boundaries. We combine the lines with
toon shading to capture broad regions of tone.

The resulting line drawings effectively convey both shape and
material cues. The lines produced by the method can include
silhouettes, creases, and ridges, along with a generalization of
suggestive contours that responds to lighting as well as viewing
changes. The method supports automatic level of abstraction,
where the size of depicted shape features adjusts appropriately as
the camera zooms in or out. Animated models can be rendered in
real time because costly mesh curvature calculations are not needed.

1 Introduction

Depicting shape by line-drawing is clearly effective and natural,
having been used for tens of thousands of years. Lines like
silhouettes (where the view direction is tangent to the surface) and
creases (where the surface normal changes abruptly) are common,
but artists also use other lines that somehow capture more about
shape, especially when rendering organic, free-form surfaces.

Recently, DeCarlo et al. [2003; 2004] described “suggestive con-
tours,” a new type of line that can be combined with silhouettes to
produce effective line drawings of smooth shapes. They described
two algorithms for rendering these. The first is an object-space al-
gorithm that computes a subset of points on the surface where ra-
dial curvature is zero. The second is an image-space algorithm that
operates on a diffuse-shaded rendering of the scene using a single
point light at the camera. It outputs lines where the tone has a suf-
ficiently sharp local minimum in one direction.

While suggestive contours convey shape well, they have some
limitations. The object space algorithm does not account for
how large the object appears in the image, and so may depict
features that are too large or small for the current view. Suggestive
contours do not depend on lighting or material properties, which is
undesirable when we want the lines to reinforce existing lighting
and material cues, as when some form of shading is used in
combination with the lines. (See Figure 1.)

This leads us back to the question: What lines should we draw?
We return to the shaded image itself as a more direct motivation
for identifying important lines, and observe that a line drawing can
be understood as an abstraction of the shaded image. This makes
sense: if you want to convey shape effectively, but can only afford
to draw a sparse set of lines, a good strategy might be to choose
lines that convey the essential features of the shading, then rely on
our visual system to interpret the shading and infer the shape.

Good candidates for “essential features” are (1) boundaries between
dark and light regions, and (2) thin areas of shading that are well-
approximated by lines. Indeed, the image-space suggestive contour
algorithm [DeCarlo et al. 2003] detects thin dark regions in a
diffuse-shaded rendering of the scene with a single point light at
the camera. (In a sense, the lines “abstract” this particular shading.)

Based on these observations, we developed the following algo-
rithm. In the first pass, we render a greyscale “tone image” de-
scribing how the scene is illuminated, then blur it and save it to
texture memory. In the second pass, we use a fragment shader on
the GPU to render dark lines in thin areas of dark tone.



(a) (b) (c) (d)

Figure 2: Comparison with traditional drawings. Drawings by Karen Winters: (a) and (c). Our results: (b) and (d). In both cases, dark and
highlight strokes together convey a sense of shape and material properties.

A logical extension is to render light-colored “highlight lines” in
thin areas of light tone, a technique used by artists (see Figure 2).
This works, though we usually set a higher threshold for detecting
these highlight lines, so just the strongest appear. We treat specular
highlights specially. These are important features of the shading
that convey material cues, but we found they are often masked
by broad regions of moderately bright diffuse shading. We thus
render specular highlights in a separate channel of the tone image,
then extract highlight lines from both channels. With this change,
specular highlights are captured more reliably, and help convey
material shininess. The non-specular highlight lines are also useful
– note the “halo” effect where the hand occludes part of the upper
body in Figure 2b. (We discuss this further in Section 4.)

An added control lets the user include lines along tone boundaries
(the first “essential feature”), which often occur along silhouettes
and creases (including rounded ones). The last step in abstracting
the shaded image is to combine dark and highlight lines with a toon
shaded “base coat” to convey broad areas of dark and light.

The resulting line drawings convey shape well, are temporally co-
herent in animations, and can be rendered interactively on pro-
grammable GPUs. In addition, the algorithm has these benefits:

• Like other image space approaches, it selects lines at appro-
priate scales automatically (see Figures 6b and 8f).

• It does not require costly mesh curvature information, and so
can be applied to animated models in real time.

• It depends on lighting, so lines provide lighting cues.

• It can extract highlight lines, which provide additional cues
about shape and material properties.

• It supports limited fading and tapering for smoother and more
temporally coherent lines.

The method has limitations as well. Depending on lighting,
important shape features may be conveyed poorly. Rendered lines
contain some pixel-level artifacts and may look a bit “ratty.” There
are limited options for stylization, since lines are extracted per-
pixel. Additional processing would be needed to extract explicit
lines suitable for more sophisticated stylization.

2 Related work

The first paper on suggestive contours [DeCarlo et al. 2003] con-
tains a good review of the prior art in rendering line drawings.
Particularly relevant to both suggestive contours and this work are
the “formulated silhouettes” of Whelan and Visvalingam [2003], in
which terrains are rendered with silhouettes plus lines that represent
silhouettes from a lower viewpoint.

Saito and Takahashi [1990] used image processing operations to
extract silhouettes, creases, and other lines. Creases were optionally
rendered as highlights to suggest a specular quality, a technique
later used by Gooch et al. [1999] in their work on technical
illustration.

Pearson and Robinson [1985] described lines dependent on view
and lighting. They seek thin dark regions in an image lit by a
single source in the same horizontal plane as the view vector. We
generalize to any light source, and detect other features of the tone
image as well.

Ni et al. [2006] applied the object-space suggestive contour algo-
rithm to a multi-scale mesh that smoothly adapts its detail to suit
the viewing conditions. While effective, the multi-scale represen-
tation requires preprocessing time to build, plus significantly more
memory at run-time than the original mesh.

In these proceedings, Judd et al. [2007] present a new object-space
definition of lines, “apparent ridges,” that extracts ridges using a
view-dependent measure of curvature. The lines are related to the
shaded image: they appear where the surface is most likely to reveal
high shading contrast under arbitrary lighting. Like suggestive
contours, the lines are independent of the particular lighting used
at run-time. A limitation is that frame rates are relatively low due
to the time spent computing view-dependent curvature.

Recently, DeCarlo and Rusinkiewicz [2007] developed an exten-
sion to suggestive contours that detects two kinds of highlight lines
using an object space algorithm. The lines appear where diffuse
shading would yield thin bright areas, using a single point light lo-
cated at the camera. Our highlights are similar, but correspond to
diffuse and specular highlights under arbitrary illumination.



3 Rendering lines

The rendering makes two passes: the first to render the tone image,
which is copied from the frame buffer to a texture, and the second to
detect ridges and valleys in the tone image, using a GLSL fragment
shader [Rost 2006]. Its main job is to compute an opacity used to
composite the line color into the frame buffer. Opacity is set to 0
when no line is near. Otherwise, it can depend on several measures
of confidence. A simple GUI in our system lets the user choose line
color, width, and other parameters described below.

3.1 Ridge detection

The ridge detection method we use has been widely used by others
before us. Steger [1998] provides a survey of that and related
methods. We explain the details here for completeness.

The lines we wish to capture correspond to ridges and valleys in the
tone image, viewing it as a height field. We thus compute principal
curvatures, and detect a ridge or valley when the magnitude of one
curvature is sufficiently large, and the other is sufficiently small. We
use a standard representation of tone: 1 is white and 0 is black. If
the height field surface normals point down, then on a ridge (seen as
a highlight) the curvature with larger magnitude is negative, while
in a valley (seen as a dark line) it is positive.

At each pixel, the fragment shader first fits a degree-2 polynomial
f (x,y) = a0x2 + 2a1xy + a2y2 + a3x + a4y + a5 to the tone values
near the pixel, then computes curvature analytically. We use a local
parameterization so that (0,0) corresponds to the pixel center, and
compute the coefficients of f via least squares as follows.

Given n sample locations (xi, yi) in a neighborhood of the pixel,
with corresponding tone values ti taken from the image, we con-
struct the n× 6 matrix X made up of rows: (x2

i 2xiyi y2
i xi yi 1).

The n samples determine the set of equations: XA = T , where A
is the 6×1 column vector of unknown coefficients ai, and T is the
n×1 vector of tone values ti. We then solve for A via least squares:
A = (XT X)−1XT T . Because we use a local parameterization, the
matrix H = (XT X)−1XT is constant and can be computed off-line
and hard-coded into the program. To solve for A at run time, we
simply multiply the 6×n matrix H with the n×1 tone vector T . De-
noting the point (x, y) by x, we can express f (x) as the quadratic
form Q(x) = (x− c)T M(x− c) plus a constant term, where

M =
(

a0 a1
a1 a2

)
, and c =−1

2
M−1(a3 a4)T .

The eigenvalues and eigenvectors of M are the principal curvatures
and directions of f at c. The ridge or valley is the line through c in
the low-curvature direction. If that curvature is 0, M is singular and
we can’t compute c, but the line is still defined. It lies at distance
−(a3 a4)·u

2λ
from the pixel in direction u, where λ is the nonzero

eigenvalue and u is the corresponding unit-length eigenvector.

3.2 Ridge searching

In practice we use 9 sample points arranged in a 3×3 grid around
the pixel location, with spacing set to half the desired line width
w. To reduce sampling artifacts, the preparation of the tone image
includes a blurring step using a Gaussian kernel of size w.

Based on the distance to the ridge or valley line and its first principal
curvature, the original pixel belongs to one of four cases, as shown
in Figure 3: (a) a pixel on a ridge or valley, (b) a pixel near a ridge
or valley, (c) a pixel in a smooth region, and (d) a pixel on an edge.
In case (c) we simply set opacity to 0. For the others, we explain
only the case of a ridge, since the valley case is symmetric.

(a) (b)

(c)

(a)

(b)

(d)

(c)

Image plane

View point

Image plane

View point

Figure 3: Ridge searching. Red dotted curves show the fitting
polynomials. By refitting the polynomials after moving toward the
ridge or valley, we can distinguish case (b) from case (d).

In both cases (b) and (d) in Figure 3, the polynomial f (measured
at the pixel and shown as red dotted curves in the figure) shows
a nearby ridge. We use an iterative search method to distinguish
the two cases. We move toward the detected ridge line, then solve
for f at the new location and measure curvature and distance to
the new ridge. We repeat this process several times (5 in our
implementation) and set opacity to 0 if the computed curvature falls
below a threshold, or the total distance travelled exceeds half the
line width. Otherwise we set opacity to 1 (see Figure 5b).

During this iterative search, if at each step we move the full distance
to the ridge, tone edges (case (d)) will not be drawn. If we do not
move at all, tone edges will be drawn along with ridges and valleys.
(Note that tone edges very often include silhouettes and sharp or
rounded creases – see Section 4.) A compromise – moving by a
fraction β of the full distance – keeps only strong edges. We give
the user control of this fraction β ∈ [0,1] (see Figure 4). For the
examples in this paper we usually used values between 0.1 and 0.3.

(a) tone image (b) β = 0.0

(c) β = 0.3 (d) β = 1.0

Figure 4: For small β , we detect tone edges along with ridges. For
large β , we detect only ridges. In between, we detect strong edges.

3.3 Control of line opacity

During ridge searching, we accept or reject a pixel by setting the
opacity to 1 or 0. To produce smoother lines, and prevent them from
appearing abruptly when the viewpoint or lighting changes, we can
replace the single threshold with lower and upper thresholds, cl and
cu. We stop early if c < cl , where c is the magnitude of the larger
principal curvature. After the iteration, we set opacity to 0 if c < cl ,
and to 1 if c > cu. Otherwise, we use (c− cl)/(cu− cl). Figure 5c
shows lines drawn with controlled opacity.

We can also vary line opacity with distance to the ridge line. That
is, we let opacity drop off as distance to the ridge approaches half
the line width. This is shown in Figure 5d.



(a) (b) (c) (d) (e)

Figure 5: The tone image (a) is used to render lines with a hard threshold based on curvature (b). A soft threshold yields smoother lines (c),
as does fading the line near its edges (d). Counterchange, shown in (e), reduces opacity more or less, depending on the underlying tone.

To enhance dark lines, we draw them lighter in light areas, so
they appear comparably darker in dark areas, an effect known as
“counterchange” [Ruskin 1971]. To achieve this (and a similar
effect for highlight lines), we multiply the opacity by 1−t for a dark
line and by t for a highlight line, where t is the pixel’s tone value.
Figure 5e shows this effect. In practice, we usually applied the three
effects together (smooth curvature threshold, distance to line, and
counterchange), by using the product of the three opacities.

3.4 Level of abstraction

Like other image space approaches, our method selects lines at
appropriate scales automatically (see Figure 6b). To provide a depth
cue, we can reduce line width for distant surfaces as in Figure 6c,
where we also used “abstracted normals” [Barla et al. 2006] to
render the tone image and toon base coat. Figure 7 shows line width
adjusted by average edge length at each vertex. Thinner lines are
used in finely tessellated regions.

(b) automatic control

(a) initial view (c) control by depth

Figure 6: Varying levels of abstraction. (a) Initial view. (b) For a
given line width, a greater level of abstraction results automatically
when zoomed out, since coarser (more “essential”) shape features
are conveyed. In (c) we reduce line width as depth increases, and
use abstracted normals in the tone image and toon base coat.

4 Results and discussion

The images in this paper and accompanying video show that our
method can produce effective line drawings of complex shapes
in a range of styles (see Figure 8) based on relatively simple but
effective controls. The lines generalize suggestive contours, and
provide cues about shape, lighting, and materials. They work well
when combined with toon shading, which often anticipates and
extends the lines, and both evolve smoothly and naturally together
as the shape, lighting, or camera changes.

The method reliably finds silhouettes and creases (even rounded
ones) when a low value for β is used (see Section 3.2), because
usually there is a strong change of tone across the silhouette or
crease (the tone image background is white). This also explains
the “halo” effect mentioned previously and observable in Figure 2b
and images in the top row of Figure 8 – highlight lines appear over
partially occluded surfaces near the occluding silhouette, providing
natural contrast enhancement along those important lines.

The method can render complex models at real-time rates (includ-
ing animated models, as shown in the video). We tested our shader
with an NVIDIA GeForce 7900 GT GPU. With the model filling a
quarter to a half of an 800×600 window, frame rates ranged from
20 to 7 fps for models with 60K to 200K triangles, respectively.
Much of the time is taken by the preparation of the tone image,
especially the blurring step.

Our algorithm does not extract lines explicitly in vector form, so
options for stylization are limited. We can incorporate a degree of
media simulation using the “paper effect” of Kalnins et al. [2002],
applied to lines and shading as shown in Figures 2b, 2d, 8c, and 8d.

Dependence on lighting can be a limitation, since important fea-
tures will not be depicted with some lighting setups. On the other
hand, scene designers can customize the lighting to convey desired
features clearly. Extracting lines from the tone image adds flex-
ibility and opens the possibility of achieving better line drawings
through global illumination and other new ways to compute tone.

(a) (b) (c)

Figure 7: Level of abstraction based on edge length. (a) input mesh.
(b) Constant line width. (c) Line width varies with edge length.

Acknowledgments

We thank Karen Winters (karenwinters.com) for permission to use her drawings in
Figure 2. This research was supported in part by the ITRC support program, the Korea
Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-
2006-214-D00138) in Korea, and the NSF (CCF-0447883).



(a) Hebe, David, and Athena (b) Dama (c) Horse

(d) Bunny (e) Hippo (f) Zoom-in/out of landscape

Figure 8: Line drawings rendered in various styles, depending on line color, width, and other controls provided in our system.

References

BARLA, P., THOLLOT, J., AND MARKOSIAN, L. 2006. X-toon: an
extended toon shader. In Proceedings of NPAR 2006, 127–132.

DECARLO, D., AND RUSINKIEWICZ, S. 2007. Highlight lines for
conveying shape. Working manuscript.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND
SANTELLA, A. 2003. Suggestive contours for conveying shape.
ACM Transactions on Graphics 22, 3, 848–855.

DECARLO, D., FINKELSTEIN, A., AND RUSINKIEWICZ, S. 2004.
Interactive rendering of suggestive contours with temporal co-
herence. In Proceedings of NPAR 2004, 15–24.

GOOCH, B., SLOAN, P.-P. J., GOOCH, A., SHIRLEY, P., AND
RIESENFELD, R. 1999. Interactive technical illustration. 1999
ACM Symposium on Interactive 3D Graphics, 31–38.

JUDD, T., DURAND, F., AND ADELSON, E. H. 2007. Apparent
ridges for line drawing. ACM Transactions on Graphics 26, 3.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI,
M. A., LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES,
J. F., AND FINKELSTEIN, A. 2002. WYSIWYG NPR: Drawing
strokes directly on 3D models. ACM Transactions on Graphics
21, 3, 755–762.

NI, A., JEONG, K., LEE, S., AND MARKOSIAN, L. 2006. Multi-
scale line drawings from 3D meshes. In Proceedings of the 2006
Symposium on Interactive 3D Graphics and Games, 133–137.

PEARSON, D., AND ROBINSON, J. 1985. Visual communication
at very low data rates. Proc. the IEEE 73, 4, 795–812.

ROST, R. J. 2006. OpenGL Shading Language, Second Edition.
Addison Wesley Professional.

RUSKIN, J. 1971. The Elements of Drawing. Dover Publications.

SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering
of 3D shapes. Proceedings of SIGGRAPH 90, 197–206.

STEGER, C. 1998. An unbiased detector of curvilinear structures.
IEEE Transactions on Pattern Analysis and Machine Intelligence
20, 2, 113–125.

WHELAN, J., AND VISVALINGAM, M. 2003. Formulated
silhouettes for sketching terrain. In Proc. Theory and Practice of
Computer Graphics, 90–96.


