

Protein-Ligand Site Analysis							
Secondary stru	Secondary structure type						
Alpha helix Beta sheet Coil	Catalytic Residues 28% 22% 50%	All Residues 47% 23% 30%					
% Ca	talytic residues (as compared in data set with 178 enz	to all residues) ymes					
		[Bartlett02]				

Distributions of pro	perties:		
Surface cavity property	Category	Drug-binding cavities	Non drug-binding eavit
Cavity rank ^a	Size	1.89 ± 2.07	8.88 ± 5.4
Number of residues ^b	Size	22.8 ± 14.3	7.31 ± 5.4
Number of atoms ^c	Size	85.0 ± 62.4	18.7 ± 21.2
Smallest moment of inertia ^d	Size/shape	$1.7 \times 10^4 \pm 2.5 \times 10^4$	$1.2 \times 10^3 \pm 8.3 \times 1$
Depth standard deviation ^e	Size/shape	2.3 ± 1.1 (Å ³)	0.75 ± 0.45
Maximum depth ^f	Size/shape	10.5 ± 4.0 (Å)	4.75 ± 1.67
Average depth ^g	Size/shape	5.3 ± 1.9 (Å)	3.2 ± 0.7
Normalized smallest moment of inertia ^h	Shape	17.0 ± 11.7	3.9 ± 5.3
 Proportion of cavity at depth between [6.5, 6.75) 	Shape	0.02 ± 0.013	0.003 ± 0.001
Largest moment of inertia	Size/shape	$1.6 \times 10^4 \pm 8.4 \times 10^4$	$2.8 \times 10^{3} \pm 1.6 \times 1$
Average side-chains residual entropy ^k	Rigidity	-0.41 ± 0.18 (keal)	-0.55 ± 0.25
Average curvature ¹	Shape	-49.0 ± 8.3	-57.0 ± 13.1
Maximum curvedness ^m	Shape	6.4 ± 2.9	4.0 ± 4.9
Maximum mean curvature ⁿ	Shape	5.3 ± 2.6	3.5 ± 4.2
Curvedness < 0.5 ^o	Shape	0.35 ± 0.04	0.29 ± 0.08
Proportion of proline ^p	Amino acid composition	0.019 ± 0.028	0.04 ± 0.09
Proportion of cavity with logP between [-1, 0] ⁴	Hydrophobicity	0.09 ± 0.07	0.15 ± 0.16
Side-chain residual entropy standard	Rightly	0.43 ± 0.18 (Real)	0.55 ± 0.17

References

[Bartlett02]	G.J. Bartlett, C.T. Porter, N.Borkakoti, J.M. Thornton, "Analysis of catalytic residues in enzyme active sites," J. Mol. Biol, 324, 1, 2002, pp. 105-121.
[Bate04]	P. Bate, J. Warwicker, "Enzyme/non-enzyme discrimination and prediction of enzyme active site location using charge-based methods," J Mol Biol, 340, 2, 2004, pp. 263-276.
[Boas00]	F.E. Boas and R. Altman, "Predicting protein binding sites", 2000, http://www.stanford.edu/-boas/science/predicted_binding_sites/binding_site.pdf
[Liang98]	J. Liang, H. Edelsbrunner, P. Fu, P. V. Sudhakar, S. Subvamaniam, "Analytical shape computing of macromolecules I: molecular area and volume through alpha shape," <i>Proteins</i> , 33, 1998, pp. 1-17.
[Campbell03]	S.J. Campbell, N.D. Gold, R.M. Jackson, D.R. Westhead, "Ligand binding functional site location, similarity and docking," Curr Opin Struct Biol, 13, 2003, pp. 389-395.
[Elcock01]	A.H. Elcock, "Prediction of functionally important residues based solely on the computed energetics of protein structure," J. Mol. Biol., 312, 4, 2001, pp. 885-896.
[Gutteridge03]	A. Gutteridge, G.J. Bartlett, J.M. Thornton, "Using a neural network and spatial clustering to predict the location of active sites in enzymes," J Mol Biol, 330, 2003, pp. 719-734.
[Jones03]	Susan Jones, Hugh P. Shanahan, Helen M. Berman, and Janet M. Thornton, "Using electrostatic potentials to predict DNA-binding sites on DNA-binding proteins," Nucleic Acids Res. 2003 December 15; 31(24): 7189– 7198.
[Nayal06]	M. Nayal, B. Honig, "On the nature of cavities on protein surfaces: Application to the identification of drug- binding sites, "Proteins: Structure, Function, and Bioinformatics, 63, 4, 2006, pp. 892-906.
[Nimrod05]	G. Nimrod, F. Glaser, D. Steinberg, N. Ben-Tal, T. Pupko, "In silico identification of functional regions in proteins," Bioinformatics, 21 Suppl., 2005, pp. i328-i337.
[Young94]	L. Young, R.L. Jernigan, D.G. Covell, "A role for surface hydrophobicity in protein-protein recognition," Protein Sci, 3, 5, 1994, pp. 717-29.