THE SEMANTICS OF A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING

Gilles KAHN
IRIA-Laboria, Domaine de Voluceau, 78150
Rocquencourt, France

and

Commissariat à l'Energie Atomique, France

In this paper, we describe a simple language for parallel programming. Its semantics is studied thoroughly. The desirable properties of this language and its deficiencies are exhibited by this theoretical study. Basic results on parallel program schemata are given. We hope in this way to make a case for a more formal (i.e. mathematical) approach to the design of languages for systems programming and the design of operating systems.

There is a wide disagreement among systems designers as to what are the best primitives for writing systems programs. In this paper, we describe a simple language for parallel programming and study its mathematical properties.

1. A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING.

The features of our mini-language are exhibited on the sample program S on fig.1. The conventions are close to Algol and we only insist upon the new features. The program S consists of a set of declarations and a body. Variables of type integer channel are declared at line (1), and for any simple type o (boolean, rel, etc.) we could have declared a o channel. Then processes f, g and h are declared, much like procedures. Aside from usual parameters (passed by value in this example, like INIT at line (3)), we can declare in the heading of the process how it is linked to other processes: at line (2) f is stated to communicate via two input lines that can carry integers, and one similar output line.

The body of a process is an usual Algol program except for invocation of wait on an input line (e.g. at (4)) or send a variable on a line of compatible type (e.g. at (5)). The process stays blocked on a wait until something is being sent on this line by another process, but nothing can prevent a process from performing a send on a line. In other words, processes communicate via first-in first-out (fifo) queues.

Calling instances of the processes are done in the body of the main program at line (6) where the actual names of the channels are bound to the formal parameters of the processes. The infix operator par initiates the concurrent activation of the processes. Such a style of programming is close to may systems using EVENT mechanisms ([1],[2],[3],[4]). A pictorial representation of the program is the schema P on fig.2., where the nodes represent processes and the arcs communication channels between these processes.

What sort of things would we like to prove on a program like S ? Firstly, that all processes in S run forever. Secondly, more precisely, that S prints out (at line (7)) an alternating sequence of 0's and 1's forever. Thirdly, if one of the processes were to stop at some time for an extraneous reason, the whole system would stop. The ability to state formally this kind of property of a parallel program and to prove them within a formal logical framework is the central motivation for the theoretical study of the next sections.

2. PARALLEL COMPUTATION.

Informally speaking, a parallel computation is organized in the following way: some autonomous computing stations are connected to each other in a network by communication lines. Computing stations exchange information through these lines. A given station computes on data coming along its input lines,
using some memory of its own, to produce output on some or all of its output lines. It is assumed that:
1) Communication lines are the only way by which computing stations may communicate.
2) A communication line transmits information within an unpredictable but finite amount of time.
3) Restrictions are imposed on the behaviour of computing stations:
4) At any given time, a computing station is either computing or waiting for information on one of its input lines.

Each computing station follows a sequential program. (We call here sequential program what is usually called a program elsewhere).
Remarks: first, since several computing stations may be computing simultaneously, this model indeed exhibits some form of parallelism. Second, restriction (iii) means that a computing station cannot be waiting on data coming from one or another of its input lines, or alternately that no two computing stations are allowed to send data on the same channel.
Third, we do not restrict the computing stations to have a finite memory.

The reader who is mathematically inclined can think of a set of Turing machines connected via one-way tapes, where each machine can use its own working tape.

We formalize now the notion of parallel computation introduced above.

2.1. Syntax

A parallel program scheme is an oriented graph with labeled nodes and edges, together with some supplementary edges (see Fig. 3.1): incoming edges with only end vertices, meant to represent the input lines, and outgoing edges, with only origin vertices, the output lines.

2.2. Semantics

2.2.1. Outline

Edges in a scheme are thought of as pipes: each edge is able to carry data of a given type (e.g., integer, boolean, pointer, procedure, etc.).

An observer placed on the line witnesses its traffic, a (possibly infinite) sequence of objects of type D: it is called the history of the line. Since a computing station has its own memory, it is not a partial function from the domains of the inputs into the domain of the outputs, but rather a function from the histories of its input lines into the histories of its output lines.

2.2.2. Sequence domains

Let D^ω be the set of finite or denumerable infinite sequences of elements over a set D. In D^ω we include the empty sequence λ. The relation \subseteq defined by $X \subseteq Y$ if X is an initial segment of Y is a partial order on D^ω. The minimal element of D^ω is λ. Any increasing chain C in D^ω has a least upper bound which we call $\lim C$. Hence D^ω is a complete partial order (c.p.o).

2.2.3. Domain of interpretation

To each edge e in a scheme, we associate a set D_e, the type of the objects it may carry. The history of line e is then an element of D_e.

2.2.4. Continuous mappings

A mapping f from a complete partial order A into a complete partial order B is continuous iff, for any increasing chain a of A

$$f(\lim a) = \lim f(a)$$

A B

Note that a continuous mapping is also monotonic, i.e.

$x \leq y \Rightarrow f(x) \leq f(y)$

The following mappings: F(for first), R(for remainder) and A(for append) are examples of continuous mappings:

- F : to any sequence x in D^ω, F associates the (unit length) sequence constituted of the leftmost element of x.

Fig. 3. A parallel program schema.

$$a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow a_4$$

Fig. 4. The complete partial order D^ω, when $D=(a_1, a_2, \ldots)$

- R : to any sequence x in D^ω, R associates the sequence of the right of its leftmost element.

- A : takes two arguments L_1 and L_2 in D^ω to produce the sequence : (leftmost element of L_1) followed by L_2.

More precisely, F, R, and A obey the axioms:

1) $F(x) = \lambda$ 2) $A(x, x) = \lambda$ 3) $A(x, \lambda) = F(x)$
4) $F(A(x, y)) = F(x)$ 5) $A(F(x), R(x)) = x$
6) $x = \lambda \Rightarrow A(R(x)) = x$

For properties such as deadlock, we shall need to talk formally about the length of a sequence. An elegant way to do so within our formalism is to take the integers with their usual order and complete them with an extra element ω to obtain the complete partial order \bar{N} (fig. 5).

The mapping length from D^ω to \bar{N} which maps a sequence into its length is continuous; note also that addition in \bar{N} is continuous.

2.2.5. Computing stations

We are now ready to interpret the nodes in a parallel schema. To each node with input lines carrying data in D_1, D_2, \ldots, D_n and producing data in D_1', D_2', \ldots, D_p' we associate p continuous functions from $D_1^\omega \times D_2^\omega \times \ldots \times D_n^\omega$ into (respectively) $D_1'^\omega, D_2'^\omega, \ldots, D_p'^\omega$.

For example, in fig. 6, we specify two continuous functions f_1 and f_2 in order to interpret node f:

- f_1 : $D_1^\omega \times D_2^\omega \times D_3^\omega \rightarrow D_1'$
- f_2 : $D_1^\omega \times D_2^\omega \times D_3^\omega \rightarrow D_2'$

Fig. 5. The c.p.o \bar{N}.

![Fig. 6.](image-url)

Fig. 6.
Examples:

The process f of program S is associated to the continuous function f in $\mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^n$ defined recursively by:

$$f(U, V) = A(F(U), A(P(V), x(R(U), x(V))))$$

The process g is associated to two functions, one per outline, defined recursively by:

$$g_1(U) = A(F(U), g_2(R(U), V))$$

$$g_2(U) = A(F(U), g_2(R(U), V))$$

Similarly, the function h maps \mathbb{R}^n into \mathbb{R}^m:

$$h_U(x) = A((x), U)$$

where x is in \mathbb{N} and the notation $\{x\}$ means the unit length sequence whose first element is x.

In these examples, not much computation is actually performed on the inputs, but an arbitrary amount of computation could be performed by a computing station, requiring possibly an unbounded amount of memory. The restriction of the interpretation of nodes to continuous functions can be understood in concrete terms:

a) Monotonicity means that receiving more input at a computing station can only provoke it to send more output. Indeed this is a crucial property since it allows parallel operation: a machine need not have all of its input to start computing, since future input concerns only future output.

b) Furthermore continuity prevents any process from deciding to send some output only after it has received an infinite amount of input.

Any process written in the simple programming language of section 1 corresponds to a set of continuous functions. The recursive definition of these functions is obtained by the usual method of McCarthy for converting flow-chart programs to recursive definitions.

3. FIXPOINT EQUATIONS.

Rather than studying the behaviour of a complex machine, we want to study the properties of the solution of a set of equations. To each parallel program (i.e., interpreted schema) we associate a set Σ of equations on sequence domains in such a way that a set of sequences is a possible solution of the system iff it is a possible set of histories for the communication's lines of the program:

1) To every line e_i of type D_e associate a variable X_i ranging over D_e.

2) If $X_1, X_2, ..., X_n$ are the variables associated to the input lines and $i_1, ..., i_k$ are the sequences fed as inputs on the lines include the equations:

$$X_{i_1} = i_1$$

$$X_{i_k} = i_k$$

3) For each node f, interpreted with the functions $f_1, ..., f_m$ with input variables $X_1, ..., X_n$, output variables $X_1', ..., X_p$, include p equations in Σ:

$$X_1' = f_1(X_1, ..., X_n)$$

$$X_p' = f_p(X_1, ..., X_n)$$

Clearly, the histories of the lines of the program P have to satisfy the system Σ. Σ is a set of fixpoint equations over c.p.o.'s, where the operators are continuous. It is a well-known mathematical result (see for example Milner [6]) that such a system admits a unique minimal solution. It is outside the scope of this paper to show that this minimal solution constitutes indeed the histories of the communication's lines, given a suitable implementation. Such a proof can be found in Cadmus [5] in a similar set up.

The first property of this minimal solution gives us access to the most powerful rule of induction used in proving programs correct (see Manna, Ness, Vuillemin [9]), i.e. Scott's rule:

Property I [Kleene]

The minimal solution $\{Y(X_1), Y(X_2), ..., Y(X_k)\}$ of the system $\Sigma = \{X_i = \tau_i(X_1, ..., X_k) | i \in [1, n]\}$ where the τ_i are terms built out of continuous operators is

$$\lim_{i \to \infty} x_i = A(i) \in [1, n]$$ (Strictly speaking there might be n different A's)

$$x_{i+1} = \tau_i(x_1, ..., x_n)$$ (i.e., [1, n]).

Scott's induction rule in this case can be stated as follows, if P is an admissible predicate (see Manna, Ness, Vuillemin [9]):

$$P(A_1, ..., A_n)$$

$$P(X_1, ..., X_n) \rightarrow P(\tau_1(X_1, ..., X_n), ..., \tau_n(X_1, ..., X_n))$$

A property of a parallel program is stated as a relation between the input sequences and the output sequences or in general between the histories of some communication lines. Since we may use Scott's rule, all the techniques for proving properties of recursive programs studied in Vuillemin [10] are available, in particular structural induction and recursion induction.

Example: The system Σ associated with program S is:

$$X = f(Y, Z)$$

$$Y = h(T, 0)$$

$$Z = h(T, 1)$$

$$\Sigma = \{$$

$$T_1 = g_1(X)$$

$$T_2 = g_2(X)$$

$$\}$$

where f, g_1, g_2 and h are given in §2.2.5.

As an illustration, let us prove that the history X, which is exactly what S prints out, is an infinite alternating sequence of 0's and 1's. In other words, if X is the minimal fixpoint of $\Sigma = A(\{0\}, A(\{1\}, X))$, then $X = X$.

The system Σ can be reduced to a single fixpoint equation:

$$X = f(h(g_1(X), 0), h(g_2(X), 1))$$

Using the definition of f and h, and the properties of F and A we transform eq.(1) to

$$X = A(\{0\}, A(\{1\}, f(g_1(X), g_2(X))))$$

Lemma: For all U, $U = f(g_1(U), g_2(U))$

Proof:

By structural induction. The lemma is obviously true for A, and for any sequence of length 1. Assume it is true for V, then:
\[f(g_1(A(a), A(b), V)), g_2(A(a), A(b), V)) \]
\[= A(a), A(b), f(g_1(V), g_2(V))) \]
\[= A(a), A(b), V)) \] by induction hypothesis. □

From eq. (2) and the lemma above we deduce:
\[\mathcal{X} \subseteq X. \]

With this lemma again it is trivial to see that \(X \subseteq \mathcal{X} \), which proves the result. Since the mapping length is continuous, length \((\mathcal{X}) \) is the minimal solution in \(H \) of
\[\text{length}(\mathcal{X}) = 2 \times \text{length}(\mathcal{X}) \]
which is obviously \(s \), Hence \(\mathcal{X} \) and \(\mathcal{X} \) are infinite sequences and so are \(Y \) and \(Z \). We have thus answered the first two questions raised in section 1 about program \(S \). □

The simplicity of the program \(S \) and the proof produced should not induce the reader into believing that only very simple minded proofs are feasible. Milner and Wayreac (7) used the system LCP, based on Scott's induction rule, to check mechanically the complete proof of the correctness of a small compiler, a very large proof indeed. LCP can be readily used for our purposes and very large and trustworthy proofs could be produced on this system.

Property 2 [Scott]

The minimal solution of \(\sum \) is a continuous function of the parameters of the system, in particular the values of the input streams, or the operators of the system.

In more concrete terms, Property 2 means that, in this model of parallel computation:

1. Arbitrary interconnection of systems, as well as processes, is legitimate. Hence, top-down design finds here a mathematical justification since we can postpone the decision to implement a given function by a single process or a set of interconnected processes: this decision will not introduce perturbations in the remainder of the system.

2. A parallel program can be safely simulated on a sequential machine, provided the scheduling algorithm is fair enough, i.e. it eventually attributes some more computing time to a process which wants it. If this algorithm is not fair however, the only thing that may happen is for the parallel program to produce less output than what could be expected. But what is produced is correct.

This remark and a simple argument on lengths answer the last question about program \(S \) raised in the first section.

4. RECURSION

The parallel programs introduced so far actually exhibit a bounded parallelism: only a finite number of processes may compute simultaneously. It is necessary and easy to introduce the recursive parallel programs, where an unbounded number of machines may compute in parallel.

A recursive parallel schema is a set \(F_1, F_2, \ldots, F_n \) of parallel schemata in which some nodes may be labeled \(F_1, F_2, \ldots, F_n \). If a parallel schema \(F \) has input lines labeled \(i_1, i_2, \ldots, i_p \) and output lines \(o_1, o_2, \ldots, o_q \), then in each occurrence of \(F \) the same labels must occur on its input and output lines. An example is given on fig. 8.

(N.B. : this is a way to ensure that the parallel recursive programs are syntactically well formed; it is sufficient for our purposes although it may give several labels to an edge). We construct now a set of fixpoint equations that contain variables in two types: sequence domains, and continuous mappings between sequence domains.

Example:

To the schema on fig. 8, we associate the system
\[o = F(i) = g_2(F(f(i, X))) \]
\[X = g_1(F(f(i, X))) \]
where \(X \) and \(F \) are respectively an unknown sequence and an unknown continuous mapping between sequence domains. The continuous mappings from a c.p.o into a c.p.o constitute also a c.p.o. with the ordering \(f \leq g \) iff \(\forall x f(x) \leq g(x) \). The existence of a minimal (now functional) solution is still assured and Property 1 and Property 2 hold along with their concrete interpretation. A little more care has to be exerted to make sure that the implementation computes the minimal fixpoint. The only problem is to know when to start unfolding a recursive call to a process. The good strategy is not to start when input is presented but when output is requested. This rule is basically the delay rule of Vuillemin [10].

5. SCHEMATOLOGY.

Structural properties of parallel programs are discovered in studying parallel program schemata. For example we can prove that the schemata on fig. 9 are equivalent, i.e. whatever process \(f \) and \(g \) may be the two resulting programs will be equivalent.

(Nota: these schemata are partially interpreted: the node \(2 \) called 2-plicator sends a copy of each input on each output line. We allow such nodes in schemata because they introduce no new fixpoint equations).

We state the main results (Courcèlle, Kahn, Vuillemin [11]):

Theorem 1: The equivalence of schemata containing uninterpreted processes and n-plicators is decidable.

Theorem 2: There exists a unique minimal schema \(S \) (i.e. containing a minimum number of process nodes) equivalent to a given schema \(S' \).

Theorem 3: The systems of equations corresponding to \(S \) containing the minimum number of equations are obtained by taking minimal cuts of \(S \). The results concerning recursive parallel schemata are much harder. Restricting ourselves to recursive processes with one input and one output we know (Courcèlle-Vuillemin [12]):

Theorem 4: Equivalence of recursive parallel schemata is decidable.
The kind of parallel programming we have studied in this paper is severely limited: it can produce only determinate programs. We argue however that:

1) Large parts of operating systems are written so as to be determinate. The method of monitors advocated by Hoare narrows down the possible locations of non-determinacy.

2) The primitives wait and send on y that we studied are not too far from reality as exemplified by [1, 3, 4].

3) We do not think it is impossible to extend the theory to non-determinate parallel programs, although how to satisfactorily do so is far from obvious.

4) The programming language we have introduced can be extended by adding new primitive processes (i.e. that cannot be programmed as processes with wait and send). A typical such process is

\(\text{WARN} \text{ (integer in X,Y ; logical cut 2)} \) that sends a true value on its output line each time some integer is received on either of its input lines. The only condition to be verified by the new primitive processes, and verified by WARN, is that the history of the output line be a continuous function of the histories of the input lines.

Looking now at the merits of our approach, we see the essential one as the eradication of the notion of state of a complex system. More precisely, in Lauer [13] and Gilbert [14] for example, a system is thought of as having a huge "state vector" and making non-deterministic transitions from state to state. This view leads to proofs growing exponentially with the number of processes (we grow linearly) and is blind to the structure of the system, making the proofs counter-intuitive. Furthermore, it cannot deal with an unbounded number of processes, something we get almost "for free". Our proofs can be checked mechanically in LCF [8], another non-negligible advantage since they will often be tedious but without great mathematical depth.

Our last conclusion is to recall a principle that has been so often fruitful in Computer Science and that is central to Scott's theory of computation: a good concept is one that is closed

1. under arbitrary composition
2. under recursion.

ACKNOWLEDGMENTS.

Many thanks to J. Vuillemin and R. Milner who helped me to formulate this theory. J.M. Cadiou and J. Vuillemin provided most useful comments on the many draft versions of this paper.

REFERENCES.

[4] IBM system 360 Operating system, Control program services, Form C28–66456–0.

