Algorithmica (2002) 32: 467-473 . .
DOI: 10.1007500453-001-0082-y Al go rithmica

© 2002 Springer-Verlag New York Inc.

Routing Flow Through a Strongly Connected Graph
T. Erlebach and T. Hagerup

Abstract. Itis shown that, for every strongly connected network in which every edge has capacity at least
A, linear time suffices to send flow from source vertices, each with a given supply, to sink vertices, each with
a given demand, provided that the total supply equals the total demand and is bountled@Hiy problem

arises in a maximum-flow algorithm of Goldberg and Rao, the binary blocking flow algorithm.

KeyWords. Analysis of algorithms, Network flow, Maximum-flow problem, Feasible-flow problem, Strongly
connected graph, Depth-first search.

1. Introduction. A networkis given by a directed graptV, E) together with a func-
tionc: E — R, that maps each edgelito a positivecapacityand a functio: V — R

that maps each vertex M to animport at v; we denote the network succinctly by the
tuple(V, E, c, b). A pseudoflovin a network\" = (V, E, ¢, b) isafunctionf: E — R

that satisfies 6< f(e) < c(e) (the capacity constraintfor all e € E. For every edge

e € E, f(e) is conveniently thought of as the rate at which a certain commodity flows
throughe, the capacity oé being the maximum rate possible. Téwces®f a pseudoflow

f in M atavertexw € V is defined as

ef (v) = b(v) + Z f(u,v) — Z f(v, w),
u: (u,v)eE w: (v,w)eE

i.e., as the sum of the importatind the net flow inte through all of its incident edges.
An instance of thdeasible-flow problens given by a network\V' = (V, E, ¢, b), and
the goal is to compute flowin N, i.e., a pseudoflowf in A that satisfie®s (v) = 0
(the conservation constraipffor all v € V. Informally, the feasible-flow problem is to
route flow through the network from the vertices with positive imports to the vertices
with negative imports.

Summing the conservation constraints for all vertices shows that a nefwosk
(V, E, ¢, b) admits no flow unless the total impoxt, ., b(v) is zero. From this point,
we consider only networks with zero total import and strongly connected underlying
graphs(V, E). Even such networks may not admit flows, but a flow always exists if the
minimum edge capacit§ = mineg c(€) is at least as large as the total positive import
A =" .y maxb(v), 0}. Flowsin networks with this property are quite easy to compute,
the challenge being to compute them quickly. Goldberg and Rao [1] gave a linear-time
algorithm for the cas€ > 2A and stated that flows in networks witlverticesmedges,

1 Computer Engineering and Networks Laboratory, Eidgsische Technische Hochschulaizh, CH-8092
Zurich, Switzerland. erlebach@tik.ee.ethz.ch.

2 Institut fiir Informatik, Johann Wolfgang Goethe-UniveasitFrankfurt, D-60054 Frankfurt am Main,
Germany. hagerup@ka.informatik.uni-frankfurt.de.

Received December 5, 1999; revised May 27, 2000. Communicated by K. Mehlhorn.
Online publication November 23, 2001.

468 T. Erlebach and T. Hagerup

andC > A can be computed i®(ma(m, n)) time, wherex is an “inverse Ackermann”
function, by appealing to the wheels-within-wheels characterization of Knuth [3] and
the union-find data structure analyzed by Tarjan [5]. We show the following result.

THEOREM1. For every networkN = (V,E,c,b) such thatd}" _, b(v) = 0,
Minece c(e) > Y, ., max{b(v), 0}, and (V, E) is strongly connected flow inA/ can
be computed in QV| + |E]) time

Our algorithm realizing Theorem 1 is based on depth-first search, and it is simple and
fast, comparable in both respects with the algorithm of Goldberg and Rao mentioned
above that requires capacities twice as large.

We sketch the relevance of Theorem 1 to a maximum-flow algorithm of Goldberg
and Rao, thdinary blocking flowor BBF algorithm[1]. The BBF algorithm maintains a
flow that gradually evolves into a maximum flow and repeatedly derives from the current
residual network an auxiliary network that, following [2], we call tt@re The BBF
algorithm subsequently contracts each strongly connected component of the core to a
single vertex, computes a blocking flow in the resulting acyclic network, and translates
this blocking flow to the original core to obtain a flow that is added to the current flow
in the full network.

Translating the blocking flow from the contracted network to the core amounts to
routing “through” each strongly connected component of the core; i.e., it reduces to
solving a collection of instances of the feasible-flow problem in strongly connected
networks. The BBF algorithm cancels sufficient flow in the contracted network to ensure
that the conditiorC > 2A holds for each instance, with a corresponding detriment to
the overall rate of progress. Our new result allows less flow to be canceled and may be
used to speed up the BBF algorithm in terms of constant factors.

2. The Algorithm. In this section we prove Theorem 1. L&f = (V, E, c, b) be
a network with the properties mentioned in Theorem 1 and teke |V|, m = |E|,
G = (V,E),andA =} _, maxb(v), 0}. For every edge = (x, y) € E, we callx
andy thetail and theheadof e, respectively, and write = tail(e) andy = heade).
We first describe an inefficient algorithm for computing a flowMirand prove it correct.
Subsequently we derive a second algorithm that computes the same output and works in
linear time.

Ouir first algorithm begins by carrying out a depth-first search (DF$®) tifat starts
at an arbitrary vertex € V and is similar to Tarjan’s algorithm for computing the
strongly connected components of a general directed graph [4]. This constructs a DFS
treeT = (V, Ey) of G rooted at and defines thpreorder number pr@) of eachv € V
by assigningthe numbers. ., ntothe vertices inthe order of their discovery. The actual
output used by the subsequent processing is the inverse bijpetion {1,...,n} — V
with, e.g.,pre 1(1) = r. We frequently identify a vertex € V with its preorder number
pre(v). The edges irEr are calledtree edgesFor everyv € V\{r}, the DFS also
computes the paremarentv) of v in T, the edgeparentedgév) = (pareniv), v),
and an edgdowlink(v) called thelowlink of v. For allv € V, let T, be the set of all
descendants af in T (includingu itself). Since no confusion results, we will usg,”

Routing Flow Through a Strongly Connected Graph 469

also to denote the subtree Bfinduced by this set. For all € V\{r}, lowlink(v) is an
edgee with tail(e) e T, that minimizesheade) (i.e., minimizesgpre(heade))) over all
edges with tails irT,. The rootr has no lowlink. For alb € V, take

__ | headlowlink(v)), if v#r,
L) = {o, it v=r.

As G is strongly connected, for eveny € V\{r} there is an edge leaving,; i.e.,
L(v) <vforallv e V.

The algorithm manipulates a pseudofldwn N and begins by settind(e) = O for
all e € E. For everyv € V, we call maxes (v), 0} the supplyof v and|min{e; (v), 0}|
thedemandof v. Vertices with positive supplies and positive demands are caflactes
andsinks respectively. The basic operation used by the algorithm is incredsg)doy
some quantityy > O for every edgee on a pathp in G from a sourceu with supply
at leastq to a vertexv. We call this operation aushof valueq from u to v along p.

The push decreases(u) by q, increase®; (v) by g, and leave®; (w) unchanged for
all w € V\{u, v}. It does not change the total excgss, ., e; (w) and creates no new
sinks (but may turn into a source).

After the DFS, the vertices i are processed in the order of decreasing preorder
numbers. Vertices that are not sources are simply skipped. The processing of assource
gradually reduces the supply®fo zero in the following way: As long asis stilla source
and the subtre€, contains at least one sink, an arbitrary sini T, is chosen and a push
of value mir{e; (v), —ef (w)} along the path ifT, from v to w is performed; each such
push is called d@ree push Subsequently, if is still a source antbwlink(v) = (x, y),

a single push of value; (v) from v to y along the path irT,, from v to x followed by
(X, y) is performed; this push is calledl@awlink push After the processing of the last
vertex,r, the algorithm terminates and returns the functfon

After its processing, a vertex never again becomes a source. To see this, note that the
only source possibly created during the processing of a ver&eX \{r } is L (v), which,
sincel (v) < v, is processed after Because the total excess remains zero throughout, it
follows that after the processing of the last vertéxsatisfies the conservation constraint
at every vertex. What remains is to show tHge) < A for everye € E, so thatf
satisfies the capacity constraints as well.

We define théowlink pathof each vertex € V by induction on the preorder number
of v. The lowlink path ofr is the empty path. The lowlink path of a vertex£ r with
lowlink (x, y) is the tree path frona to x, followed by (x, y), followed by the lowlink
path ofy (which is well defined because< v).

LEMMA 1. Every lowlink path is simple

PROOE L(y) <y = L(x) for every lowlink (x, y), andL(x) = L(y) for every tree
edge(x, y) on a lowlink path. Thus thé values of the vertices on every lowlink path
form a nonincreasing sequence, and every lowlink induces a strict decrease. Since no
cycle consists of tree edges only, no lowlink path contains a cycle. O

Lemma 1 makes it intuitively clear wh¥/(e) is bounded by the total positive import
A for everye € E: every “flow atom” follows a simple path from a source to a sink

470 T. Erlebach and T. Hagerup

and therefore cannot contribute more than oncé(®. We provide a formal argument
based on a potential function. Fix an arbitrary edge (x, y) € E and define

Vv, if eis a tree edge and, contains at least one sink
" | {v € V | the lowlink path ofv containse}, otherwise

The setAmay change over the course of the execution, butit never acquires new elements.
Letd =" _,maxes(v), 0} be the sum of the supplies of the verticesAin

LEMMA 2. & never increases

PROOF A tree push does not increase any supply and therefore cannot indrekise
is easy to see that, just before a lowlink push froto w, if w belongs toA, thenv also
belongs toA. Thus a lowlink push cannot increageeither. O

LEMMA 3. Every push that increases(d) by some value q decreas@sby at least q

PrROOF When a tree push fromto w increased (e) by g, eis a tree edge and is a
sinkin Ty. Thereforev belongs toA before the push, andl indeed decreases by at least
g. Now consider a lowlink push fromto w that increaseg (e) by q. If eis a tree edge,
there is no sink iMy. Thus the second case in the definitiorfcdpplies. Since clearly
belongs toA just before the pushy cannot belong t@\ at that time, as this would cause
eto appear twice on the lowlink path of contradicting Lemma 1. O

LEMMA 4. Atthe end of the executipfi(e) < A.

PrOOF Becausef (e) = 0 initially, Lemma 4 follows from Lemmas 2 and 3 and the
fact that® is bounded b initially and does not become negative. O

Sincee was chosen arbitrarily, Lemma 4 concludes the proof that the fundtion
returned by our first algorithm is a flow; i.e., the algorithm is correct. Due to the pushes
along potentially long paths of tree edges, the algorithm is not efficient. The key to ob-
taining a more efficient algorithm is the simple observation that the flow on the tree edges
can be deduced from the flow on the remaining edges. Indeegl plethe pseudoflow
in A/ that coincides withf , except thagy(e) = 0 for every tree edge. Every tree edge
(u, v) is the only tree edge betwedp and the rest o6, and therefore

0= ew) =) ew)+ f(uv).

weT, weT,

Giveng, the quantityEq(v) = Zwen €y(w) can be computed for all € V in O(n) time

in a bottom-up pass ovér, after which it suffices to set (u, v) = —Eg(v) for every

tree edgdu, v). In order to compute rather thanf, we simply refrain from updating

f (e) for tree edges. Then every push can be executed in constant time, and except for
the initial DFS, the processing needs oflyn) time.

Routing Flow Through a Strongly Connected Graph 471

Algorithm SC-ROUTE:
{ Phase 1}

Choose any vertex r € V;
DFS(r); { compute pre~!, parent, parentedge, and lowlink }
for e € F do f(e) + 0 od,;

{ Phase 2 }
for v € V do E;(v) < b(v) od;
for ¢ <~ n downto 2 do
v < pre 1 (i);
if E¢(v) > 0 then { a lowlink push from v }
e + lowlink(v);
£(e) & F(e) + Ey o)
Ej(head(e)) < E;(head(e)) + Ef(v)
else
E¢(parent(v)) < Ef(parent(v)) + Ef(v)

od;

{ Phase 3 }

for v € V do Ey(v) < b(v) od;

for every lowlink e = (z,y) do
Ey(a) Ey(a) - f(e)
Eyly) « By(y) + £(e)

od;

for i +— n downto 2 do
v < pre~1(i);
f(parentedge(v)) <= —E,(v);
Ey(parent(v)) < E4(parent(v)) + Eg4(v)

od

Fig. 1. Algorithm for routing flow through a strongly connected graph.

An efficient algorithm SC-BUTE based on these considerations is shown in Figure 1.
It consists of three phases. Phase 1 carries out the DFS and initializes the pseddoflow
The main parts of Phases 2 and 3 are traversalstbft run inO(n) time and compute,
respectively, the flow on all lowlinks and the flow on all tree edges.

In Phase 2 the flow on the lowlinks is computed essentially as in our first algorithm,
but without updates of flow on tree edges. Forwale V\{r}, the variableE; (v) is
initialized to b(v) and updated in a bottom-up summation that causes its value to be

472 T. Erlebach and T. Hagerup

(b)

Fig. 2. The execution of the algorithm on an example network. (a) Flow on the lowlinks as calculated in Phase
2. (b) Flow on the tree edges as calculated in Phase 3.

> wet, & (w) at the start of the processing of The tree pushes fromare carried out
only implicitly through cancellation in the sun, 1 € (w). If v is a source after the
tree pushes, i.e., E¢ (v) > 0 whenv is processed, a lowlink push fromis performed.
The resulting decrease @ (v) is not recorded irEs (v), sinceE; (v) will never again
be inspected by the algorithm.

In Phase 3 the first two loops compute the vady@) for eachv € V, whereg is the
pseudoflow introduced above, and assign it to the variggle). ThenT is processed
in a bottom-up fashion and, similarly as in Phase 2, during the processing of a vertex
v e V\{r}, E4(v) has the vaIu{weTu gy(w), the negative of which is assigned as the
flow on the tree edge from the parentwofo v.

It can be seen that SCeRTE works in O(n + m) time and computes the same
function f as our first algorithm. This concludes the proof of Theorem 1. We illustrate
the workings of SC-BUTE through a small example.

Figure 2(a) shows the DFS tree (solid edges) and lowlinks (dashed edges) of a strongly
connected graph, with vertices labeled by their preorder numbers. The lowlink of the
vertex 3 is the edgéd, 2), for example. Nonzero import values are shown beside the
relevant vertices. During Phase 2, lowlink pushes are performed at the vertices 9, 7, 4,
3, and 2. The edge labels show the resulting flow on the lowlinks. The flow of value 8
on the edge4, 2), for example, is the result of a lowlink push from 4 to 2 that increases
the flow on(4, 2) from 0 to 2 and a lowlink push from 3 to 2 that increases the flow on
(4, 2) by another 6 units.

Figure 2(b) shows the DFS tree with edge labels representing the flow on the tree
edges calculated in Phase 3. For every ventethe label shown next to is the value
gy(v). The algorithm sets the flow on every tree edgigual to the negative of the sum
of these values in the subtree belew

Acknowledgment. We are grateful to Peter Sanders and Jespadf o many useful
discussions.

Routing Flow Through a Strongly Connected Graph 473

References

[1] A.V.Goldberg and S. Rao, Beyond the flow decomposition badiérssoc Comput Mach, 45(1998),
783-797.

[2] T. Hagerup, P. Sanders, and J. L.afff"An implementation of the binary blocking flow algo-
rithm, in Proc. 2nd Workshop on Algorithm Engineerif@VAE 1998), pp. 143-154. Res. Rep. No.
MPI-1-98-1-019, Max-Planck-Institutuf” Informatik, Saarhrcken, 1998. http://www.mpi-sb.mpg.de/
~wae98/PROCEEDINGS/

[3] D.E. Knuth, Wheels within wheeld, Combin Theory SerB, 16 (1974), 42-46.

[4] R. Tarjan, Depth-first search and linear graph algorith&8M J Comput, 1 (1972), 146-160.

[5] R.E. Tarjan, Efficiency of a good but not linear set union algorithmssoc Comput Mach, 22 (1975),
215-225.

