
DOI: 10.1007/s00453-001-0082-y

Algorithmica (2002) 32: 467–473 Algorithmica
© 2002 Springer-Verlag New York Inc.

Routing Flow Through a Strongly Connected Graph

T. Erlebach1 and T. Hagerup2

Abstract. It is shown that, for every strongly connected network in which every edge has capacity at least
1, linear time suffices to send flow from source vertices, each with a given supply, to sink vertices, each with
a given demand, provided that the total supply equals the total demand and is bounded by1. This problem
arises in a maximum-flow algorithm of Goldberg and Rao, the binary blocking flow algorithm.

Key Words. Analysis of algorithms, Network flow, Maximum-flow problem, Feasible-flow problem, Strongly
connected graph, Depth-first search.

1. Introduction. A networkis given by a directed graph(V, E) together with a func-
tionc: E→ R+ that maps each edge inE to a positivecapacityand a functionb: V → R
that maps each vertex inV to animport at v; we denote the network succinctly by the
tuple(V, E, c,b). A pseudoflowin a networkN = (V, E, c,b) is a functionf : E→ R
that satisfies 0≤ f (e) ≤ c(e) (thecapacity constraint) for all e ∈ E. For every edge
e ∈ E, f (e) is conveniently thought of as the rate at which a certain commodity flows
throughe, the capacity ofebeing the maximum rate possible. Theexcessof a pseudoflow
f in N at a vertexv ∈ V is defined as

ef (v) = b(v)+
∑

u: (u,v)∈E

f (u, v)−
∑

w: (v,w)∈E

f (v,w),

i.e., as the sum of the import atv and the net flow intov through all of its incident edges.
An instance of thefeasible-flow problemis given by a networkN = (V, E, c,b), and
the goal is to compute aflow in N , i.e., a pseudoflowf in N that satisfiesef (v) = 0
(theconservation constraint) for all v ∈ V . Informally, the feasible-flow problem is to
route flow through the network from the vertices with positive imports to the vertices
with negative imports.

Summing the conservation constraints for all vertices shows that a networkN =
(V, E, c,b) admits no flow unless the total import

∑
v∈V b(v) is zero. From this point,

we consider only networks with zero total import and strongly connected underlying
graphs(V, E). Even such networks may not admit flows, but a flow always exists if the
minimum edge capacityC = mine∈E c(e) is at least as large as the total positive import
1 =∑v∈V max{b(v),0}. Flows in networks with this property are quite easy to compute,
the challenge being to compute them quickly. Goldberg and Rao [1] gave a linear-time
algorithm for the caseC ≥ 21 and stated that flows in networks withn vertices,medges,

1 Computer Engineering and Networks Laboratory, Eidgen¨ossische Technische Hochschule Z¨urich, CH-8092
Zürich, Switzerland. erlebach@tik.ee.ethz.ch.
2 Institut für Informatik, Johann Wolfgang Goethe-Universit¨at Frankfurt, D-60054 Frankfurt am Main,
Germany. hagerup@ka.informatik.uni-frankfurt.de.

Received December 5, 1999; revised May 27, 2000. Communicated by K. Mehlhorn.
Online publication November 23, 2001.

468 T. Erlebach and T. Hagerup

andC ≥ 1 can be computed inO(mα(m,n)) time, whereα is an “inverse Ackermann”
function, by appealing to the wheels-within-wheels characterization of Knuth [3] and
the union-find data structure analyzed by Tarjan [5]. We show the following result.

THEOREM1. For every networkN = (V, E, c,b) such that
∑

v∈V b(v) = 0,
mine∈E c(e) ≥ ∑v∈V max{b(v),0}, and(V, E) is strongly connected, a flow inN can
be computed in O(|V | + |E|) time.

Our algorithm realizing Theorem 1 is based on depth-first search, and it is simple and
fast, comparable in both respects with the algorithm of Goldberg and Rao mentioned
above that requires capacities twice as large.

We sketch the relevance of Theorem 1 to a maximum-flow algorithm of Goldberg
and Rao, thebinary blocking flowor BBF algorithm[1]. The BBF algorithm maintains a
flow that gradually evolves into a maximum flow and repeatedly derives from the current
residual network an auxiliary network that, following [2], we call thecore. The BBF
algorithm subsequently contracts each strongly connected component of the core to a
single vertex, computes a blocking flow in the resulting acyclic network, and translates
this blocking flow to the original core to obtain a flow that is added to the current flow
in the full network.

Translating the blocking flow from the contracted network to the core amounts to
routing “through” each strongly connected component of the core; i.e., it reduces to
solving a collection of instances of the feasible-flow problem in strongly connected
networks. The BBF algorithm cancels sufficient flow in the contracted network to ensure
that the conditionC ≥ 21 holds for each instance, with a corresponding detriment to
the overall rate of progress. Our new result allows less flow to be canceled and may be
used to speed up the BBF algorithm in terms of constant factors.

2. The Algorithm. In this section we prove Theorem 1. LetN = (V, E, c,b) be
a network with the properties mentioned in Theorem 1 and taken = |V |, m = |E|,
G = (V, E), and1 = ∑v∈V max{b(v),0}. For every edgee = (x, y) ∈ E, we callx
andy the tail and theheadof e, respectively, and writex = tail(e) andy = head(e).
We first describe an inefficient algorithm for computing a flow inN and prove it correct.
Subsequently we derive a second algorithm that computes the same output and works in
linear time.

Our first algorithm begins by carrying out a depth-first search (DFS) ofG that starts
at an arbitrary vertexr ∈ V and is similar to Tarjan’s algorithm for computing the
strongly connected components of a general directed graph [4]. This constructs a DFS
treeT = (V, ET) of G rooted atr and defines thepreorder number pre(v) of eachv ∈ V
by assigning the numbers 1, . . . ,n to the vertices in the order of their discovery. The actual
output used by the subsequent processing is the inverse bijectionpre−1: {1, . . . ,n} → V
with, e.g.,pre−1(1) = r . We frequently identify a vertexv ∈ V with its preorder number
pre(v). The edges inET are calledtree edges. For everyv ∈ V\{r }, the DFS also
computes the parentparent(v) of v in T , the edgeparentedge(v) = (parent(v), v),
and an edgelowlink(v) called thelowlink of v. For all v ∈ V , let Tv be the set of all
descendants ofv in T (includingv itself). Since no confusion results, we will use “Tv”

Routing Flow Through a Strongly Connected Graph 469

also to denote the subtree ofT induced by this set. For allv ∈ V\{r }, lowlink(v) is an
edgee with tail(e) ∈ Tv that minimizeshead(e) (i.e., minimizespre(head(e))) over all
edges with tails inTv. The rootr has no lowlink. For allv ∈ V , take

L(v) =
{

head(lowlink(v)), if v 6= r,
0, if v = r.

As G is strongly connected, for everyv ∈ V\{r } there is an edge leavingTv; i.e.,
L(v) < v for all v ∈ V .

The algorithm manipulates a pseudoflowf in N and begins by settingf (e) = 0 for
all e ∈ E. For everyv ∈ V , we call max{ef (v),0} thesupplyof v and|min{ef (v),0}|
thedemandof v. Vertices with positive supplies and positive demands are calledsources
andsinks, respectively. The basic operation used by the algorithm is increasingf (e) by
some quantityq > 0 for every edgee on a pathp in G from a sourceu with supply
at leastq to a vertexv. We call this operation apushof valueq from u to v along p.
The push decreasesef (u) by q, increasesef (v) by q, and leavesef (w) unchanged for
all w ∈ V\{u, v}. It does not change the total excess

∑
w∈V ef (w) and creates no new

sinks (but may turnv into a source).
After the DFS, the vertices inV are processed in the order of decreasing preorder

numbers. Vertices that are not sources are simply skipped. The processing of a sourcev

gradually reduces the supply ofv to zero in the following way: As long asv is still a source
and the subtreeTv contains at least one sink, an arbitrary sinkw in Tv is chosen and a push
of value min{ef (v),−ef (w)} along the path inTv from v tow is performed; each such
push is called atree push. Subsequently, ifv is still a source andlowlink(v) = (x, y),
a single push of valueef (v) from v to y along the path inTv from v to x followed by
(x, y) is performed; this push is called alowlink push. After the processing of the last
vertex,r , the algorithm terminates and returns the functionf .

After its processing, a vertex never again becomes a source. To see this, note that the
only source possibly created during the processing of a vertexv ∈ V\{r } is L(v), which,
sinceL(v) < v, is processed afterv. Because the total excess remains zero throughout, it
follows that after the processing of the last vertex,f satisfies the conservation constraint
at every vertex. What remains is to show thatf (e) ≤ 1 for everye ∈ E, so that f
satisfies the capacity constraints as well.

We define thelowlink pathof each vertexv ∈ V by induction on the preorder number
of v. The lowlink path ofr is the empty path. The lowlink path of a vertexv 6= r with
lowlink (x, y) is the tree path fromv to x, followed by(x, y), followed by the lowlink
path ofy (which is well defined becausey < v).

LEMMA 1. Every lowlink path is simple.

PROOF. L(y) < y = L(x) for every lowlink (x, y), andL(x) = L(y) for every tree
edge(x, y) on a lowlink path. Thus theL values of the vertices on every lowlink path
form a nonincreasing sequence, and every lowlink induces a strict decrease. Since no
cycle consists of tree edges only, no lowlink path contains a cycle.

Lemma 1 makes it intuitively clear whyf (e) is bounded by the total positive import
1 for everye ∈ E: every “flow atom” follows a simple path from a source to a sink

470 T. Erlebach and T. Hagerup

and therefore cannot contribute more than once tof (e). We provide a formal argument
based on a potential function. Fix an arbitrary edgee= (x, y) ∈ E and define

A =
{

V, if e is a tree edge andTy contains at least one sink,

{v ∈ V | the lowlink path ofv containse}, otherwise.

The setAmay change over the course of the execution, but it never acquires new elements.
Let8 =∑v∈A max{ef (v),0} be the sum of the supplies of the vertices inA.

LEMMA 2. 8 never increases.

PROOF. A tree push does not increase any supply and therefore cannot increase8. It
is easy to see that, just before a lowlink push fromv tow, if w belongs toA, thenv also
belongs toA. Thus a lowlink push cannot increase8 either.

LEMMA 3. Every push that increases f(e) by some value q decreases8 by at least q.

PROOF. When a tree push fromv tow increasesf (e) by q, e is a tree edge andw is a
sink inTy. Thereforev belongs toA before the push, and8 indeed decreases by at least
q. Now consider a lowlink push fromv tow that increasesf (e) by q. If e is a tree edge,
there is no sink inTy. Thus the second case in the definition ofA applies. Sincev clearly
belongs toA just before the push,w cannot belong toA at that time, as this would cause
e to appear twice on the lowlink path ofv, contradicting Lemma 1.

LEMMA 4. At the end of the execution, f (e) ≤ 1.

PROOF. Becausef (e) = 0 initially, Lemma 4 follows from Lemmas 2 and 3 and the
fact that8 is bounded by1 initially and does not become negative.

Sincee was chosen arbitrarily, Lemma 4 concludes the proof that the functionf
returned by our first algorithm is a flow; i.e., the algorithm is correct. Due to the pushes
along potentially long paths of tree edges, the algorithm is not efficient. The key to ob-
taining a more efficient algorithm is the simple observation that the flow on the tree edges
can be deduced from the flow on the remaining edges. Indeed, letg be the pseudoflow
in N that coincides withf , except thatg(e) = 0 for every tree edgee. Every tree edge
(u, v) is the only tree edge betweenTv and the rest ofG, and therefore

0=
∑
w∈Tv

ef (w) =
∑
w∈Tv

eg(w)+ f (u, v).

Giveng, the quantityEg(v) =
∑

w∈Tv
eg(w) can be computed for allv ∈ V in O(n) time

in a bottom-up pass overT , after which it suffices to setf (u, v) = −Eg(v) for every
tree edge(u, v). In order to computeg rather thanf , we simply refrain from updating
f (e) for tree edgese. Then every push can be executed in constant time, and except for
the initial DFS, the processing needs onlyO(n) time.

Routing Flow Through a Strongly Connected Graph 471

Fig. 1.Algorithm for routing flow through a strongly connected graph.

An efficient algorithm SC-ROUTEbased on these considerations is shown in Figure 1.
It consists of three phases. Phase 1 carries out the DFS and initializes the pseudoflowf .
The main parts of Phases 2 and 3 are traversals ofT that run inO(n) time and compute,
respectively, the flow on all lowlinks and the flow on all tree edges.

In Phase 2 the flow on the lowlinks is computed essentially as in our first algorithm,
but without updates of flow on tree edges. For allv ∈ V\{r }, the variableEf (v) is
initialized to b(v) and updated in a bottom-up summation that causes its value to be

472 T. Erlebach and T. Hagerup

Fig. 2.The execution of the algorithm on an example network. (a) Flow on the lowlinks as calculated in Phase
2. (b) Flow on the tree edges as calculated in Phase 3.

∑
w∈Tv

ef (w) at the start of the processing ofv. The tree pushes fromv are carried out
only implicitly through cancellation in the sum

∑
w∈Tv

ef (w). If v is a source after the
tree pushes, i.e., ifEf (v) > 0 whenv is processed, a lowlink push fromv is performed.
The resulting decrease inef (v) is not recorded inEf (v), sinceEf (v) will never again
be inspected by the algorithm.

In Phase 3 the first two loops compute the valueeg(v) for eachv ∈ V , whereg is the
pseudoflow introduced above, and assign it to the variableEg(v). ThenT is processed
in a bottom-up fashion and, similarly as in Phase 2, during the processing of a vertex
v ∈ V\{r }, Eg(v) has the value

∑
w∈Tv

eg(w), the negative of which is assigned as the
flow on the tree edge from the parent ofv to v.

It can be seen that SC-ROUTE works in O(n + m) time and computes the same
function f as our first algorithm. This concludes the proof of Theorem 1. We illustrate
the workings of SC-ROUTE through a small example.

Figure 2(a) shows the DFS tree (solid edges) and lowlinks (dashed edges) of a strongly
connected graph, with vertices labeled by their preorder numbers. The lowlink of the
vertex 3 is the edge(4,2), for example. Nonzero import values are shown beside the
relevant vertices. During Phase 2, lowlink pushes are performed at the vertices 9, 7, 4,
3, and 2. The edge labels show the resulting flow on the lowlinks. The flow of value 8
on the edge(4,2), for example, is the result of a lowlink push from 4 to 2 that increases
the flow on(4,2) from 0 to 2 and a lowlink push from 3 to 2 that increases the flow on
(4,2) by another 6 units.

Figure 2(b) shows the DFS tree with edge labels representing the flow on the tree
edges calculated in Phase 3. For every vertexv, the label shown next tov is the value
eg(v). The algorithm sets the flow on every tree edgee equal to the negative of the sum
of these values in the subtree belowe.

Acknowledgment. We are grateful to Peter Sanders and Jesper Tr¨aff for many useful
discussions.

Routing Flow Through a Strongly Connected Graph 473

References

[1] A. V. Goldberg and S. Rao, Beyond the flow decomposition barrier,J. Assoc. Comput. Mach., 45 (1998),
783–797.

[2] T. Hagerup, P. Sanders, and J. L. Tr¨aff, An implementation of the binary blocking flow algo-
rithm, in Proc. 2nd Workshop on Algorithm Engineering(WAE 1998), pp. 143–154. Res. Rep. No.
MPI-I-98-1-019, Max-Planck-Institut f¨ur Informatik, Saarbr¨ucken, 1998. http://www.mpi-sb.mpg.de/
∼wae98/PROCEEDINGS/

[3] D. E. Knuth, Wheels within wheels,J. Combin. Theory Ser. B, 16 (1974), 42–46.
[4] R. Tarjan, Depth-first search and linear graph algorithms,SIAM J. Comput., 1 (1972), 146–160.
[5] R. E. Tarjan, Efficiency of a good but not linear set union algorithm,J. Assoc. Comput. Mach., 22(1975),

215–225.

