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1. Introduction

We consider the fully dynamic graph problems of connectivity, minimum spanning
forest, 2-edge connectivity and biconnectivity. Here, byfully dynamic, we mean
that the graph may beupdatedby insertion and deletion of edges. If we only allow
insertions or only allow deletions, the graph is onlypartially dynamic. The updates
are interspersed withqueriesto the current graph. The update and queryoperations
are presented on-line, with no knowledge of future operations.

A preliminary version of this work was presented at the30th ACM Symposium on the Theory of
Computing(STOC’98) [Holm et al. 1998]. The conference version mistakenly claimed anO(log4 n)
instead of anO(log5 n) for biconnectivity.
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Like priority queues, dynamic graph algorithms may both be of direct interest, and
of interest as data structures within algorithms for static problems. As an example
of direct usage, Frederickson [1985] suggests using a dynamic minimum spanning
tree algorithm to maintain how heavily loaded links we need to use to get from
one vertex to another in a communications networks. As an example of usage as
data structures, Gabow et al. [1999] use dynamic 2-edge connectivity to efficiently
determine if a graph has a unique matching.

We now formally define the problems considered and state our results. We are
considering a fully dynamic graphG over a fixed vertex setV , |V | = n. Unless
otherwise stated,m is the current number of edges, which we assume is 0 when
we start. Most of the time bounds presented areamortized, meaning that they
are averaged over all operations performed. This is particularly justified when our
fully dynamic algorithms are used as data structures inside static algorithms where
we only care about the total running time. We are striving for time bounds that
are polylogarithmic inn. Here polylogarithmic bounds are considered feasible for
dynamic problems in the same way as polynomial bounds are considered feasible
for static problems.

For thefully dynamic connectivity problem, the updates may be interspersed with
connectivity queries, asking whether two given vertices are connected inG. The
connectivity problem reduces to the problem of maintaining a spanning forest (a
spanning tree for each component) in that if we can maintainanyspanning forest
F for G at costO(t(n) logn) per update, then, using the dynamic trees of Sleator
and Tarjan [1983], we can answer connectivity queries in timeO(logn/log t(n)).
In this article, we present a very simple deterministic algorithm for maintaining a
spanning forest in a graph in amortized timeO(log2 n) per update. Connectivity
queries are then answered in timeO(logn/log logn).

In thefully dynamic minimum spanning forest problem, we have weights on the
edges, and we wish to maintain a minimum spanning forestF of G, that is, a
minimum spanning treefor each component ofG. Thus, in connection with any
update toG, we need to respond with the corresponding updates forF , if any. We
present a deterministic algorithm for maintaining a minimum spanning forestF in
O(log4 n) amortized time per operation. Applying the dynamic trees technique from
Sleator and Tarjan [1983] to the minimum spanning forestF , in O(logn/log logn)
time, we can for any pair of vertices find the heaviest edge between them inF ,
which is also the heaviest edge needed to get between the vertices inG.

A bridge in a graph is an edge whose removal disconnects some component. A
graph is 2-edge connectedif and only if it is connected and contains no bridges. The
2-edge connected components are the maximal 2-edge connected subgraphs, and
two verticesv andw are 2-edge connected if and only if they are in the same 2-edge
connected component, or equivalently, if and only ifv andw are connected by two
edge-disjoint paths. In thefully dynamic2-edge connectivity problem, the edge
updates may be interspersed with queries asking whether two given vertices are
2-edge connected. We present a deterministic algorithm supporting all operations
in O(log4 n) amortized time per operation. The algorithm is easily augmented with
searches for bridges.

An articulation pointin a graph is a vertex whose removal disconnects some com-
ponent. A graph isbiconnectedif and only if it is connected and has no articulation
points. The biconnected components are the maximal biconnected subgraphs, and
two verticesv andw are biconnected if and only if they are in the same biconnected
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component, or equivalently, if and only if either (v,w) is an edge orv andw are
connected by two internally disjoint paths. In thefully dynamic biconnectivity prob-
lem, the edge updates may be interspersed with queries asking whether two given
vertices are biconnected. We present a deterministic algorithm supporting all opera-
tions inO(log5 n) amortized time per operation. The algorithm is easily augmented
with searches for articulation points.

1.1. PREVIOUSWORK. For deterministic algorithms, all the previous best solu-
tions to the fully dynamic connectivity problem were also solutions to the minimum
spanning forest problem. In 1983, Frederickson [1985] introduced a data structure
known astopology treesfor the fully dynamic minimum spanning forest problem
with a worst-case cost ofO(

√
m) per update, permitting connectivity queries in

time O(logn/log(
√

m/ logn)) = O(1). In 1992, Eppstein et al. [1997] improved
the update time toO(

√
n) using thesparsification technique. Finally, in 1997,

Henzinger and King [1997b] gave an algorithm withO( 3
√

n logn) amortized up-
date time and constant time per connectivity query.

In 1995, Henzinger and King [1999] used randomization to get the first feasi-
ble solution to the dynamic connectivity problem. They showed that a spanning
forest could be maintained inO(log3 n) expected amortized time per update. Then
connectivity queries are supported inO(logn/ log logn) time. The update time
was further improved toO(log2 n) in 1996 by Henzinger and Thorup [1997]. No
randomized technique was known for improving the deterministicO( 3

√
n logn)

amortized update cost for the minimum spanning forest problem.
In 1991, Frederickson [1997] succeeded in generalizing hisO(

√
m) bound from

1983 Frederickson [1985] for fully dynamic connectivity to fully dynamic 2-edge
connectivity. As for connectivity, the sparsification technique of Eppstein et al.
[1997] improved this bound toO(

√
n). Further, Henzinger and King [1997a; 1999]

generalized their randomization technique for connectivity to give anO(log5 n) ex-
pected amortized bound. It should be noted that the above-mentioned improvement
for connectivity of Henzinger and Thorup [1997], does not affect theO(log5 n)
bound for 2-edge connectivity.

For biconnectivity, the previous results are a lot worse. The first non-trivial
result was a deterministic bound ofO(m2/3) from 1992 by Henzinger [1995]. In
1994, Henzinger [2000] improved this bound toO(min{√m logn, n}). In 1995,
Henzinger and La Poutr´e [1995] further improved the deterministic bound to
O(
√

n logn logdm/ne). Henzinger and King [1995] generalized their randomized
algorithm from [Henzinger and King 1999] to the biconnectivity problem to
achieve anO(1 log4 n) expected amortized cost per operation, where1 is the
maximal degree at the moment the operation is performed (In Henzinger and
King [1995], the bound is incorrectly quoted asO(log4 n) (Henzinger, personal
communication, 1997)).

Finally, for all of the above problems, there is a lower bound ofÄ(logn/log logn),
proved independently by Fredman and Henzinger [1998] and Miltersen et al. [1994].

For the incremental (no deletions) and decremental (no insertions) problems, the
bounds are as follows: Incremental connectivity is the union-find problem, for which
Tarjan [1975] has provided anO(α(m, n)) bound. Westbrook and Tarjan [1992]
have obtained the same time bound for incremental 2-edge and biconnectivity.
Further, Sleator and Tarjan [1983] have provided anO(logn) bound for incremental
minimum spanning forest.
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Decrementally, for connectivity and 2-edge connectivity, Thorup [1999] has pro-
vided anO(logn) bound if we start withÄ(n log6 n) edges, and anO(1) bound if
we start withÄ(n2) edges. For decremental minimum spanning forest and bicon-
nectivity, no better bounds were known than those for the fully dynamic case.

1.2. OUR CONTRIBUTIONS. First, we present a very simple deterministic fully
dynamic connectivity algorithm with an update cost ofO(log2 n), thus matching
the previous best randomized bound and improving substantially over the previous
best deterministic bound ofO( 3

√
n logn).

Our technique relies on some of the same intuition that was used by Henzinger
and King [1999] in their randomized algorithm. Our deterministic algorithm is,
however, much simpler, and in contrast to their algorithm, it generalizes to the min-
imum spanning forest problem. More precisely, a specialization of our connectivity
algorithm gives a simple decremental minimum spanning forest algorithm with an
amortized cost ofO(log2 n) per operation for any sequence ofÄ(m) deletions. Then,
we use a technique from Henzinger and King [1997b] to convert our deletions-only
structure to a fully dynamic data structure for the minimum spanning forest problem
usingO(log4 n) amortized time per update. This is the first polylogarithmic bound
for the problem, even when we include randomized algorithms.

Finally, our connectivity techniques are generalized to 2-edge and biconnectivity,
leading to anO(log4 n) operation cost for 2-edge connectivity and anO(log5 n)
operation cost for biconnectivity. The generalization uses some of the ideas from
Frederickson 1997; Henzinger and King 1995; Henzinger and King 1997a] of
organizing information around a spanning forest. However, finding a generalization
that worked was rather delicate, particularly for biconnectivity, where we needed
to make a careful recycling of information, leading to the first polylogarithmic
algorithm for this problem.

1.3. IMPLICATIONS. Using known reductions, our results imply improved fully
dynamic algorithms for bipartiteness,k-edge witness, and maximal spanning forest
decomposition [Henzinger and King 1999], for geometric minimum spanning trees
[Eppstein 1995], and for approximate edge connectivity [Thorup and Karger 2000].

Our algorithms may also be used as improved subroutines in algorithms for
the several static problems: randomly sampling spanning forests of a given graph
[Feder and Mihail 1992], finding a color-constrained minimum spanning tree
[Frederickson and Srinivas 1989], and finding a consensus tree [Henzinger et al.
1999]. Very recently, our dynamic 2-edge connectivity has been used in providing
efficient implementations of old constructive proofs in matching theory [Biedl et al.
2001; Gabow et al. 1999].

1.4. RECENT DEVELOPMENTS. Iyer Karger, Rahul, and Thorup [2000] have
implemented and compared our connectivity algorithm with other fully-dynamic
connectivity algorithms, and in these experiments, variants of our algorithm per-
formed very well. Thorup [2000] has found a linear space implementation of the
fully dynamic connectivity algorithm of this paper, which here is implemented in
O(m+ n logn) space. Also he improved the randomized amortized update time to
O(logn(log logn)2), thus getting very close the above mentioned cell-probe lower
bound ofÄ(logn/log logn) [Fredman and Henzinger 1998; Miltersen et al. 1994].
Finally, using bit parallelism as well as a kind of biased deletions, he has improved
the time bounds for 2-edge and biconnectivity toO(log3 n log logn).
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1.5. CONTENTS. First, we have a preliminary Section 2, reviewing notation
and known tools for dealing with dynamic trees. Readers who are only interested
in the general ideas of our fully dynamic connectivity algorithm can skip this
preliminary section. Afterwards, we present the fully dynamic connectivity algo-
rithm in Section 3, the generalization to decremental minimum spanning forest in
Section 4, the fully dynamic minimum spanning forest algorithm in Section 5, the
fully dynamic 2-edge connectivity algorithm in Section 6, and the fully dynamic
biconnectivity algorithm in Section 7. Our presentations are generally focused on
getting good polylogarithmic amortized bounds for all operations. In some cases,
using more complicated algorithms, one can get better space and query time, but
for ease of presentation, we only sketch these improvements. Finally, in Section 8,
we sum up and present some major open problems.

2. Preliminaries

As mentioned, this section can be skipped by readers only interested in the high
level ideas of our dynamic connectivity algorithm.

In all the dynamic problems considered in this article, we will be maintaining
some spanning forest of the graph. Ifv andw are connected in our dynamic forest,
v · · ·w denotes the unique path fromv to w. If v = w, v · · ·w is just the vertexv.
If v 6= w, sw(v) denotes the successor ofv on the pathv · · ·w. If u, v, andw are all
connected,meet(u, v,w) denotes the unique intersection vertex of the three paths
u · · · v, u · · ·w, andv · · ·w.

We will now review some data structures needed for maintaining our spanning
forests. The first is very simple and suffices for connectivity and decremental min-
imum spanning forest. The second is more complicated, but is needed for our
implementations of fully dynamic minimum spanning forest, 2-edge and biconnec-
tivity. The data structures are themselves rooted trees so to keep things apart,nodes
andarcsare in the data structure whileverticesandedgesare in the spanning forest.

2.1. ET-TREES. We now discuss theET-treesof Henzinger and King [1999].
We work on a dynamic forest where arbitrary edges can be cut and edges linking
different trees in the forest can be inserted. A query connected(v,w) tells whether
v andw are connected, and a query size(v) gives the number of vertices in the tree
containingv. The forest can further be updated by adding or removing weighted
keys from the vertices. A query min-key(v) returns a minimal key from the tree
containingv, if any. If the keys are unweighted, min-key(v) returns an arbitrary
key. In our connectivity and decremental minimum spanning forest algorithm, the
keys will typically be incident non-tree edges.

All the above updates and queries are supported inO(logn) time using the
ET-trees from Henzinger and King [1999], to which the reader is referred for a
more detailed description. An ET-tree is a standard dynamic balanced binary tree
over some Euler tour around a tree in the forest. Here an Euler tour around a tree is a
maximal closed walk over the graph obtained from the tree replacing each edge by
a directed edge in each direction. The walk uses each directed edge once so ifT has
n vertices, the cyclic Euler tour has length 2n−2. We have such an ET-tree for each
tree in our forest. The important point is that if trees in the forest are linked or cut,
the new Euler tours can be constructed by at most 2 splits and 2 concatenations of
the original Euler tours. Rebalancing the ET-trees affects onlyO(logn) ET-nodes.
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Each vertex in our dynamic forest may occur several times in the Euler tour. Arbi-
trarily, we select one of these occurrences as the representative. Now each ET-node
represents the set of representative leaves below it. Let ET-root(v) denote the
ET-tree root overv. Since the balanced ET-trees have heightO(logn), we can find
ET-root(v) in time O(logn). Now connected(v,w)⇔ ET-root(v) = ET-root(w).

At each ET-nodeq, we maintain the number size(q) of representatives below it
and the minimal key min-key(q) attached to a representative below it. Since links
and cuts only affectO(logn) ET-nodes and since the ET-trees have heightO(logn),
this information is easily maintained inO(logn) time per update. Now, for a forest
vertexv, size(v) = size(ET-root(v)) and min-key(v) = min-key(ET-root(v)).

Finally, as in Henzinger and King [1999], we note that if we are willing to settle
for O(log2 n/log logn) time for links and cuts, we can reduce the cost of the other
operations toO(logn/log logn). The simple trick is instead of the balanced binary
trees to use balanced2(logn)-ary trees over the Euler tours. Now, the height is
reduced toO(logn/log logn), but link and cuts affectO(logn/log logn) ET-nodes
each withO(logn) children.

2.2. TOP TREES. The ET-trees are very simple to implement, but they fail to
maintain information about paths in trees, such as for example, what is the maximal
weight on the path between two given vertices in a tree. Typically, a path will be
completely spread over an Euler tour of a tree. In order to deal efficiently with
paths, we shall use the top trees from Alstrup et al. [1997].

A top tree is defined based on a pair consisting of a treeT and a set∂T of at
most two vertices fromT , calledexternal boundary vertices. Given (T, ∂T), any
connected subtreeC of T has a set∂(T,∂T)C of boundary verticesthat are the vertices
of C that are either in∂T or incident to an edge inT leavingC. The subtreeC is
called aclusterof (T, ∂T) if it has at most two boundary vertices. ThenT is itself a
cluster with∂(T,∂T)T = ∂T . Also, if A is a subtree ofC, ∂(C,∂(T,∂T)C) A= ∂(T,∂T) A, so
A is a cluster of (C, ∂(T,∂T)C) if and only if A is a cluster of (T, ∂T). Since∂(T,∂T) is
a canonical generalization of∂ from T to all subtrees ofT , we use∂ as a shorthand
for ∂(T,∂T) in the rest of the paper. We say two clustersA and B areneighborsif
they share a single vertex andA∪ B is a cluster (see Figure 1).

A top treeT over (T, ∂T) is a binary tree such that:

(1) The nodes ofT are clusters of (T, ∂T).
(2) The leaves ofT are the edges ofT .
(3) If C is the parent ofA andB in T thenC = A∪ B andA andB are neighbors.
(4) The root ofT is T itself.

For a clusterC, the vertices inC\∂C are calledinternal vertices. If a andb are
the (not necessarily distinct) boundary vertices ofC, the patha · · ·b is called the
cluster pathof C and is denotedπ (C). If a 6= b, the cluster is called apath cluster.
The clusterC is said to be apath ancestorof the clusterD andD is called apath
descendantof C if they are both path clusters andπ (D) ⊆ π (C). Note that each
edgee∈ π (C) is a path descendant ofC. A child that is a path descendant is apath
child, so in Figure 1, we have two path children in (1), 1 path child in (2), and 0 path
children in (3)–(4). Ifa is a boundary vertex ofC andC has two childrenA andB,
thenA is considerednearesttoa if a 6∈ B or if ∂A = {a}. If ∂C = ∂A = ∂B = {a},
the nearest cluster is chosen arbitrarily.
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FIG. 1. The cases of merging two neighboring clusters into one. The• are the boundary vertices of
the merged cluster and the◦ are the boundary vertices of the children clusters that did not become
boundary vertices of the merged cluster. Finally, the dashed line is the cluster path of the merged cluster.

The top trees over the trees in our forest are maintained under the
following operations:

Link (v,w). Wherev andw are in different trees, links these trees by adding the
edge (v,w) to our dynamic forest.

Cut(e). Removes the edgee from our dynamic forest.

Expose(v,w). Returnsnil if v andw are not in the same tree. Otherwise, it makes
v andw external boundary vertices of the top tree containing them and returns
the new root cluster.

Every update of the top trees is implemented as a sequence of the following two
local operations:

Merge(A, B). WhereA and B are neighbor clusters and roots of two top trees
TA and TB. Creates a new clusterC= A∪ B with children A and B, thus
combiningTA andTB in a top tree with rootC. Finally, the new root clusterC
is returned.

Split(C). WhereC is the root-cluster of a top treeT and has childrenA andB.
DeletesC, thus turningT into the two top treesTA andTB.

The implementation of each Link, Cut, and Expose always start with a sequence
of Split. This includes a Split of all ancestor clusters of edges whose boundary
change. Note that an end-pointv of an edge has to be boundary vertex of the edge
if v is not a leaf in the underlying forest, so each of Link, Cut, and Expose can
change the boundary of at most two edges, excluding the edge being linked or cut.
Finally, we finish with a sequence of Merge.

THEOREM1 (ALSTRUP ET AL. 1997; FREDERICKSON1985). For a dynamic
forest we can maintain top trees of height O(log n) supporting each Link, Cut,
or Expose with a sequence of O(log n) Split and Merge. Here the sequence itself is
identified in O(log n) time. The space usage of the top trees is linear in the size of
the dynamic forest.

Note that since the height of any top tree maintained using this theorem is
O(logn), we have that an edge is contained in at mostO(logn) clusters. A vertex
v of degreed can appear inO(d logn) clusters, butv is only internal toO(logn)
clusters, and we assume a pointerC(v) to the unique smallest cluster it is internal
to. If v is an external boundary vertex, it is not internal to any cluster, and thenC(v)
points to the root cluster containingv.
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We refer to the algorithm of Theorem 1 which translates Link, Cut, and Expose
operations into sequences of Merge and Split operations as thetop driver. When
using top trees, we have direct access to its representation, which is just a stan-
dard binary tree, whose nodes represent the clusters, and with each “top” node is
associated a set of at most two boundary vertices. As users, we will typically asso-
ciate extra information with the top nodes. Now, when the top driver has merged
two clustersA and B into a new clusterC, we will be notified with pointers to
the top nodes representingA, B, andC. We can then compute information for
C based on the information we have associated withA and B. If C is later split,
we may propagate information fromC down to A and B. As an example of the
power of the top machinery, we give a short proof of a result from Sleator and
Tarjan [1983]:

COROLLARY 2. We can maintain a fully dynamic weighted forest F supporting
queries about the maximum weight between any two vertices in O(logn) time
per operation.

PROOF. For each path clusterC we maintain the maximum weight onπ (C)
in the variable weightC. For a path cluster consisting of an edgee, weighte is just the
weight ofe. Now C :=Merge(A, B) sets weightC := max{weightD | D ∈ {A, B}
is a path child ofC}, while Split(C) just deletesC. Both operations take constant
time. To answer the query MaxWeight(v · · ·w), we just setC := Expose(v,w) and
return weightC.

As a final observation, we note that it is easy to augment top trees with the
following O(logn) time operation that we shall use in Section 5.2.

Find(v). Returns a unique identifier for the tree containingv. Thus, Find(v) =
Find(w) if and only if v andw are connected. The identifier is only changed
when the tree containingv is changed by Link and Cut. It is not changed
by Expose.

The identifiers are just stored at the root clusters, so Find(v) is implemented by
going toC(v) and then move upO(logn) times till we find a root cluster, from
which we return the associated identifier. In connection with Expose(v,w), we first
find and save the identifier of the root cluster containingv andw, then run Expose,
and finally store the saved identifier at the new root cluster. In connection with
Link and Cut, we first free the identifiers at the root clusters involved, so that they
can be reused. After the Link or Cut, new tree identifiers are allocated for the new
root clusters.

3. Connectivity

In this section, we present a simpleO(log2 n) time deterministic fully dynamic
algorithm for graph connectivity. First we give a high-level description, ignoring
all problems concerning data structures. Second, we implement the algorithm with
concrete data structures and analyze the running times.

3.1. HIGH-LEVEL DESCRIPTION. Our dynamic algorithm maintains a spanning
forest F of a graphG. The edges inF will be referred to astree edges. Us-
ing Sleator and Tarjan’s dynamic trees, or any of the data structures mentioned
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in Section 2, it is easy to check if vertices are connected in a dynamic forest.
Hence, insertions are easy: when inserting an edge (v,w), we check ifv andw are
connected inF ; if not, we add (v,w) to F . Also, we can easily deal with dele-
tions of nontree edges. Our challenge is to deal with the deletion of a tree edge
(v,w). The deletion splits some tree inF , but if the corresponding component
in G is not split, we have to find a replacement edge so as to reconnect the split
tree inF .

To accommodate systematic search for replacement edges, our algorithm
associates with each edgee a level`(e) ≤ `max = blog2 nc. For eachi , Fi de-
notes the subforest ofF induced by edges of level at leasti . Thus, F = F0 ⊇
F1 ⊇ · · · ⊇ F`max. The following invariants are maintained.

(i) F is a maximum (with respect tò) spanning forest ofG, that is, if (v,w) is a
nontree edge,v andw are connected inF`(v,w).

(ii) The maximal number of vertices in a tree inFi is bn/2i c. Thus, the maximal
level is`max.

Initially, all edges have level 0, and hence both invariants are satisfied. We are going
to present an amortization argument based on increasing the levels of edges. The
levels of edges are never decreased, so we can have at most`max increases per edge.
Intuitively speaking, when the level of a nontree edge is increased, it is because we
have discovered that its end points are close enough inF to fit in a smaller tree on a
higher level. Concerning tree edges, note that increasing their level cannot violate
(i), but it may violate (ii).

We are now ready for a high-level description of insert and delete.

Insert(e). The new edge is given level 0. If the end-points were not connected in
F = F0, e is added toF0. Clearly, neither (i) nor (ii) is violated.

Delete(e). If e is not a tree edge, it is simply deleted. Ife is a tree edge, it is deleted
and areplacement edge, reconnectingF at the highest possible level, is searched
for. SinceF was a maximum spanning forest, we know that the replacement
edge has to be of level at most`(e). We now call Replace(e, `(e)). Note that
when a tree edgee is deleted,F may no longer be spanning, in which case (i)
is violated until we have found a replacement edge. In the intermediate time, if
(v,w) is not a replacement edge, we still have thatv and w are connected
in F`(v,w).

Replace((v,w), i ). Assuming that there is no replacement edge on level> i , finds
a replacement edge of the highest level≤ i , if any.

LetTv andTw be the trees inFi containingv andw, respectively. Assume, without
loss of generality, that|Tv| ≤ |Tw|. Before deleting (v,w), T = Tv∪{(v,w)}∪Tw
was a tree on leveli with at least twice as many vertices asTv. By (ii), T had at most
bn/2i c vertices, so nowTv has at mostbn/2i+1c vertices. Hence, preserving our
invariants, we can take all edges ofTv of level i and increase their level toi + 1,
so as to makeTv a tree inFi+1.

Now leveli edges incident toTv are visited one by one until either a replacement
edge is found, or all edges have been considered. Letf be an edge visited during
the search.
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If f does not connectTv andTw, we increase its level toi + 1. This increase
pays for our consideringf .

If f does connectTv andTw, it is inserted as a replacement edge and the search
stops.

If there are no leveli edges left, we call Replace((v,w), i − 1); except if
i = 0, in which case we conclude that there is no replacement edge for (v,w).

3.2. IMPLEMENTATION. To implement the above abstract algorithm, for eachi ,
we apply the ET-trees from Section 2.1 to the forestFi . With each vertex, we
associate a key for each incident leveli edge. The keys for tree edges and for
the nontree edges are separated so that we can search tree edges and nontree
edges independently.

Note that each tree edge on leveli appears in allFh, h ≤ i , hence inO(logn)
levels. On the other hand, we only havem keys, as each edge only appears as a key
on its own level. Hence, our space usage isO(m+ n logn).

It is now straightforward to analyze the amortized cost of the different operations.
When an edge is inserted on level 0, the direct cost isO(logn). However, its level
may increaseO(logn) times. For each increase, we spendO(logn) time, both for
finding the edge, and for making the appropriate changes to the ET-trees. Thus, the
total amortized cost of inserting an edge, including all subsequent level increases,
is O(log2 n).

Deleting a nontree edgee takes timeO(logn). When a tree edgee is deleted,
we have to cut all forestsFj , j ≤ `(e), giving an immediate cost ofO(log2 n). We
then haveO(logn) recursive calls to Replace, each of costO(logn) plus the cost
amortized over increases of edge levels. Finally, if a replacement edge is found, we
have to linkO(logn) forests, inO(log2 n) total time.

Thus, the cost of inserting and deleting edges fromG is O(log2 n). The ET-trees
overF0= F immediately allows us to answer connectivity queries between arbitrary
vertices in timeO(logn). In order to reduce this time toO(logn/log logn), we
simply apply the2(logn)-ary ET-trees menioned in Section 2.1 to our spanning
forestF . This gives us an added cost ofO(log2 n/log logn) time per changes inF ,
but this is subsumed by ourO(log2 n) cost from above. Hence, we conclude:

THEOREM 3. Given a graph G with m edges and n vertices, there exists
a deterministic fully dynamic algorithm that answers connectivity queries in
O(logn/log logn) time worst case, and uses O(log2n) amortized time per insert
or delete.

As mentioned, our space bound for connectivityO(m + n logn). The main
challenge in getting the space further down is that Replace, for each leveli , needs
to determine which ofTv andTw is the smaller. However, Thorup [2000] has recently
found a quite different linear space implementation of our algorithm.

4. Decremental Minimum Spanning Forests

We now expand on the ideas from the previous section to the problem of decremen-
tally maintaining a minimum spanning forest (MSF). In the next section, we apply
what is essentially a construction from Henzinger and King [1997b], transforming
a deletions-only MSF algorithm into a fully dynamic MSF algorithm.
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It turns out that if we only want to support deletions, we can obtain an MSF
algorithm from our connectivity algorithm by some very simple changes. The first
is, of course, that the initial spanning forestF has to be a minimal spanning forest.
The second is that when in replace, we consider the leveli nontree edges incident
to Tv, instead of doing it in an arbitrary order, we should do it in order of increasing
weights. That is, we repeatedly take the lightest incident leveli edgee: if e is a
replacement edge, we are done; otherwise, we movee to level i + 1, and repeat
with the new lightest incident leveli edge, if any.

To see that the above simple change suffices to maintain thatF is a minimum
spanning forest, we prove that in addition to (i) and (ii), the following invariant
is maintained:

(iii) Every cycle C has a nontree edgee with w(e) = maxf ∈C w( f ) and`(e) =
min f ∈C `( f ).

The original replace function found a replacement edge on the highest possible level,
but now, among the replacement edges on the highest possible level, we choose the
one of minimum weight. Using (iii), we show that this edge has minimum weight
among all replacement edges.

LEMMA 4. Assume(iii ) and that F is a minimum spanning forest. Then, for
any tree edge e, among all replacement edges, the lightest edge is on the maxi-
mum level.

PROOF. Let e1 ande2 be replacement edges fore. Let Ci be the cycle induced
byei ; thene∈ Ci . Supposee1 is lighter thane2. We want to show that̀(e1) ≥ `(e2).

Consider the cycleC = (C1 ∪ C2)\(C1 ∩ C2). SinceF is a minimum spanning
forest, we know thatei is a heaviest edge onCi . Hencee2 is the unique heaviest
nontree edge onC. By (iii), this implies thate2 has the lowest level onC. In
particular,̀ (e1) ≥ `(e2).

Since our algorithm is just a specialized version of the decremental connectivity
algorithm, we already know that (i) and (ii) are maintained.

LEMMA 5. The algorithm maintains(iii ), that is, that every cycle C has a
nontree edge e with w(e) = maxf ∈Cw( f ) and`(e) = minf ∈C`( f ).

PROOF. Initially (iii) is satisfied since all edges are on level 0. We now show
that (iii) is maintained under all the different changes we make to our structure
during the deletion of an edge. If an edgee is just deleted, any cycle inG \ {e} also
existed inG, so (iii) is trivially preserved.

Our real problem is to show that (iii) is preserved during Replace when an edge
e either gets its level increased, or becomes a tree edge. We may assume thate is a
unique lowest heaviest nontree edge on some cycleC, for otherwise (iii) cannot get
violated. Based on these assumptions we will show (1) that all other edges fromC
incident toTv have level>`(e), and using (1) we will show (2) thatC cannot leave
Tv. From (2) we conclude thate cannot be a replacement edge, and from (1) and
(2) we conclude thate has strictly lower level than all other edges inC, hence that
e still satisfies (iii) when increased.

We now prove (1). Leti be the level ofe. Whene is next to be considered by
Replace, we know that all edges in the treeTv have level>i . Also, we know that
any nontree edge incident toTv and strictly lighter thane has level>i . Further,
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sincee was lowest onC and sincee was the unique heaviest lowest nontree edge
on C, we know that any nontree edge inC as heavy ase has level>i . Thus, we
conclude (1), that all edges fromC incident toTv have level>i .

To prove (2), suppose thatC leavesTv. ThenC has at least two edges leavingTv,
one of which is note. Call this edgef . If f has level≥i , it would be a replacement
edge, and from the previous section, we know that there is no replacement edge
on level>i . Hence,̀ ( f ) ≤ i , contradicting (1), so we conclude (2), thatC never
leavesTv.

As discussed above, (1) and (2) implies that (iii) does not get violated.

We have now established that our invariants (i), (ii), and (iii) are maintained.
Hence, given that we start with a minimum spanning forest, Lemma 4 ascertains
that if a tree edge is deleted, it is replaced by a lightest replacement edge. Thus, our
spanning forest will remain minimal, as desired.

The ET-trees from Section 2.1 are already made to return a minimum weight
key, which here corresponds to the desired lightest nontree edge incident to a tree.
Hence, our time bounds are the same as for connectivity starting withm edges,
each with a potential cost ofO(log2 n). We conclude

THEOREM 6. There exists a deletions-only MSF algorithm that can be initial-
ized on a graph with n vertices and m edges and support any sequence of deletions
in O(m log2n) total time.

As for connectivity, the space bound at any time isO(m+ n logn) with m being
the current number of remaining edges.

5. Fully Dynamic MSF

To obtain a fully dynamic MSF algorithm, we apply a general reduction from a fully
dynamic MSF problem to a series of decremental MSF problems. Essentially, our
reduction is that of Henzinger and King [1997a, pp. 600–603]. Their reduction re-
quires, however, that the decremental structure can support inserting certain batches
of edges while we want to reduce directly to purely decremental MSF problems. To
obtain such a reduction, we combine the above mentioned technique of Henzinger
and King with a contraction technique of theirs presented in Henzinger and King
[1997a]. Our reduction can be formally characterized as follows:

THEOREM 7. Suppose we have a deletions-only MSF algorithm that for any
k, l , can be initialized on a graph with k vertices and l edges and support any
sequence of deletions in total time O(l · t(k, l )) where t is nondecreasing. Then
there exists a fully dynamic MSF algorithm for a graph on n vertices starting with
no edges, supports m insertions and deletions in amortized time

O

(
log3n+

log2 m∑
i=1

i∑
j=1

t(min{n, 2 j }, 2 j )

)
.

Combining Theorem 6 and Theorem 7, we conclude
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THEOREM 8. There is a fully dynamic MSF algorithm that for a graph with n
vertices, starting with no edges,maintains a minimum spanning forest in O(log4n)
amortized time per edge insertion or deletion.

The rest of this section presents a construction proving Theorem 7.

5.1. HIGH-LEVEL DESCRIPTION. We support insertions via a logarithmic num-
ber of decremental MSF structures. When an edge is deleted, it will be deleted from
all the decremental structures, and a replacement edge will be sought among the
replacement edges returned by these. When an edge is inserted, we union it with
some of the decremental structures into a new decremental structure.

More precisely, besides maintaining a minimum spanning forestF of G, we
maintain a setA = {A0, . . . , AL}, L = dlog2 me, of subgraphs ofG, and for
eachAi , we will maintain a minimum spanning forestFi . We refer to edges of
F as global tree edgesand the edges in theFi as local tree edges. All edges
of G will be in at least oneAi , so F ⊆ ⋃

i Fi . Further, we have the following
invariant:

(iv) For each global nontree edgef ∈ G\F , there is exactly onei such thatf ∈
Ai \Fi and if f ∈ Fj , then j > i .

The following lemma states that when a global tree edgee is deleted, we can find
its replacement by deletinge from all Ai it occurs in.

LEMMA 9. If f is the lightest replacement edge for a global tree edge e, then
f is the lightest replacement edge for e in at least one Ai .

PROOF. Since f is not inF yet, by (iv) there is ani such thatf ∈ Ai\Fi . When
ehas been deleted,f is a global tree edge inG\{e}, but thenf must also be a local
tree edge in the subgraphAi \{e} ⊆ G\{e}.

Before presenting the details of a deletion, we describe insertions

Insert(e). Let v andw be the end points ofe. If v andw are not connected byF ,
we just adde to F . Otherwise, ife is lighter than the heaviest edgef on the path
from v to w, we replacef with e in F , and updateA with { f } as described
below. Finally, if the path fromv to w does not contain an edge heavier thane,
we updateA with {e}.

Delete(e). First, we deletee from all Ai it appears in. LetR be the set of returned
replacement edges. Ife∈ F , we deletee from F . Subsequently, we checkR for
edges reconnectingF . If R contains any such edges, we pick the lightest such
edge f . By Lemma 9, f is the correct replacement edge fore, so we insertf
in F . Finally, no matter whethere was a global tree edge or not, we updateA
with R as described below.

UpdateA with the edge setD. First, we find the smallestj such that|(D ∪⋃
h≤ j (Ah\Fh))\F | ≤ 2 j . Then we set

Aj := F ∪ D ∪
⋃
h≤ j

(Ah\Fh), (1)

initializing Aj as a new decremental MSF structure. Finally, we setAh := ∅ for
all h < j .
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By definition of j , we havem≥ |(D ∪ ⋃h≤ j (Ah\Fh))\F |> 2 j−1, so j ≤dlog2 me =
L, and hence we are not introducing any newAj . The correctness of Insert and
Delete now follows from:

LEMMA 10. Both Insert and Delete restore(iv).

PROOF. The proof divides into two steps.

(a) First, we show that before updatingA with D, it is only the edges inD for
which (iv) may not be satisfied.

(b) Second, we show that updatingA with D establishes (iv) for the edges inD
while not destroying (iv) for any other edge.

The two steps together establish the restoration of (iv).

(a) With Insert, since we do not changeA before the update, our only concern is
a new global nontree edge. This is eithere if edoes not go inF , or an edgef thate
replaces inF . In either caseA is subsequently updated with the new global nontree
edge. With Delete, we get no new nontree edges, so our only concern is edges
changing status in someAi . The edges changing status before the update ofA are
exactly the replacement edges inR that we later update with. This completes (a).

(b) We now show that the update ofA establishes (iv) for the edges inD. This
follows if we can show that when the update starts, the edges ofD are not nontree
edges in anyAi . In case of Insert, our concern is ife replaces an edgef which is
then used for the update. However,f was a global tree edge, sof must be a local
tree edge in anyAi it appears in. In connection with Delete, letr ∈ D = R. Then
r was a replacement edge from someAi , meaning that it was a nontree edge inAi .
However, by (iv), this means thatr is not a nontree edge in any otherAj . Further,
sincer has replacede in Ai , r is no longer a nontree edge in anyAi . Thus, Update
establishes (iv) for the edges inD.

To see that Update does not destroy (iv) for any edge outsideD, let f be a nontree
edge satisfying (iv) before the update and leti be theAi in which f appears as a
nontree edge. Ifj < i , by (iv), f does not appear in anyAh, h ≤ j , and hencef
is not affected by the update. If, on the other hand,i ≤ j , then after the update,f
is still not a nontree edge in anyAh, h > j ≥ i , and clearlyf becomes a nontree
edge inAj if f is a global nontree edge. This completes step (b).

We are going to represent the local tree edges implicitly, so for efficiency, our
main concern is the number of local nontree edge initializations in (1.) These are
amortized over global edge deletions.

Note that, for our analysis of efficiency, it is valid to assume that all edges end
up being deleted; for we always start with an empty graph, so given any operation
sequenceS, if we continue it by deleting all edges, we get a sequenceS′, which is
at most twice as long. Hence, if we can show forS′ that the amortized operation
cost isT , it follows that the amortized operation cost forSwas at most 2T .

LEMMA 11. For each edge deletion, for each i = 0, . . . , L , and for each
j = 0, . . . , i, we make at most2 local nontree edge initializations in Aj in (1).

PROOF. All initializations happen in connection with an update when we set
Aj := F ∪ D

⋃
h≤ j (Ah\Fh). We are only going to count the initializations with

nontree edges that either come fromD or for someAh whereh < j . By definition
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of j , |(D ∪⋃h≤ j (Ah\Fh))\F | > 2 j−1 while |(D ∪⋃h< j (Ah\Fh))\F | ≤ 2 j , so
we know we are counting at least half the local nontree edge initializations.

Consider the life cycle of some edgee in A. An incarnation of an edgee is live
in Aj if it is nontree inAj , and dead otherwise. By (vi), each edge has only one
live incarnation.

Suppose during an update ofAwith D thate is initialized as a local nontree edge
into Aj . If e ∈ D, this is the birth, or rebirth ofe. Otherwise,e comes from some
Ah, h ≤ j . If h = j , we do not count the initialization. Otherwise, we claim that
there is a live incarnation ofe among theAh, h< j , and it is this live incarnation
that we view as being moved up fromAh to Aj . Now e can only be initialized as
local nontree edge inAj if it is also a global nontree edge, but then by (vi) the first
instance ofe in someAh is live, so indeed the update is moving a live instance of
e up from someAh to Aj whereh < j .

Our final step is to note that the only waye can die from someAi is if eithere
is deleted globally, in which casee escapes the cycle of rebirth, or if it becomes a
local tree edge inAi . The latter requires that some other edge is deleted fromAi
ande comes in as a replacement edge. Thene will be moved toR from which it
will be reborn in the subsequent update. We attribute the latest rebirth ofe and all
the progressive moves ofe from Ah to Aj , h < j to the death ofe. This is at most
one initialization in eachAj for j = 0, . . . , i .

Since edges only die in connection with global deletions, and since each global
deletion kills at most one edge from eachAi , the result follows.

At present, the number of initializations of local tree edges is not efficiently
bounded. As mentioned previously, to resolve this, we only maintainF implicitly.
Instead of addingF to Aj in an update, we add a forestF ′ of super edges eP,
each representing a pathP in F . The super edges represent the minimal set of
nonoverlapping paths connecting the end points of the nontree edges inAj . Thus,
F ′ is an unrooted tree where degree 1 or 2 vertices are end points of nontree edges
in Ai . It follows that there are less than twice as many edges inF ′ as there are
end-points, and for each nontree edge, we have two end-points. Thus,

LEMMA 12. For each nontree edge initialized in Aj , there are at most most4
super edges initialized in Aj .

A super edgeeP representing the pathP is assigned the maximum weight in
P, andeP is deleted if any edge fromP is deleted. Since deleting edges fromAi
cannot turn tree edges into nontree edges, our replacement ofAj with A′j in the
deletions only structures is valid. From Lemmas 11 and 12, we conclude

LEMMA 13. The total cost of the decremental MSF structures is
O(
∑log2 m

i=1

∑i
j=1 t(min{n, 2 j }, 2 j ).

5.2. IMPLEMENTATION. For our implementation of the above reduction, we
shall use the top tree data structure from Subsection 2.2. Our main challenges are
in connection with super edges. First, to implement Update, we need to identify
the super edges forA′j . Also, when an edgee is to be deleted fromAi , we need to
check whether it is part of a pathP representing a super edgeeP, which is to be
deleted fromA′i .
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For eachAi , we maintain a copyFi of F from whenAi was last initiated. LetS
denote the set of end-points of nontree edges inAi from the initiation. To identify
the super edges, we take the vertices fromS one at a time, incrementally adding
super verticesto the tree of super-edges. The paths between the super vertices in
Fi are thensuper pathsto be contracted to super edges.

More precisely, every time we add a vertexv ∈ S, we do as follows. First,v is
marked as a super vertex. Ifv is not connected inG to any other super vertex, we
are done. Otherwise, we find the nearest vertexx on some super path. Ifx is a super
vertex, we simply add the new super pathv · · · x. Otherwise, since the super paths
only intersect in the super vertices,x must be internal to a unique current super
patha · · ·b. We now markx as a new super vertex, delete the super patha · · ·b
and add the three super pathsv · · · x, a · · · x, andb · · · x. To facilitate an efficient
implementation, note

LEMMA 14. Suppose r is a super vertex, and let v be any vertex. Then the vertex
x on a super path that is nearest to v is on the path v· · · r . Further, if x is internal
to a super path P, then P contains the edge leaving x on the path directed from v
to r.

PROOF. First, suppose for a contradiction thatx is not onv · · · r . Sincex is on
a super path andr is a super vertex, all vertices onx · · · r must be on super paths.
In particular, this means that the first intersectionx′ betweenv · · · r andx · · · r is
on a super path, butx′ is closer tov thanx, contradicting the choice ofx.

As mentioned, our implementation is based on the top trees from Section 2.2.
When we start the process of finding the super paths, we assume that we already
have a top tree overFi . This is achieved by updatingFi to F every time we start
initializing Ai . Hence, between initializations ofAi , we have to record the changes
to F , that is, we maintain the difference betweenFi andF . WhenAi is initialized,
we first delete all edges deleted fromF since last initialization, and second we
insert all the edges inserted inF . SinceF has remained a tree during the updates,
so doesFi . As a consequence, each change ofF cause up toL top tree updates,
leading to a cost per change ofF of O((logn)2).

With each treeT , we associate a variable super-rootT which isnil if T does not
contain a super vertex, and otherwise contains an arbitrary super vertex fromT .
Thus,v is connected to a super vertex if and only if super-rootFind(v ) 6= nil .

For each clusterC and boundary vertexa of C, we will maintain the vari-
ables nearest-super-pathC,a and nearest-super-path-vertexC,a defined as follows:
If there is no super path containing an edge fromπ (C), nearest-super-pathC,a =
nearest-super-path-vertexC,a = nil . Otherwise, letP be the super path containing
an edge ofπ (C) nearest toa, and letx be the vertex ofP on π (C) closest toa.
Then, nearest-super-pathC,a = P and nearest-super-path-vertexC,a = x.

Suppose the above variables are properly maintained for the root clusters. As-
suming this, we can implement the routine for adding a new pointv ∈ Sas follows:
First, we markv as a super vertex. Next, we setr := super-rootFind(v ). If r = nil ,
v is not connected to any other current super vertices, so we complete by setting
super-rootFind(v ) := v. Otherwise, we want to find the super path vertexx closest
to v. This is done by settingC := Expose(v , r) andP = nearest-super-pathC,v. If
P = nil , x = r by Lemma 14. Otherwise, we setx = nearest-super-path-vertexC,v.
Having identifiedx, we markx as a new super vertex.
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Assume we are in the complicated case wherex was not already a super vertex.
We still need to replaceP with the three super pathsv · · · x, a · · · x, andb · · · x
wherea andb are the end points. Here we representP as identifier with which
we have associated the pair of points (a, b). Further, withP, we associate a list
of pointers to all references toP in the top tree, so that we can easily erase all
information aboutP. Since the erasing the information is as quick as inserting it,
we can ignore it in the asymptotic analysis of our algorithm. Having erased the
information aboutP, we free the identifier for later reuse.

We now allocate three new super path identifiersP(v,x), P(a,x), andP(b,x). Insert-
ing the information about these is done using a variable lazy-super-pathC that for
a clusterC is eithernil or contains an identifier of a super path containingπ (C).
Now, for any clusterD, eitherD has a path ancestorC with lazy-super-pathC 6=
nil , and thenπ (D) ⊆ π (C) ⊆ lazy-super-pathC, or nearest-super-pathD,a
and nearest-super-path-vertexD,a have the correct information for each bound-
ary vertexa ∈ ∂D. Since a root cluster has no ancestors, it always has the
correct information.

To insert the three new super paths, fory = v,a, b, we insertP(y,x) as fol-
lows: First, we setC := Expose(y, x) and then we call Add-path(C, P(y,x)) de-
fined below.

Add-path(C, P). Set lazy-super-pathC := P, and for eacha ∈ ∂C, set nearest-
super-pathC,a := P and nearest-super-path-vertexC,a := a.

To complete the description of the procedure for finding the super edges, we
need to tell how to update information in connection with Merge and Split.

C := Merge(A, B). If C is not a path cluster (Figure 1(3)–(4)), we just set all
variables ofC to nil and return.

Otherwise, first, we set we set lazy-super-pathC := nil .

If C has exactly one path childA (Figure 1(2)), let∂C = {a, b} = ∂A.
We then copy the information fromA directly to C. That is, forc = a, b,
we set nearest-super-pathC,c := nearest-super-pathA,c and nearest-super-path-
vertexC,c := nearest-super-path-vertexA,c.

If C has two path children (Figure 1(1)), let∂C = {a, b}, ∂A = {a, c},
and ∂B = {c, b}. If nearest-super-pathA,a 6= nil , set nearest-super-path-
C,a := nearest-super-pathA,a and nearest-super-path-vertexC,a := nearest-super-
path-vertexA,a. Otherwise, if nearest-super-pathA,a = nil , set nearest-super-
pathC,a := nearest-super-pathB,c and nearest-super-path-vertexC,a := nearest-
super-path-vertexB,c. The values of nearest-super-path(C, b) and nearest-super-
path-vertex(C, b) are found symmetrically withb andB replacinga andA.

Split(C). We only have to update information if lazy-super-pathC 6= nil . In this
case, for each path childA of C, call Add-path(A, lazy-super-pathC).

We have now shown the set of super edges can be constructed. When an edge
(v,w) is globally deleted, for eachi , we want to check if (v,w) is on a super
path corresponding to a super edge inA′i . This can only be the case if (v,w) is
an edge inFi . If so, we take the top tree overFi , setC := Expose(v ,w) and
P := nearest-super-path(C, v). If P = nil , (v,w) is not in a super path. Otherwise,
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P is the identifier for the super path containing (v,w), and withP we can easily store
information about whether the corresponding super edge (a, b) has been deleted
from A′i . If not, we delete (a, b) from A′i .

LEMMA 15. For a set S of end-points of nontree edges, the corresponding set
of super edges is found in time O(|S| log n) time. Further identifying a potential
super edge from A′i covering an edge e to be deleted takes O(log n) time.

PROOF. Each Merge and Split takes constant time, so by Theorem 1 each top
tree operation takesO(logn) time.

PROOF OFTHEOREM7. From Lemma 13, we have already accounted for the
cost of the decremental MSF structures. It remains to show that the remaining cost
of the other operations isO((logn)3).

First, consider Insert and Delete without the call to Update. In connection with
Insert(e), we need to check if there is a path inF between the end points ofe, and
if so, what is the heaviest edge on such a path. As described in Corollary 2, this can
be done in timeO(logn).

In connection with Delete(e), first, for eachi we need to check ife is in a super
edgee′ of A′i . By Lemma 15, this takesO(logn). Second, whene or e′ has been
deleted fromA′i , a replacement edgef may be returned, and then we have to check
if the end points off are connected inF . This takesO(logn) time using the Find
operation of the top trees. Hence, the cost of Delete ignoring Update isO((logn)2).

Finally, for Update, our problem is to find the super edges. By Lemma 11 and 15,
this has a cost ofO(

∑log2 m
i=1

∑i
j=1 logn) = O((logn)3) per delete. This completes

the proof of Theorem 7.

The total number of edges in the decremental MSF structures isO(m), so their
total space isO(m logm). To store theO(logn) treesFi , including their top trees
and their difference fromF , we needO(n logn) space, so the total space for our
fully dynamic MSF algorithm isO(m logn).

6. 2-Edge Connectivity

In this section, we present anO(log4 n) deterministic algorithm for the 2-edge
connectivity problem for a fully dynamic graphG. An important secondary goal is
to present ideas and techniques that will be reused in the next section for dealing
with the more complex case of biconnectivity. As in the previous sections we will
maintain a spanning forestF of G.

A tree edgee is said to becoveredby a nontree edge (v,w) if e ∈ v · · ·w,
that is, if e is in the cycle induced by (v,w). Hence,e is a bridge if and only if
it is a tree edge not covered by any nontree edge. Since 2-edge connectivity is
a transitive relation on vertices, it follows that two verticesx and y are 2-edge
connected if and only if they are connected inF and all edges inx · · · y are covered
[Frederickson 1997].

Recall from connectivity that our spanning forestF was a certificate of con-
nectivity in G in that vertices were connected inG if and only if they were so in
F . If an edge fromF was deleted, we needed to look for a replacement edge re-
connectingF , if possible. An amortization argument paid for all non-replacement
edges considered.
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Now, for 2-edge connectivity we have a certificate consisting ofF together with
a setC containing an edge covering each non-bridge edge inF . Thus, two vertices
are 2-edge connected inG if and only if they are so inF ∪ C. However, if an
edge f ∈ C is deleted, we may need to add several “replacement edges” toC in
order regain a certificate. Nevertheless, by carefully choosing the order in which
potential replacement edges are considered, we will be able to amortize the cost of
considering all but two of them.

6.1. HIGH-LEVEL DESCRIPTION. The algorithm associates with each nontree
edgee a level`(e) ≤ `max = dlog2 ne. However, in contrast to connectivity, the
tree edges do not have associated levels. For eachi , let Gi denote the subgraph
of G induced by edges of level at leasti together with the edges ofF . Thus,
G = G0 ⊇ G1 ⊇ · · · ⊇ G`max ⊇ F . The following invariant is maintained:

(i′) The maximal number of vertices in a 2-edge connected component ofGi is
dn/2i e. Thus, the maximal relevant level is`max.

It should be noted here that we round up instead of down for the compo-
nent sizes. This will be significant for biconnectivity, where we will use that
dn/2i e ≤ 2dn/2i+1e.

Initially, all nontree edges have level 0, and hence the invariant is satisfied. As
for connectivity, we amortize work over level increases. We say that it islegal to
increase the level of a nontree edgee to j if this does not violate (i′), that is, if the
2-edge connected component ofe in G j ∪ {e} has at mostdn/2 j e vertices.

For every tree edgee∈ F , we implicitly maintain thecover level c(e), which is the
maximum level of a covering edge. Hence,c(e) is also the maximal level for which
e is in a 2-edge connected component. Ife is a bridge,c(e) = −1. The definition
of a cover level is extended to paths by definingc(P) = mine∈P c(e). During the
implementation of an edge deletion or insertion, thec-values may temporarily have
too small values. We say thatv andw arec-2-edge connected on level iif they are
connected andc(v · · ·w) ≥ i . Assuming that allc-values are updated, we have our
basic 2-edge connectivity query:

2-edge-connected(v,w). Decide ifv andw arec-2-edge connected on level 0.

For basic updates ofc-values, we have

InitTreeEdge(v,w). Setc(v,w) := −1.

Cover(v,w, i ). wherev andw are connected. For alle∈ v · · ·w, if c(e) < i , set
c(e) := i .

We can now computec-values correctly by first calling InitTreeEdge(v,w) for all
tree edges (v,w), and then calling Cover(q, r, `(q, r )) for all nontree edges (q, r ).
Inserting an edge is straightforward:

Insert(v,w). If v and w are not connected inF , (v,w) is added to F
and InitTreeEdge(v,w) is called. Otherwise, set̀ (v,w) := 0 and call
Cover(v,w, 0). Clearly(i′) is not violated in either case.

In connection with deletion, the basic problem is to deal with the deletion of a
nontree edge. If a nonbridge tree edge (v,w) is to be deleted, we first swap it with
a nontree edge as described in Swap below.
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Swap(v,w). Where (v,w) is a tree edge that is not a bridge, that is,c(v,w)≥ 0. Set
α = c(v,w), and let (x, y) be a nontree edge covering (v,w) with `(x, y) = α.
Set `(v,w) := α. Replace (v,w) by (x, y) in F . Call InitTreeEdge(x, y) and
Cover(v,w, α).

To see that Swap does not violate invariant(i′), we argue much stronger that Swap
does not change the 2-edge connected components of anyGi . If i ≤ α, then both
(v,w) and (x, y) are in Gi both before and after the call, soGi is unchanged.
If i > α, (v,w) was a bridge inGi . Then (x, y) must be a new bridge inGi ,
for otherwise there should be a leveli nontree edge (q, r ) covering (x, y) after the
swap, but this edge would have covered (v,w) before the swap. However, replacing
one bridge with another, does not affect any 2-edge components ofGi . Thus, no
2-edge connected component is affected in anyGi .

Next we need to argue that the cover information is correctly updated. All edges
covered by (v,w) after the swap, except for (x, y), were covered by (x, y) before
the swap, and hence theirc-values where at least`(x, y) = α. Thus, when we call
Cover(v,w, α), we do not affect any of thesec-values. This lack of change is correct
since the 2-edge connected components are not changed in anyGi . Concerning
(x, y), Cover(v,w, α) setsc(x, y) := α, which is correct since (x, y) is a bridge in
anyGi with i > α.

We are now ready to describe how to delete an edge.

Delete(v,w). If (v,w) is a bridge, we simply delete it and return.

Assuming that (v,w) is not a bridge, if (v,w) is a tree edge, we first call
Swap(v,w), turning (v,w) into a nontree edge. We then call Uncover(v,w, `(v,w))
as defined below, delete the edge (v,w), and finally, fori := `(v,w), . . . ,0, we
call Recover(v,w, i ) as defined below.

The point in Uncover is to remove all cover information potentially stemming
from (v,w). This is done as follows:

Uncover(v,w, i ). Wherev andw are connected. For alle∈ v · · ·w, if c(e) ≤ i ,
setc(e) := −1.

Our problem now is that thec-values onv · · ·w may have become too low.
Formally, we say thatv · · ·w is fineon leveli if all c-values inF are correct, except
thatc-values< i onv · · ·w may be too low. After the call Uncover(v,w, `(v,w))
in Delete,v · · ·w is fine on level̀ (v,w)+ 1.

The procedure Recover(v,w, i ). defined below assumes thatv · · ·w is fine on
level i + 1, and then it makesv · · ·w fine on leveli . Thus, given a correct im-
plementation of Recover, all cover information will be correct after the final call
Recover(v,w, 0) in Delete.

A correct implementation of Recover(v,w, i ) would be to take all leveli edges
(q, r ) covering edges inv · · ·w, and call Cover(v,w, i ). As in basic connectivity,
we would like to amortize the calls by first increasing the level of (q, r ) to i +1 and
then call Cover(q, r, i + 1). This time we need to be a lot more careful, however.
The basic problem is that we are not just trying to recover a single component with
a single replacement edge, but rather we have to recover a hole chain of 2-edge
connected components alongv · · ·w.

Before presenting our implementation of Recover, consider a leveli edge (q, r )
covering some edge inv · · ·w. By definition,q · · · r ∩ v · · ·w 6= ∅. Since cover
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information is correct outsidev · · ·w, it follows that c(meet(q, v,w) · · ·q) ≥ i .
This condition is, in fact, equivalent to (q, r ) being in the same 2-edge connected
component as (v,w) in Gi before the deletion of (v,w).

Recover(v,w, i ). We divide into two symmetric phases. Setu := v and letu
step through the vertices ofv · · ·w towardsw. For each value ofu, consider,
one at the time, the leveli nontree edges (q, r ) with meet(q, v,w) = u and
c(u · · ·q)≥ i . If legal, increase the level of (q, r ) to i+1 and call Cover(q, r, i+1).
Otherwise, we call Cover(q, r, i ) and stop the phase.

If the first phase was stopped, we have a second symmetric phase, starting with
u = w, and steppingu through the vertices inw · · · v towardsv.

Our final step is to establish the correctness of Recover.

LEMMA 16. Assuming that v· · ·w is fine on level i+ 1. Then after a call
Recover(v,w, i ), v · · ·w is fine on level i .

PROOF. For brevity, we say that a leveli nontree edge isrelevant if
c(meet(q, v,w) · · ·q) ≥ i .

First, note that we do not violatev · · ·w being fine on leveli + 1 if we take a
relevant edge (q, r ) and either call Cover(q, r, i ) directly, or first increase the level
of (q, r ) to i + 1, and then call Cover(q, r, i + 1).

Given that v · · ·w remains fine on leveli + 1, to prove that it gets fine
on level i , we need to show that for any remaining relevant edges (q, r ),
all edgese in q · · · r ∩ v · · ·w have c(e) ≥ i . This is trivially the case if
phase 1 runs through without being stopped, for then there are no remaining
relevant edges.

Now, suppose phase 1 is stopped. Letu1 be the last value ofu considered, and
(q1, r1) be the last edge considered. Then, increasing the level of (q1, r1) is illegal.
Hence, phase 2 will also stop, for otherwise, it would end up illegally increasing
the level of (q1, r1). Let u2 be the last value ofu considered, and let (q2, r2) be the
last edge considered in phase 2.

Since the phases were not interrupted for nontree edges (q, r ) covering edges
beforeu1 or after u2, we know that if (q, r ) remains on leveli , it is because
q · · · r ∩ v · · ·w ⊆ u1 · · ·u2. Hence, we prove fineness of leveli , if we can show
that allc-values inu1 · · ·u2 are≥ i .

For k := 1, 2, from the illegality of increasing the level of (qk, rk), it fol-
lows that the 2-edge connected componentCk of qk in Gi+1 ∪ {(qk, rk)} has
>dn/2i+1e vertices. However, we know that before the deletion of (v,w), C1
and C2 where both part of the 2-edge connected componentC of Gi contain-
ing (v,w), and this component had at mostdn/2i e vertices. Hence,C1 ∩ C2 6= ∅.
Thus,C1 and C2 are contained in the same 2-edge connected componentD of
Gi+1 ∪ {(q1, r1), (q2, r2)}. Since covering is done for all leveli + 1 edges, it fol-
lows that our calls Cover(q1, r1, i ) and Cover(q2, r2, i ) imply that all tree edges in
D get c-values≥i . Moreoveruk ∈ Ck, so u1 · · ·u2 ⊆ C, and hence all edges in
u1 · · ·u2 havec-values≥i .

After the last call Recover(v,w, 0), we now know thatv · · ·w is fine on level
0, that is, all c-values in F are correct, except thatc-values<0 on v · · ·w
may be too low. However, since−1 is the smallest value, we conclude that all
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c-values are correct, and hence our fully dynamic 2-edge-connectivity algorithm
is correct.

6.2. IMPLEMENTATION. The algorithm maintains the spanning forest in the
top tree data structure from Section 2.2. For each clusterC, we maintain
coverC = c(π (C)). Thus, 2-edge connectivity queries are implemented by:

2-edge-connected(v,w). SetC := Expose(v,w). Return (coverC ≥ 0).

In connection with Swap, for a given tree edge (v,w), we need a covering edgee
with `(e) = c(v,w). This is done, by maintaining for each clusterC a nontree edge
cover-edgeC covering an edge onπ (C) with `(cover-edgeC) = coverC. Then, the
desired edgee is found by settingC := Expose(v,w) and returning cover-edgeC.
Calls to cover and uncover also reduce to operations on clusters:

Cover(v,w, i ). SetC := Expose(v,w). Call Cover(C, i, (v,w)) defined below.

Uncover(v,w, i ). SetC := Expose(v,w). Call Uncover(C, i ) defined below.

The point is, of course, that we cannot afford to propagate the cover/uncover
information the whole way down to the edges. When these operations are
called on a path clusterC, we will implement them directly inC, and
then store lazy information inC about what should be propagated down in
case we want to look at the descendants ofC. The precise lazy information
stored is

—cover+C , cover−C , and cover-edge+C , where cover+C ≤ cover−C . This represents that
for each path descendantD of C, if coverD ≤ cover−C , we should set coverD :=
cover+C and cover-edgeD := cover-edge+C .

The lazy information has no effect if cover+C = cover−C = −1. Trivially, the cover
information in a root cluster is always correct in the sense that there cannot be any
relevant lazy information above it. Moreover, note that the lazy cover information
only effectsπ (C), hence only path descendants ofC. Thus, the cover information
is always correct for all nonpath clusters.

In order to guide Recover, we need two things: first, we need to find the leveli
nontree edges (q, r ); and second, we need to find out if increasing the level of (q, r )
to i + 1 will create a leveli + 1 component that is too large. Thus, we introduce
counterssizeandincident that are further defined so as to facilitate efficient local
computation of Cover, Uncover, Split, and Merge.

—For any vertexv and any leveli , let incidentv,i be the number of level≥i nontree
edges with an end-point inv.

—Let i and j be levels, and letv be a boundary vertex of a path clusterC. Let IC,v,i, j
be the set of internal vertices of the clusterC that are reachable fromv by a path
P in F wherec(P ∩ π (C)) ≥ i andc(P\π (C)) ≥ j . Then sizeC,v,i, j = |IC,v,i, j |
and incidentC,v,i, j = (

∑
w∈IC,v,i, j

incidentw, j ) is the number of (directed) levelj
nontree edges (q, r ) with q ∈ IC,v,i, j . By directed, we mean that (q, r ) is counted
twice if r is also inIC,v,i, j .

—Similarly for any leveli and any nonpath clusterC with ∂C = {v} let IC,v,i be the
set of internal verticesq from C such thatc(v · · ·q) ≥ i . Then sizeC,v,i = |IC,v,i |
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and incidentC,v,i = (
∑

w∈IC,v,i
incidentw,i ) is the number of (directed) leveli non-

tree edges (q, r ) with q ∈ IC,v,i .

For an edge (v,w), we maintain cover(v,w) no matter whether (v,w) is a path cluster
or not. If (v,w) is a path cluster, it has no internal vertices, so all of the above
size- and incident-counters are zero. However, ifv is the only boundary vertex of
(v,w), size(v,w),v,i = 1 if i ≤ cover(v,w); 0 otherwise. Similarly, incident(v,w),v,i =
incidentv,i if i ≤ cover(v,w); 0 otherwise.

When a nontree edge gets inserted or deleted, or its level changes, we al-
ways expose its end-points so that they are not internal to any clusters. This
has the convenient effect that we do not affect any of the incident-counters
at the clusters until we start covering or uncovering the path between the
end-points.

We are now ready to implement all the different procedures: For any vertexv
and any leveli , let sizev,i := 1 and

Cover(C, i, e). If coverC < i , set coverC := i and cover-edgeC := e. If
i < cover+C , do nothing. If cover−C ≥ i ≥ cover+C , set cover+C := i and
cover-edge+C := e. If i > cover−C , set cover−C := i and cover+C := i and
cover-edge+C := e. For X ∈ {size, incident} and for all−1≤ j ≤ i and 1− ≤
k ≤ `max and, forv ∈ ∂C, setXC,v, j,k := XC,v,−1,k.

Uncover(C, i ). If coverC ≤ i , set coverC := −1 and cover-edgeC := nil . If
i < cover+C , do nothing. If i ≥ cover+C , set cover+C := −1 and cover−C :=
max{cover−C, i } and cover-edge+C := nil . For X ∈ {size, incident} and for all
−1≤ j ≤ i and−1≤ k ≤ `max and, forv ∈ ∂C, setXC,v, j,k := XC,v,i+1,k.

Clean(C). For each path child A of C, call Uncover(A, cover−C) and
Cover(A, cover+C, cover-edge+C). Set cover+C := −1 and cover−C := −1 and
cover-edge+C := nil .

Split(C). Call Clean(C). DeleteC.

C:=Merge(A, B). Suppose∂C = {a} and a ∈ ∂A (Figure 1(3–4)). For
X := size, incident and j := 0, . . . , `max we compute XC,a, j as follows.
If A is a nonpath cluster, so isB (Figure 1(4)), and then∂A =
∂B = {a}. In this case, we setXC,a, j := XA,a, j + XB,a, j . Otherwise
(Figure 1(3)), ∂A = {a, b} and ∂B = {b}, in which case we set
XC,a, j := XA,a, j, j (+Xb, j + XB,b, j if coverA ≥ j ).

Suppose∂C = {a, b}, a ∈ ∂A, andb ∈ ∂B (Figure 1(1–2)). LetD be the path
child of C minimizing coverD. Then set coverC := coverD and cover-edgeC :=
cover-edgeD. Set cover+C := −1 and cover−C := −1 and cover-edge+C :=
nil . For X := size, incident andi, j := −1, . . . , `max, we computeXC,a,i, j
as follows: (XC,b,i, j is symmetric). If A is a nonpath cluster (Figure 1(2)),
∂A = {a} and∂B = {a, b}. In this case, we setXC,a,i, j := XA,a, j + XB,a,i, j .
Otherwise, if B is a nonpath cluster,∂A = {a, b} and ∂B = {b}, and
we set XC,a,i, j := XA,a,i, j (+XB,c, j if coverA ≥ i ). Finally if both A and B
are path clusters (Figure 1(1)),∂A = {a, c} and ∂B = {c, b}, and we set
XC,a,i, j := XA,a,i, j (+Xc, j + XB,c,i, j if coverA ≥ i ).
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Recover(v,w, i ).

—Repeat once withu = v and once withu = w,

—SetC := Expose(v,w).
—While incidentC,u,−1,i + incidentu,i > 0 and not stopped,

—Set (q, r ) := Find(u,C, i ).
—D := Expose(q, r ).
—If sizeD,q,−1,i+1 + 2 > n/2i+1, ‘+2’ adds the two external boundary

vertices.
—Cover(D, i, (q, r )).
—Stop the while loop.

—Else
—Set `(q, r ) := i + 1, decrement incidentq,i and incidentr,i and

increment incidentq,i+1 and incidentr,i+1.
—Cover(D, i + 1, (q, r )).

—C := Expose(v,w).

Find(a,C, i ). If incidenta,i > 0 then return a nontree edge incident toa on level
i . Otherwise, call Clean(C) and letA andB be the children ofC with A nearest
to a. If A is a nonpath cluster and incidentA,a,i > 0 or A is a path cluster and
incidentA,a,−1,i > 0, then return Find(a, A, i ). Else, letb be the boundary vertex
nearest toa in B, return Find(b, B, i ).

THEOREM 17. There exists a deterministic fully dynamic algorithm for
maintaining 2-edge connectivity in a graph, using O(log4n) amortized time
per operation.

PROOF. Cover(C, i, e) and Uncover(C, i ) both take O(log2 n) time. This
means that Clean(C) and thus Split(C) takesO(log2 n) time. Since Merge(A, B)
also takesO(log2 n) time, we have by theorem 1 that Link(v,w), Cut(e) and
Expose(v,w) takesO(log3 n) time. This again means that FindCoverEdge(v,w), 2-
edge-connected(v,w), Cover(v · · ·w, i, e) and Uncover(v · · ·w, i ) takeO(log3 n)
time. Find(a,C, i ) calls Clean(C) O(logn) times and thus takesO(log3 n) time. Fi-
nally, Recover(v,w, i ) takesO(log3 n) time plusO(log3 n) time per nontree edges
whose level is increased. Since the level of a particular edge is increased at most
O(logn) times we spend at mostO(log4 n) time on a given edge between its inser-
tion and deletion.

The space usage of our fully dynamic 2-edge connectivity algorithm isO(m+
n log2 n) due to theO(log2 n) countersXC,v,i, j stored with each path cluster. It is
possible to reduce the space toO(m+ n logn): using a more complicated merge,
it suffices that we only store theO(logn) countersXC,v,−1, j for the path clusters,
that is, we ignore the covering of the cluster path. The main complication is then
the merge in Figure 1(3) of a path clusterA and a nonpath clusterB into a nonpath
clusterC where we now need to determine how much of the cluster path ofA that
is covered on different levels. The time bounds are not affected by this change.

The query time for 2-edge connectivity above isO(log3 n), but it can be reduced
to O(logn). The basic idea is to leave the top tree unchanged. The point is that, with
the general Expose, we performO(logn) merges and splits, each at costO(log2 n).
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However, for our query, we only need to check if some covering is nonnegative,
and then we really only need to spend constant time per cluster considered.

Thorup [2000] has recently observed that the time bound for the updates can
be improved by a factorO(logn/log logn). The essential point is that it suffices
to maintain our size- and incident-counters approximately, usingO(log logn) bits,
and then we can operate onO(logn/log logn) of them in constant time. This
only works if we store all of theO(log2 n) countersXC,v,i, j for the path clusters,
that is, it does not work together with the above mentioned space improvement.
Summing up, Thorup gets an amortized operation time ofO(log3 n log logn) using
O(m+ n logn log logn) space.

6.3. BRIDGES. We note that the data already stored in the top trees make it easy
to search for bridges. First, we show how to augment our 2-edge connectivity query
to provide a bridge betweenv andw if they are connected but not 2-edge connected.
That is, we have just setC := Expose(v,w), but found coverC = −1. We then run

—While C is not an edge,
—Clean(C).
—Let A be a path child ofC with coverA = −1.
—SetC := A.

—Return the edgeC.

In Gabow et al. [1999] they want to list all the bridges betweenv andw, which
above means that they recurse fromC on all path childrenA with coverA = −1,
instead of just one of them.

Another natural scenario is that we are given a vertexv, and want to determine
if it is connected to a bridge. In order to facilitate a recursive search, we consider
the existential problem of checking if a clusterA has a bridge, that is, if it is not
2-edge connected. IfA is a nonpath cluster with∂A = {a}, A has a bridge if and
only if sizeA,a,0 < sizeA,a,−1. If insteadA is a path cluster with∂A = {a, b}, A has
a bridge if and only if coverA = −1 or sizeA,a,0,0 < sizeA,a,−1,−1.

Find-bridge(v). Finds bridge connected tov, if any.

—SetC := Expose(v, v).
—If C has no bridge, return “The component ofv is 2-edge connected”
—While C is not an edge,

—Clean(C).
—Let A be a child ofC containing a bridge.
—SetC := A.

—Return the edgeC.

Both of the above bridge finding procedures takeO(log3 n) time. As for the 2-edge
connectivity query, this can be reduced toO(logn) time with a more complicated
algorithm that does not change the top tree.

7. Biconnectivity

In this section, we present anO(log5 n) deterministic algorithm for the bicon-
nectivity problem for a fully dynamic graphG. We follow the same pattern as
was used for 2-edge connectivity. Historically, such a generalization is difficult.
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For example, it took several years to get sparsification to work for biconnectivity
[Eppstein et al. 1997; Henzinger and La Poutr´e 1995]. Furthermore, the generaliza-
tion in Henzinger and King [1995] of theO(log5 n) randomized 2-edge connectivity
algorithm from Henzinger and King [1999] has an expected bound ofO(1 log4 n),
where1 is the maximal degree (Henzinger, personal communication, 1997). Our
main new idea for getting aO(log5 n) bound for biconnectivity is an efficient re-
cycling of the information as described in Lemma 19 below.

One of the obstacles for biconnectivity is that it is not a transitive relation over
vertices. However, it is a transitive relation over edges in the sense that for edges
e, f, g, if eand f are in a biconnected component andf andg are in a biconnected
component, then all ofe, f , andg are in the same biconnected component. Our
algorithm makes use of the transitivity over edges.

More particularly, in 2-edge connectivity, we used that when an edge (v,w) was
deleted, the 2-edge connected components to be recovered were linearly ordered
along the pathv · · ·w. Our amortization worked for all but one large middle com-
ponent, and hence when we had reached it from bothv andw, we knew we had
visited all other components. In biconnectivity, we can have different biconnected
components meeting in each vertexu ∈ v · · ·w, and our problem is that we cannot
define a corresponding order for these. We circumvent this problem by recycling
some information, allowing us to skip some components.

A triple is a length two pathxyzin the graphG, and atree triple xyzis a triple inF .
Let (v,w) be a nontree edge. Then (v,w) coversall triples on the cycle induced by
(v,w) in F , that is, (v,w) covers all triplesxyz⊆ v · · ·w plus the tripleswvsw(v)
and vwsv(w). Recall here thatsw(v) is the vertex succeedingv in v · · ·w. The
covering of triples is symmetric, so when coveringxyz, it is understood that we
also coverzyx.

We now definetransitively covered triplesas follows: All covered triples are
transitively covered. Further, ifxyzandzyx′ are transitively covered, thenxyx′ is
transitively covered.

LEMMA 18.

(a) Biconnectivity is a transitive relation over the neighbors of a vertex u, and if two
neighbors of u are biconnected, u is in the biconnected component containing
them.

(b) A triple xyz is transitively covered if and only if x and z are biconnected.
(c) A vertex y is an articulation point if and only if there is a tree triple xyz which

is not transitively covered.
(d) Two vertices v and w are biconnected if and only if for all xyz⊆ v · · ·w, xyz

is transitively covered.

PROOF.

(a) Let v andw be biconnected neighbors ofu. By definition, either (v,w) is an
edge, or we have two internally vertex disjoint paths fromv to w. In either case, we
find a pathP from v to w not containingu, and thenPu is a simple cycle showing
that all ofu, v, andw are in the same biconnected component. Moreover, the cycle
shows that the edges (u, v) and (u,w) are biconnected. Since biconnectivity is a
transitive relation over edges, it follows that biconnectivity is a transitive relation
over the neighbors ofu.
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(b) First, we show that we can restrict our attention to the case werexyzis a tree
triple. If x is not a tree neighbor ofy, let x′ be the tree neighborsx(y) of y. Then,
(x, y) coversxyx′, soxyz is transitively covered if and only ifx′yz is transitively
covered. The cycle induced by (x, y) containsx′, sox andx′ are biconnected. By
(a), biconnectivity over neighbors ofy is transitive, soy is biconnected tox if and
only if it is biconnected tox′. It follows that we can replacex by the x′ in (b).
Similarly, if z is not a tree neighbor ofy, it can be replaced by the tree neighbor
sz(y). Thus, we may assume thatxyzis a tree triple when proving (b).

Now, assume the two tree neighborsx andz of y are biconnected. As in (a), we
can find a pathP from x to z not containingy. Let T1, . . . , Tk be the subtrees of
F\{y} that P passes on the way fromx to z. Further, letxi be the vertex ofTi that
is a tree neighbor ofy in F . Then,x1 = x andxk = z. Now, for i = 1, . . . , k− 1,
P contains an edge betweenTi andTi+1 that coversxi yxi+1. It follows thatxyzis
transitively covered.

For the other direction, assume that the tree triplexyzis transitively covered. We
then have a sequencex1, . . . , xk of neighbors toy such thatx1 = x, xk = z, and
xi yxi+1 is covered by an edgeei . Let Ti be the subtree ofF \{y} containingxi .
Let P1 be the path inT1 from x1 to e1. For i = 2, . . . , k − 1, let Pi be path in
Ti connectingei−1 to ei , and letPk be the path inTk connectingek−1 to xk. Then
P1 · · · Pk is a path fromx to z disjoint fromxyz.

(c) If y is not an articulation point, then any two of its neighbors are biconnected.
In particular, for any tree triplexyz, x and z are biconnected, so by (b), xyz is
transitively covered. Conversely, if all tree triples are covered andx and z are
arbitrary neighbors ofy, thensx(y)ysz(y) is transitively covered, and hencexyzis
transitively covered. Thusx andz are biconnected by (b).

(d) Suppose that all triplesxyz⊆ v · · ·w are transitively covered. By (b), each
edge pair (x, y) and (y, z) is biconnected, so by transitivity of biconnectivity on
edges, the first and the last edge ofv · · ·w are in the same biconnected component.
Hence,v andw are in this component.

Conversely, supposev andw are biconnected. By definition there are two inter-
nally vertex disjoint pathsP1 and P2 betweenv andw. For eachxyz⊆ v · · ·w,
there is aPi not containingy. Now, Pi ∪ v · · ·w must contain a cycle containing
xyz, sox andz are biconnected, and hencexyzis transitively covered by (b). h

7.1. HIGH-LEVEL. As with 2-edge connectivity, with each nontree edgee, we
associate a level̀(e) ∈ {0, . . . , `max}, `max = dlog2 ne, and for eachi , we letGi
denote the subgraph ofG induced by edges of level at leasti together with the
edges ofF . Thus,G = G0 ⊇ G1 ⊇ · · · ⊇ G`max ⊇ F . Here, for biconnectivity, we
will maintain the invariant:

(i′′) The maximal number of vertices in a biconnected component ofGi is dn/2i e.
As for 2-edge connectivity, the invariant is satisfied initially, by letting all nontree
edges have level 0. We say that it islegal to increase the level of a nontree edgee to
j if this does not violate (i′′), that is, if the biconnected component ofe in G j ∪ {e}
has at mostdn/2 j e vertices.

For each vertexv and each leveli , we maintain a partitioning of all neighbors
of v in G such thatu andw are in the same set if and only ifuvw is a transitively
covered triple inGi . The set in the partitioning containingu is denotedc∗v,i (u). By
Lemma 18(b),u andw belong in the same set if and only if they are biconnected
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neighbors ofv in Gi . Note that a neighbor inG of v which is not a neighbor inGi
of v is a singleton element in the partition. It might seem more natural to exclude
such neighbors from the partitioning, but leaving them in saves on administration,
and gives the advantage that the partitioning does not depend on the bridges ofGi .

If P is a path inG, c∗(P) denotes the maximali such that for all triplesxyz⊆ P,
z ∈ c∗y,i (x). If there is no suchi , c∗(P) = −1. Thus,c∗(P) ≥ i witnesses that the
end points ofP are biconnected on leveli . Typically, P will be a tree path, but
in connection with Recover, we consider paths where the last edge (q, r ) is a
nontree edge.

As for 2-edge connectivity, thec∗-values may temporarily be too low. We say
thatv andw arec∗-biconnected on level iif they are connected andc∗(v · · ·w) ≥ i .
If all c∗-values are updated, we therefore have

biconnected(v,w). Decide ifv andw arec∗-biconnected on level 0.

In connection with deletions, we are going to reuse the swap procedure from
2-edge connectivity. Recall from our analysis of Swap that it only affects theGi
by swapping bridges. Hence, Swap does not affect thec∗-values. While Swap
does not affect the transitive covering of triples, it may strongly affect which
triples are covered, and this is one of the reasons why we maintain transitive
covering, not worrying about which covered triples are currently generating the
transitive covering.

For Swap, we need thec-values from 2-edge connectivity. That is, for each tree
edgee, c(e) should be the minimum level a nontree edge coveringe. We maintain
thec-values via the procedures from 2-edge connectivity, prefixing the procedure
names by ‘2e-’.

For basic manipulation ofc- andc∗-values, we have

Init Edge(v,w). For i := 0, . . . , `max, setc∗v,i (w) := {w} andc∗w,i (v) := {v}.
Moreover, if (v,w) is a tree edge, call 2e-InitTreeEdge(v,w).

Cover(xyz, i ). Unionc∗y, j (x) andc∗y, j (z) for j := 0, . . . , i .

Cover(v,w, i ). Calls Cover(vwsv(w), i ), Cover(wvsw(v), i ), and Cover(xyz, i )
for all xyz⊆ v · · ·w. Finally, we call 2e-Cover(v,w, i ).

We can now compute allc- andc∗-values by first calling InitEdge(v,w) for all
edges (v,w), and second calling Cover(v,w, `(v,w)) for all nontree edges (v,w).

Inserting an edge is now straightforward.

Insert(v,w). If v and w are not connected inF , (v,w) is added toF and
InitEdge(v,w) is called. Otherwise, call InitEdge(v,w), set`(v,w) := 0, and
call Cover(v,w, 0).

On the high level, Delete is almost identical to 2e-Delete.

Delete(v,w). If (v,w) is a bridge, we simply delete it, deletingw from c∗v,·(·) and
v from c∗w,·(·), and then we return.

Assuming that (v,w) is not a bridge, if (v,w) is a tree edge, we first
call Swap(v,w), turning (v,w) into a nontree edge. We then call Uncover
(v,w, `(v,w)) as defined below, delete the edge (v,w), and finally, for i :=
`(v,w), . . . ,0, we call Recover(v,w, i ) as defined below.
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FIG. 2. Application of Lemma 19. The dashed lines show the transitive covering before the edge
deletion, which is the same on both figures. The solid lines show our recovery. The inner bubbles
represent leveli + 1 while the outer bubbles represent leveli .

As in 2-edge connectivity, the basic goal of Uncover is to remove the cover informa-
tion stemming from the edge (v,w). However, since we are maintaining transitive
covering, it is not quite so obvious what to do. We could of course, remove all transi-
tive covering that (v,w) had been part of generating, but then we would not be able
to recover the correct cover information efficiently. Our key insight is expressed in
the lemma below.

LEMMA 19. Let (v,w) be a level i nontree edge covering a tree triple xyz⊆
v · · ·w. Consider Gj , j ≤ i . Suppose s is a neighbor of y biconnected to x, hence
to y and z. Then, if(v,w) is deleted, afterwards, s is biconnected to x or z, possibly
to both.

PROOF. From Lemma 18(b), we know that biconnectivity of neighbors ofy is
the transitive closure over pairs (x′, z′) wherex′yz′ is covered. Removing one pair
(x, z) can either not change the transitive closure, or split it in two, with one part
containingx and the other containingz.

The lemma suggests, that when (v,w) is deleted, we should store the neighborss
mentioned. From before the deletion, these neighbors form the setc∗y, j (x) = c∗y, j (z).
Generally, we use the setc∗y, j (x | z) to store the set of neighbors toy that we know
are biconnected tox or z on level j , but that are not yetc∗-biconnected to either.
The application of the lemma is illustrated in Figure 2. We will be expanding
c∗y, j+1(x) until either we get stuck withc∗y, j+1(x) = c∗y, j (x) andz 6∈ c∗y, j (x), or we
includez in c∗y, j+1(x). In the former case, we setc∗y, j (z) := c∗y, j (x | z) ∪ c∗y, j (z) and
c∗y, j (x | z) := ∅. In the latter case, we setc∗y, j (x) := c∗y, j (x | z) ∪ c∗y, j (x) ∪ c∗y, j (z)
andc∗y, j (x | z) := ∅. When (v,w) is deleted, it is only triplesxyz∈ v · · ·w that are
affected in the above way. In particular, for anyy′, there can only be one affected
tree triplex′y′z′. If there is such a triplex′y′z′, we say that it isfuzzy covered. We
can now describe the uncovering of a tree triple:

Uncover(xyz, i ). Wherexyzis a tree triplec∗-biconnected on leveli , if it is also
c∗-biconnected on leveli + 1, do nothing; otherwise, forj := i, . . . ,0, set
c∗y, j (x | z) := c∗y, j (x) \ (c∗y,i+1(x)∪ c∗y,i+1(z)), c∗y, j (x) := c∗y,i+1(x), andc∗y, j (z) :=
c∗y,i+1(z). Finally, setc∗y, j (s) := c∗y, j+1(s) for all s ∈ c∗y, j (x | z)
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For the sake of recovering, we need a matching redefinition of our covering
procedure.

Cover(xyz, i ). For j = i, . . . ,0, we do as follows: If there is no fuzzy covered
triple x′yz′ with c∗y, j (x

′ | z′) 6= ∅, we just unionc∗y, j (x) and c∗y, j (z). If there
is a fuzzy covered triplex′yz′ and c∗y, j (x

′ | z′) 6= ∅, we divide into cases. If
neither ofx′ and z′ are in c∗y, j (x) or c∗y, j (z), we again just unionc∗y, j (x) and
c∗y, j (z). Otherwise, by symmetry, we may assume thatc∗y, j (x) containsx′. Since
c∗y, j (x

′ | z′) 6= ∅, c∗y, j (x) cannot also containz′. If z′ ∈ c∗y, j (z), we unionc∗y, j (x),
c∗y, j (z), andc∗y, j (x

′ | z′), and setc∗y, j (x | z) := ∅. Otherwise, we unionc∗y, j (x)
andc∗y, j (z), and subtract them fromc∗y, j (x

′ | z′).
Before giving the final description of how to Uncover a nontree edge (v,w), recall

that (v,w) covers the tripleswvsw(v) andwvsw(v) where (v, sw(v)) and (w, sv(w))
are tree edges. There are no other nontree edges that can cover a triple containing
the nontree edge (v,w). Hence, removing the covering ofwvsw(v) corresponds to
removing the transitive covering of all tripleswv·, thus, singlingw out from its set
in the partitioning of the neighbors ofv. Since the deletion of (v,w) also stopsw
from being a neighbor ofv, we can simply removew from c∗v,·(·). Similarly, v is
removed fromc∗w,·(·).
Uncover(v,w, i ). Call Uncover(xyz, i ) for all xyz⊆ v · · ·w. Deletew fromc∗v,·(·)

andv from c∗w,·(·). Call 2e-Uncover(v,w, i ).

To complete the description of Delete, we need to define Recover(v,w, i ). Our
general assumption is that allc∗-information is correct, except that we need to
resolve the setsc∗y, j (x | z) with xyz ⊆ v · · ·w. When Recover(v,w, i ) is called,
we assume these sets are empty forj > i , and now we need to empty them
for j = i . The definition is rather subtle and we defer the explanation to the
subsequent proofs.

Recover(v,w, i ). We divide into two symmetric phases. Phase 1 goes as follows:

Let u step through the vertices ofv · · ·w towardsw, starting withu= v.
(1) if u 6= v, setu′ := sv(u) and run

(*) While there is a leveli nontree edge (q, r ) such thatu =
meet(q, v,w) andc∗(u′ u · · ·qr ) ≥ i , if legal, increase the level
of (q, r ) to i + 1 and call Cover(q, r, i + 1); otherwise, just call
Cover(q, r, i ) and stop Phase 1.

(2) if u 6∈ {v,w} andc∗u,i (s
v(u)|sw(u)) 6= ∅,

Unionc∗u,i (s
v(u)) andc∗u,i (s

v(u)|sw(u)), and
setc∗u,i (s

v(u)|sw(u)) := ∅.
(3) if u 6= w, setu′ := sw(u) and run (*).

If Phase 1 was stopped in (*), we have a symmetric Phase 2 with the roles ofv
andw swapped.

As a first step in proving correctness, we prove

LEMMA 20. For each value of u, after Step(2), c∗u,i (s
v(u) | sw(u)) is correctly

resolved.
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PROOF. Since the two phases are symmetric, we may assume that we are in
Phase 1.

For each value ofu, we want to prove thatc∗u,i (s
v(u) | sw(u)) gets correctly

distributed betweenc∗u,i (s
v(u)) and c∗u,i (s

w(u)). Given that Cover is correct, the
critical point is Step (2) where we unionc∗u,i (s

w(u)) andc∗u,i (s
v(u) | sw(u)), setting

c∗u,i (s
v(u) | sw(u)) := ∅. This requires thatc∗u,i (s

v(u)) is completed with no elements
left in c∗u,i (s

v(u) | sw(u)). Inductively, we prove correctness assuming correctness
for each previous valueu∗ of u.

If c∗u,i (s
v(u)) is not completed, it is because there is a leveli nontree edge (q, r )

covering a triplexuzwith x ∈ c∗u,i (u
′) andz 6∈ c∗u,i (u

′). Here, by symmetry, we
assume thatx is nearest toq, that is, thatsq(u) = x andsr (u) = z.

Supposemeet(q, v,w) 6= u, and setu∗ = meet(q, v,w). Then (q, r ) covers
sw(u∗)u∗ · · ·qr . By induction,c∗u∗,i (·) was correct after Step (2), andu∗ · · ·qr has
been correctly covered all along as it does not contain a triple fromv · · ·w. Thus,
c∗(sw(u∗)u∗ · · ·qr ) ≥ `(q, r ) = i , and hence we should have found and incre-
mented the level of (q, r ) in Step (3).

Suppose insteadmeet(q, v,w) = u. Sincesq(u) ∈ c∗u,i (s
v(u)),c∗(sv(u)usq(u)) ≥

i . Moreover,u · · ·qr is covered by (q, r ) andu · · ·qr does not contain any triples
from v · · ·w, so c∗(u · · ·qr ) ≥ i . Thus,c∗(sv(u)u · · ·qr ) ≥ i , and hence (q, r )
should have been found and had its level increased in Step (1).

The remaining proof of correctness of Recover is quite similar to that for 2-edge
connectivity.

LEMMA 21. Recover(v,w, i ) correctly resolves all sets c∗u,i (s
v(u) | sw(u)) for

u = sw(v) · · · sv(w).

PROOF. By Lemma 20 we are done for all values ofu for which we have passed
Step (2). In particular, we are done if the phases are not stopped.

Now, suppose phase 1 is stopped. Letu1 be the last value ofu considered, and
(q1, r1) be the last edge considered. Then increasing the level of (q1, r1) is illegal.
Hence phase 2 will also stop, for otherwise, it would end up illegally increasing the
level of (q1, r1). Let u2 be the last value ofu considered, and let (q2, r2) be the last
edge considered in phase 2.

For k := 1, 2, from the illegality of increasing the level of (qk, rk), it follows
that the biconnected componentCk of qk in Gi+1 ∪ {(qk, rk)} has≥ dn/2i+1e + 1
vertices. However, we know that before the deletion of (v,w), C1 andC2 where
both part of a biconnected componentC of Gi , and this component had at most
dn/2i e vertices. HenceC1 andC2 overlap in at least two vertices, implying that they
are contained in the same biconnected componentD of Gi+1 ∪ {(q1, r1), (q2, r2)}.
Since covering is assumed complete for leveli + 1 edges inD, it follows that after
our calls Cover(q1, r1, i ) and Cover(q2, r2, i ), all covering ofD is updated.

To complete the proof, we need to show for eachu ∈ u1 · · ·u2, either (1) that
sv(u)usw(u) ⊆ D in which case correct covering is inherited fromD, or (2) that
we have passed Step (2) foru, in which case we apply Lemma 20.

First, consideru betweenu1 and u2. Both u1 and u2 are in the biconnected
componentD. Hence, by Lemma 18(d), the triplesv(u)usw is in D, so (1) applies.

Next, consideru1. If Step (2) has been passed foru1, (2) applies; otherwise,
we were stopped in Step (1), sosq(u1) ∈ c∗u1,i

(sv(u1)), but then,sv(u1) is in the
biconnected componentD.
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Now, if u1 6= u2, sw(u1) ∈ v · · ·w ⊆ D, so sv(u1)u1sw(u1) ⊆ D and (1)
applies. Ifu1 = u2 and Phase 2 was stopped after Step (2), (2) applies tou1 =
u2. Otherwise, as above, we getsw(u2) ∈ D; hence, thatsv(u1)u1sw(u1) ⊆ D,
so (1) applies.

Finally, we need to argue that Recover also restores the correct covering of edges
as in 2-edge connectivity.

LEMMA 22. Recover(v,w, i ) correctly covers the edges on v· · ·w as in
2-edge connectivity.

PROOF. Inductively, when we start Recover(v,w, i ), as in 2-edge connec-
tivity, we assume that all edges covered on level>i are correctly covered, and
clearly this is maintained if we increment the level of a leveli -edge (q, r ) and call
Cover(q, r, i + 1).

Our potential problem is a tree edgee∈ v · · ·w covered by a leveli nontree edge
(q, r ). Letq′ = meet(q, v,w) andr ′ = meet(r, v,w). By symmetry, we may assume
thatq′ is closer tov thanr ′. Then (q, r ) coverssw(q′)q′ · · ·qr , so if Phase 1 got toq′
and finished Step (3), we should have found (q, r ) and incremented its level. Thus
q′ · · · r ′ ⊆ u1 · · ·u2 whereu1 are as defined in the proof of Lemma 21. In particular,
e∈ u1 · · ·u2. Thuse is in the biconnected componentD of Gi+1∪{(q1, r1), (q2, r2)}
from Lemma 21.

Generally, we have that a tree edgee is covered if and only if it is in a biconnected
component with some other edge. If this applies toGi+1, e is covered on leveli +1,
hence correctly covered by induction. Otherwise,e is not covered on leveli +1, but
e is in a biconnected component with other edges inD, so there is an edge (x, y)
in D coveringe. Since (x, y) is not in Gi+1, (x, y) is either (q1, r1) or (q1, r1). In
either case, we know that Cover(x, y, i ) has been called.

7.2. IMPLEMENTATION. The main difference between implementing biconnec-
tivity and 2-edge connectivity is that we need to maintain the biconnectivity of
the neighbors of all vertices efficiently. For each vertexy, we will maintainc∗y,·(·)
as a list with levels on the links between succeeding elements such thatc∗(xyz)
is the minimum level of a link betweenx andz in c∗y,·(·). Then,c∗y,i (x) is a con-
nected segment ofc∗y,·(·). Now, if c∗y, j−1(x) = c∗y, j−1(z), we can unionc∗y, j (x) and
c∗y, j (z) without affectingc∗y, j−1(x), simply bymoving c∗y, j (z) to c∗y, j (x) on level j
as follows. First, weextract c∗y, j (z), replacing it by the minimal weight link to its
neighbors. Since both of these links are of weight at mostj −1, this does not affect
the minimum weight between elements outsidec∗y, j (z). Second weinsert c∗y, j (z)
afterc∗y, j (x) with link weight j in between. The link afterc∗y, j (z) becomes the link
we had afterc∗y, j (x). Note that ifx ∈ c∗u,·(u

′ | u′′) and we movec∗u, j (x) to c∗u, j (u
′),

then, implicitly, we deletec∗u, j (x) from c∗u, j (u
′ | u′′), as required.

We represent the neighbor listc∗y,·(·) using a standard balanced binary tree repre-
sentation of lists admitting split and join [Tarjan 1983, Sect. 4]. We can then easily
determinec∗(xyz), identify c∗y,i (x), or move a segmentc∗y, j (z), in O(logn) time.
Also, in O(logn) time, we can mark a segmentc∗u, j (u

′ | u′′) as fuzzy, implying for
x ∈ c∗u, j (u

′ | u′′) thatc∗u, j (x) = c∗u, j+1(x).

Init Edge(v,w). Link w to c∗v,·(·) on level−1 andv to c∗w,·(·) on level−1.
FreeEdge(v,w). Extractw from c∗v,·(·) andv from c∗w,·(·).
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Cover(xyz, i ). Wherexyz is a tree triple. Forj = 0, . . . , i , we do as follows. If
there is no fuzzy covered triplex′yz′ with c∗y, j (x

′ | z′) 6= ∅, we just movec∗y, j (x)
to c∗y, j (z) on level j . If there is a fuzzy covered triplex′yz′ andc∗y, j (x

′ | z′) 6= ∅,
we divide into cases. By symmetry, we may assume that ifc∗y, j (x) containsx′

or z′, it containsx′. If z′ ∈ c∗y, j (z), we movec∗y, j (x
′ | z′) andc∗y, j (z

′) to c∗y, j (x
′)

on level j , and setc∗y, j (x
′ | z′) := ∅. Otherwise, ifx′ ∈ c∗y, j (x), we movec∗y, j (z) to

c∗y, j (x
′) on level j . If c∗y, j (z) was inc∗y, j (x

′ | z′), it is now deleted fromc∗y, j (x
′ | z′).

Finally, if x′ 6∈ c∗y, j (x) andz′ 6∈ c∗y, j (z), we just movec∗y, j (x) to c∗y, j (z).

Uncover(xyz, i ). Wherec∗(xyz) ≥ i , if c∗(xyz) > i , do nothing; otherwise, for
j := i, . . . ,0, setc∗y, j (x | z) := c∗y, j (x). Then movec∗y, j+1(x) andc∗y, j+1(z) to
the end of neighbor listc∗y,·(·) on level−1. A note is made thatxyzis the fuzzy
covered triple aroundy.

7.3. BICONNECTIVITY BY TOPTREES. As for 2-edge connectivity, the algorithm
maintains the spanning forest in a top tree data structure. For each clusterC, we
maintain coverC = c∗(π (C)).

Biconnected(v,w). SetC := Expose(v,w). Return (coverC ≥ 0).

Also, cover-edgeC, cover+C , cover−C , and cover-edge+C are defined analogously to
in 2-edge connectivity. The cover edges cover-edgeC and cover-edge+C are exactly
the same, while cover+C and cover−C , like coverC, now refer to covering of triples
instead of edges. As for 2-edge connectivity, the information in nonpath clusters
will never be missing any lazy information.

A main new idea is that we overrule the top trees by using the neighbor lists
c∗y,·(·) to propagate information from minimal nonpath clusters to path clusters. Let
v andw be tree neighbors. We say thatw is anoffspringof v if there is a nonpath
cluster containingv andw with v the boundary node. We then letC(v,w) denote
the minimal such cluster. Note that the offspring relation is antisymmetric. Also,
note thatv can have at most two tree neighbors that are not its offspring. We call
the clusterC(v,w) above anoffspring cluster. ThenC(v,w) is either the edge
(v,w) if w is a leaf, or the merge of a path cluster and a nonpath cluster as in
Figure 1(3). We are going to use the neighbor lists to propagate counters directly
from the offspring clusters to the minimal path clusters containing them, bypassing
all nonpath clusters in between.

We are now ready for the rather delicate definitions of the counterssize and
incident for path clusters and offspring clusters.

—Let j andk be levels, and letC be a path cluster with∂C = {v,w}. Let sizeC,v, j,k
denote the number of internal verticesq of C such that eitherq ∈ π (C) and
c∗(v · · ·q) ≥ j or there exist a tripleu′uu′′ ⊆ π (C) with u = meet(v,w,q) and
(u, x) ∈ u · · ·q such thatc∗(v · · ·u) ≥ j , c∗(u · · ·q) ≥ k and eitherc∗(u′ux) ≥ k
orc∗(u′uu′′) ≥ j andx ∈ c∗u,k(u′′)∪c∗u,k(u′ | u′′). Let incidentC,v, j,k be the number
of (directed) nontree edges (q, r ) with the pathv · · ·qr satisfying the conditions
from above for the pathv · · ·q.

—Similarly, let i be a level and letC = C(v,w) be an offspring cluster. Let
sizeC,v,i be the number of internal verticesq of C with w ∈ v · · ·q such that
c∗(vw · · ·q) ≥ i , and let incidentC,v,i be the number of (directed) nontree edges
(q, r ) whereq is an internal vertex ofC andc∗(vw · · ·qr ) ≥ i .
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Consider an edge (v,w). If (v,w) is a path cluster, it has no internal vertices,
so all of the above size- and incident-counters are zero. However, ifv is the only
boundary vertex of (v,w), (v,w) is an offspring cluster with size(v,w),v,i = 1 for
all i . Then incident(v,w),v,i is the number of nontree neighbors inc∗w,i (v). Note that
sincew is a leaf in the underlying forest, any edge (w,q) coversvwq, soc∗w,i (v)
contains (w,q) if `(w,q) ≥ i .

As for 2-edge connectivity we note that when a nontree edge gets inserted or
deleted, or its level changes, we always expose its end-points so that they are not
internal to any clusters. This has the convenient effect that we do not affect any of
the incident-counters at the clusters until we start covering or uncovering the path
between the end-points.

To get information from offspring clusters to path clusters, and vice versa, we
need the following functions:

Size(v,W, i ). WhereW is a set of neighbors ofv, returns
∑

w∈W(Sizev,C(v,w),i if
w offspring ofv, 0 otherwise).

Incident(v,W, i ). WhereW is a set of neighbors ofv, returns
∑

w∈W(1 if w
nontree neighbor ofv, Incidentv,C(v,w),i if w offspring ofv, and 0, otherwise).

NeighborX(u, u′, i ). WhereX ∈ {Size, Incident}, returnsX(u, c∗u,i (u
′), i )

NeighborX(u, u′ | u′′, i ). Where X ∈ {Size, Incident}, returns X(u, c∗u,i (u
′) ∪

c∗u,i (u
′′) ∪ c∗u,i (u

′ | u′′), i ).
NeighborFind(u, u′, i ). Findsz ∈ c∗u,i (u

′) such thatz is either a nontree neighbor
of u or an offspring with incidentC(u,z),u,i > 0.

For each offspringw of v, theO(logn) counters ofC(v,w) are stored withw in
the neighbor listc∗v,·(·) of v. Accumulating these counters in the binary tree repre-
sentation ofc∗v,·(·), we can easily support each of the above functions inO(logn)
time. However, storingO(logn) counters with each binary tree node implies that
list operations such as moving a segmentc∗v, j (z) of c∗v,·(·) now takesO(log2 n) in-
stead of justO(logn) time. The remaining operations are implemented analogously
to in 2-edge connectivity.

Cover(C, i, e). First, we do as in 2-edge connectivity. IfC has path childrenAand
B and{u} = ∂A ∩ ∂B 6⊆ ∂C andu′uu′′ is the triple withu′ ∈ A andu′′ ∈ B,
then we callCover(u′uu′′, i ).

Uncover(C, i ). First, we do as in 2-edge connectivity. IfC has path childrenA
andB and{u} = ∂A∩ ∂B 6⊆ ∂C andu′uu′′ is the triple withu′ ∈ A andu′′ ∈ B,
then we callUncover(u′uu′′, i ).

C :=Merge(A, B). Suppose∂C = {a} anda ∈ ∂A (Figure 1(3)–(4)). ThenC
is a nonpath cluster. IfA is a nonpath cluster (Figure 1(4)),C is not an
offspring cluster, so we are done. Otherwise (Figure 1(3)), let (u′, u) be
the tree edge such thatu′ ∈π (A), and {u} = ∂A ∩ ∂B. Then for X ∈
{size, incident} and k := −1, . . . , `max, XC,a,k := XA,a,k,k if coverA < k,
XC,a,k := XA,a,k,k + NeighborX(u, u′, k) if coverA ≥ k. Let a′ be the successor
of a in π (A). ThenC = C(a,a′), so we have to update the 2`max counters
associated witha′ in a’s neighbor listc∗a,·(·).
Suppose∂C = {a, b}, a ∈ ∂A, and b ∈ ∂B (Figure 1(1)–(2)). coverC,
cover-edgeC, cover+C , cover−C and cover-edge+C are maintained as in 2-edge



Poly-Logarithmic Deterministic Fully-Dynamic Graph Algorithms 757

connectivity. ForX ∈ {size, incident}and j, k := −1, . . . , `maxcomputeXC,a, j,k
as follows (XC,b, j,k is symmetric): If A is a nonpath cluster (Figure 1(2)),
set XC,a, j,k := XB,a, j,k. Otherwise, if B is a nonpath cluster (Figure 1(2)),
setXC,a, j,k := XA,a, j,k. Finally, if both A andB are path clusters (Figure 1(1)),
let u′uu′′ be the triple such thatu′ ∈ π (A), {u} = ∂A ∩ ∂B, and
u′′ ∈ π (B). Then XC,a, j,k := XA,a, j,k if coverA < j , XC,a, j,k := XA,a, j,k+
NeighborX(u, u′, k) if coverA ≥ j ∧ c∗(u′uu′′) < j , and finally XC,a, j,k :=
XA,a, j,k + NeighborX(u, u′ | u′′, k)+ XB,u, j,k if coverA ≥ j ∧ c∗(u′uu′′) ≥ j .

Recover(v,w, i ). We divide into two symmetric phases. Phase 1 goes as follows:

SetC := Expose(v,w).
Setu := v and letu′ be the successor ofu onu · · ·w.
(*) While NeighborIncident(u, u′, i ) > 0,

—Set (q, r ) := VertexFind(u, i, u′).
—D := Expose(q, r ).
—Let (q,q′) and (r ′, r ) be the end edges onq · · · r
—If sizeD,q,−1,i+1+ 2+ NeighborSize(q,q′, i + 1)+ NeighborSize

(r, r ′, i + 1)> n/2i+1,
—Cover(D, i, (q, r )).
—Stop the phase.

—Else
—Set`(q, r ) := i +1, updating the corresponding incident-counters

in c∗q,·(·) andc∗r,·(·).
—Movec∗q,i+1(r ) toc∗q,i+1(q

′) andc∗r,i+1(q) toc∗r,i+1(r
′) on leveli +1.

—Cover(D, i + 1, (q, r )).

—C := Expose(v,w).

u := FindBranch(v,C, i ).
While u 6=nil ,

Let u′ be the predecessor, and letu′′ be the successor ofu in
v · · ·w.
Run (*) again with the new values ofu andu′.
Movec∗y, j (x | z) to c∗y, j (z) and setc∗y, j (x | z) := ∅.
Run (*) again withu′′ in place ofu′.
u := FindBranch(v,C, i ).

If Phase 1 was stopped in (*), we have a symmetric Phase 2 with the roles ofv
andw interchanged.

FindBranch(a,C, i ). If incidentC,a,−1,i = 0, returnnil , else call Clean(C). If C
has only one path childa, then return FindBranch(a, A, i ). Otherwise, letA and
B be the children ofC with A nearest toa and letu′uu′′ be the triple such that
u′ ∈ π (A) and u′′ ∈ π (B) and u ∈ ∂A ∩ ∂B. If incidentA,a,−1,i > 0, then
return FindBranch(a, A, i ). Otherwise, if NeighborIncident(u, u′ | u′′, i ) > 0,
then returnu else return FindBranch(u, B, i ).
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VertexFind(u, i, u′). Let z := NeighborFind(u, u′, i ). If z is a nontree neighbor,
return (u, z). Otherwise, ifC(u, z) is the edge (u, z), return (z, r ) wherer is a
nontree neighbor ofz in c∗z,i (u). Otherwise,C(u, z) has two childrenAandB with
u ∈ A, A∩ B = {b}. If incidentA,u,i,i > 0, returnPathFind(u, A, i ). Otherwise,
returnVertexFind(b, i, b′) whereb′ is the predecessor ofb in u · · ·b.

PathFind(a,C, i ). Call Clean(C). If C has only one path childA, return
PathFind(a, A, i ). Otherwise, letA be the path child nearest toa and B be
the other path child. If incidentA,a,−1,i > 0, then returnPathFind(a, A, i ). Else,
let b be the boundary vertex nearest toa in B andb′ be the predecessor ofb
on a · · ·b. If NeighborIncident(b, b′, i ) > 0, returnVertexFind(b, i, b′), else
returnPathFind(b, B, i ).

THEOREM 23. There exists a deterministic fully dynamic algorithm for main-
taining biconnectivity in a graph, using O(log5 n) amortized time per operation.

PROOF. Relative to 2-edge connectivity, the essential new cost is when we
cover a triple. This movesO(logn) segments in the neighbor list of the center of
the triple. Each move affectsO(logn) binary tree nodes in the representation of the
neighbor list, and each of these tree nodes hasO(logn) counters associated with
it, so the cost of covering a triple isO(log3 n). This in turns means that Clean(C)
and Split(C) now takesO(log3 n) time, as opposed to theO(log2 n) time in 2-edge
connectivity. As a result, our total operation cost is increased by a factorO(logn)
to O(log5 n).

Our fully dynamic biconnectivity algorithm usesO(m+ n log2 n) space. As for
2-edge connectivity, we can improve the space toO(m+ n logn) and the query
time toO(logn). It requires, however, that we use biased search trees [Sleator and
Tarjan 1985] for the neighbor listsc∗v,·(·), giving the at most two nonoffspring tree
neighbors maximal bias, and giving offspring tree neighbors bias proportional to the
size of their offspring clusters, that is, an offspring neighborw gets bias sizeC(v,w),v,0.
Thorup’s [2000] improvement by a factorO(logn/log logn) also works here. In
fact, it seems that the techniques from Thorup [2000] can save a further factor
O(logn) by providing a kind of biased deletion for the covering and uncovering
of triples. This would then lead to an amortized update time ofO(log3 log logn)
with a query time ofO(logn) and a space bound ofO(m+ n logn log logn), as
for 2-edge connectivity. Details of this will be presented in the journal version of
Thorup [2000].

Finally, we note that it is not difficult to augment our biconnectivity algorithm
to provide articulation points using the same principles as was used to augment the
2-edge connectivity to provide bridges.

8. Concluding Remarks

Deterministic fully dynamic algorithms with polylogarithmicamortizedopera-
tion costs have been presented for connectivity, minimum spanning forest, 2-edge,
and biconnectivity. It remains a major open problem such feasible bounds can be
achieved in theworst-case, where currently, the best known isO(

√
n) per update

[Eppstein et al. 1997; Frederickson 1985]. Another, major challenge is to find good
algorithms for directed graphs. Recently, it has been settled that one can maintain
the transitive closure of a digraph inO(n2) time per operation [Demetrescu and
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Italiano 2000; King 1999]. This is optimal in the sense that one update can make
Ä(n2) changes to the transitive closure. However, if the problem is just to maintain
reachability between to fixed verticess and t , no solution better than the static
is known.
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