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either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length 
augmenting paths at once (using the layered network approach of Dinic). An alternative method based 
on the preflow concept of Karzanov is introduced. A preflow is like a flow, except that the total amount 
flowing into a vertex is allowed to exceed the total amount flowing out. The method maintains a preflow 
in the original network and pushes local flow excess toward the sink along what are estimated to be 
shortest paths. The algorithm and its analysis are simple and intuitive, yet the algorithm runs as fast as 
any other known method on dense. graphs, achieving an O(n)) time bound on an n-vertex graph. By 
incorporating the dynamic tree data structure of Sleator and Tarjan, we obtain a version of the algorithm 
running in O(nm log(n’/m)) time on an n-vertex, m-edge graph. This is as fast as any known method 
for any graph density and faster on graphs of moderate density. The algorithm also admits efticient 
distributed and parallel implementations. A parallel implementation running in O(n’log n) time using 
n processors and O(m) space is obtained. This time bound matches that of the Shiloach-Vishkin 
algorithm, which also uses n processors but requires O(n’) space. 
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1. Introduction 

The problem of finding a maximum flow in a directed graph with edge capacities 
arises in many settings in operations research and other fields, and efficient 
algorithms for the problem have received a great deal of attention. Extensive 
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TABLE I. POLYNOMIAL-TIMEALGORITHMSFORTHEMAXIMUMFLOWPROBLEM" 

Algorithm 
no. Date Discoverer Runnina time References 

1 1969 Edmonds and Karp 
2 1970 Dinic 
3 1974 Karzanov 
4 1977 Cherkasky 
5 1978 Malhotra, Pramodh Kumar, 

and Maheshwari 
6 1978 Galil 
7 1978 Gahl and Naamad; Shiloach 
8 1980 Sleator and Tajan 
9 1982 Shiloach and Vishkin 

10 1983 Gabow 
11 1984 Tarjan 
12 1985 Goldberg 
13 1986 Goldberg and Tarjan 
14 1986 Ahuja and Orlin 

a Algorithm 13 is presented in this paper. 

O(w?P) [51 
O(dm) [41 
OW) tts1 
O(n%?l”*) 131 
OW) [211 

O(n51’m2/3) [111 
O(nm(log ~2)‘) [tZ 251 
O(nm log n) [27,281 
OW) WI 
O(nm log U) IlO1 
OW) [311 
O(n3) 1141 
O(nm log(n*/m)) 116, 151 
O(nm + n’log U) [II 

discussion of the problem and its applications can be found in the books of Even 
[6], Ford and Fulkerson [8], Lawler [ 191, Papadimitriou and Steiglitz [23], and 
Tarjan [30]. Table I summarizes known polynomial-time algorithms for the 
problem. Time bounds are stated in terms of the number y1 of vertices, the number 
m of edges, and in two cases in terms of an upper bound U on the edge capacities 
(assumed in these cases to be integers). 

The first maximum-flow algorithm, due to Ford and Fulkerson [7], works by 
finding augmenting paths. Edmonds and Karp [5] observed that augmenting along 
shortest paths leads to a polynomial-time algorithm (algorithm 1). To improve the 
efftciency further, Dinic [4] proposed a method to find all shortest augmenting 
paths in one phase. Algorithms 2-l 1 use Dinic’s method. Algorithms 12-14 are 
based on the approach described in this paper. 

There is no clear winner among the algorithms in the table that are based on 
Dinic’s method. Algorithms 3, 5,9, and 11 are designed to be fast on dense graphs, 
and algorithms 4, 6, 7, 8, and 10 are designed to be fast on sparse graphs. For 
dense graphs, the best known bound of O(n 3, was first obtained by Karzanov [ 181; 
Malhotra et al. [21] and Tarjan [3 I] have given simpler O(n3)-time algorithms. 
For sparse graphs, Sleator and Tarjan’s bound of O(nm log n) [27, 281 is the best 
to date. For a small range of densities (m between Q(n’/(log n)3) and O(n2)), 
Galil’s bound of O(r~~/~rn~‘~) [ 1 l] is best. For sparse graphs with integer edge 
capacities of moderate size, Gabow’s scaling algorithm [lo] is best. Among the 
algorithms based on Dinic’s method, the only parallel algorithm is that of Shiloach 
and Vishkin [26]. This algorithm has a parallel running time of O(n’log n) with y1 
processors but requires O(nm) space. Vishkin (private communication, 1986) has 
improved the space bound to O(n2). Our work has been motivated by the Shiloach- 
Vishkin algorithm. 

In this paper we present a different approach to the maximum-flow problem, 
which is the basis for algorithms 12-14 in Table I. Our method uses Karzanov’s 
idea of a prejZow. A preflow is like a flow except that the total amount flowing into 
a vertex can exceed the total amount flowing out. During each phase, Karzanov’s 
algorithm maintains a preflow in an acyclic network. The algorithm pushes flow 
through the network to find a blocking flow, which determines the acyclic network 
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for the next phase. Our algorithm abandons the idea of finding a flow in each 
phase and also abandons the idea of global phases. Instead, our algorithm maintains 
a preflow in the original network and pushes local flow excess toward the sink 
along what it estimates to be shortest paths in the residual graph. This pushing of 
flow changes the residual graph, and paths to the sink may become saturated. 
Excess that cannot be moved to the sink is returned to the source, also along 
estimated shortest paths. Only when the algorithm terminates does the preflow 
become a flow, and then it is a maximum flow. 

The algorithm is simple and intuitive. It has natural implementations in sequen- 
tial and parallel models of computation. We present a simple sequential imple- 
mentation that runs in O(n3) time and a more complicated O(nm log(n*/m))-time 
sequential implementation that uses the dynamic tree data structure of Sleator and 
Tarjan [28-301 (also used in algorithm 8). The latter bound matches the best 
known bounds as a function of n and m for both sparse and dense graphs and 
is better than known bounds on “almost dense” graphs (i.e., m = n’-‘(l) and m = 
n*/w( 1)). We present a parallel version of the algorithm running on O(n’log n) 
time using y1 processors and 0( 1) words of storage per edge. This matches the time 
bound of the Shiloach-Vishkin algorithm, but our improved space bound allows 
implementation on a model of distributed computation in which the amount 
of space per processor at a vertex is bounded by the vertex degree. Recently, 
Ahuja and Orlin [l] used the approach described in this paper to develop an 
O(nm + n*log U) algorithm for the problem, improving Gabow’s [lo] bound of 
O(nm log U). 

This paper contains six sections in addition to the introduction. Section 2 
describes a generic version of the algorithm. Section 3 proves its termination and 
correctness. Section 4 refines the algorithm to produce an O(n3)-time sequential 
implementation. Section 5 shows how to use dynamic trees to improve the 
sequential time bound to O(nm log(n2/m)). Section 6 discusses efficient distributed 
and parallel implementations. Section 7 contains some concluding remarks and 
open problems. 

The approach presented in this paper has been pioneered by the first author [ 141. 
The version presented here generalizes and improves the original results. Our 
techniques can be further generalized to solve the minimum-cost flow problem. 
This generalization is described in [ 151 and [ 171. 

2. A Generic Maximum-Flow Algorithm 
Let G = (V, E) be a directed graph with vertex set I’ and edge set E. We denote 
the size of I’ by n and the size of E by m. For ease in stating time bounds we 
assume m r n - 1. For a pair of vertices v, w we define the distance dc (v, w) from 
v to w in G to be the minimum number of edges on a path from v to w in G; if 
there is no such path, we define dc(v, w) = co. A graph G = (V, E) is aflow network 
if it has two distinguished vertices, a source s and a sink t, and a positive real- 
valued capacity c(v, w) for each edge (v, w) E E. We extend the capacity function 
to all vertex pairs by defining c(v, w) = 0 if (v, w) B E. Aj7owfon G is a real- 
valued function on vertex pairs satisfying the following constraints: 

f(v, w) 5 4v, WI for all (v, w) E V X V (capacity constraint), (1) 

./xv, w) = -f(w, v) forall (v, w) E VX V (antisymmetry constraint), (2) 

c f(u,v>=O forall vE V- (s,t) (flow conservation constraint). (3) 
IIE v 
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Remark. The antisymmetry constraint (2), used by Sleator [27], has two pur- 
poses: (i) It eliminates the possibility of having positive flow on both edges of an 
opposing pair (v, w) and (w, v), a possibility that creates certain technical difficulties, 
and (ii) it simplifies the formal expression of constraints such as the conservation 
constraint (3). To gain an intuition, think only of the positive part of the flow 
function; the appropriate interpretation of the flow conservation constraint is that 
the total flow into any vertex v 4 (s, t) equals the total flow out of v. 

The value If] of a flowfis the net flow into the sink: 

u-l = c f(V> t). 
VEV 

A maximumj7ow is a flow of maximum value. 
The problem we wish to solve is that of computing a maximum flow in a given 

network. Our algorithm solves this problem by manipulating a prefrow f on the 
network. A preflow is a real-valued function on vertex pairs satisfying (1) and (2) 
above, as well as the following weakened form of (3): 

2,f’U~ v> 2 0 for all v E V - 1s) (nonnegativity constraint). (4) 

That is, the total flow into any vertex v # s is at least as great as the total flow out 
of v. We define theflow excess e(v) of a vertex v to be &,EVf(~, v), the net flow 
into v. 

The preflow algorithm works by examining vertices other than s and t with 
positive flow excess and pushing excess from them to vertices estimated to be closer 
to the sink t, with the goal of getting as much excess as possible to t. If the sink is 
not reachable from a vertex with a positive excess, however, the algorithm pushes 
this excess to vertices estimated to be closer to the source s. Eventually the algorithm 
reaches a state in which all vertices other than s and t have zero excess. At this 
point the preflowfis a flow; in fact,fis a maximum flow. 

Before describing the algorithm, we address two issues: how to move flow excess 
from one vertex to another and how to estimate the distance from a vertex to s or 
to t. 

To deal with the first issue, we define the residual capacity rf(v, w) of a vertex 
pair (v, w) to be c(v, w) -f(v, w). If vertex v has positive excess and pair (v, w) 
has positive residual capacity, then an amount of flow excess up to 6 = min(e(v), 
r-(v, w)) can be moved from v to w by adding 6 tof(v, w) (and subtracting 6 from 
f(w, v)). Observe that there are two ways a pair (v, w) can have positive residual 
capacity: Either (v, w) is an edge with flow less than its capacity (edge (v, w) is said 
to be unsaturated), or (w, v) is an edge with positive flow. In the former case, 
moving excess from v to w increases the flow on edge (v, w); in the latter case, it 
decreases the flow on (w, v). We call a pair (v, w) a residual edge if r/(v, w) > 0; 
the residual graph GJ = (V, Ef) for a preflow fis the graph whose vertex set is V 
and whose edge set Ef is the set of residual edges. 

The second issue is how to estimate the distance from a vertex to s or to t. For 
this purpose we define a valid labeling d to be a function from the vertices to the 
nonnegative integers and infinity, such that d(s) = ~1, d(t) = 0, and d(v) I 
d(w) + 1 for every residual edge (v, w). The intent is that, if d(v) < n, then 
d(v) is a lower bound on the actual distance from v to t in the residual graph G,,, 

I Our definition allows distance labels to be infinite. We shall show, however, that the labels stay finite 
throughout the execution of the algorithm. Infinite labels are introduced only to simplify the exposition. 
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Push(v, w). 
Applicability: v is active, r/(v, w) > 0 and d(v) = d(w) + 1. 
Action: Send 6 = min(e(v), rJ(v, w)) units of flow from v to was follows: 

./Iv, w) +-“ftv, w) + w-tw, VI +-f(w, v) - 6; 
e(v) - e(v) - 6; e(w) -e(w) + 6. 

Relabel(v). 
Applicability: v is active and VW E V, T/(v, w) > 0 =a d(v) 5 d(w). 
Action: d(v) t min(d(w) + 1 1 (v, w) E ~5~). 

(If this minimum is over an empty set, d(v) + m.) 

FIG. 1. Push and relabel operations. 

925 

Procedure Max-Flow (V, E, s, t, c); 
((initialization)) 

((initialize preflow)) 
V(v, w) E (V - (s)) X (V - [s]) do begin 
en;lv> WI + RI-(4 v) + 0; 

Vv k V do begin 
f(& VI + 45 v); 
f(h $1 + --cts, v); 

end; 
(( ;;;;lize labels and excesses) ) 

c n; 
Vv E V - (s) do begin 

d(v) t 0; 
e(v) +ft.h VI; 

end; 
((loop)) 

while 3 a basic operation that applies do 
select a basic operation and apply it; 

return(f); 
end. 

FIG. 2. The generic maximum flow algorithm. 
The running time of the algorithm depends on 
the order in which basic operations are applied 
and on details of the implementation. 

and if d(v) 2 n, then d(v) - n is a lower bound on the actual distance to s in the 
residual graph. (It can be proved by induction that in the latter case t is not 
reachable from v in Gs.) 

To describe the algorithm, we also need the following definition. We call a vertex 
v active if v E V - (s, t), d(v) < 03, and e(v) > 0. 

The maximum-flow algorithm begins with the preflowfthat is equal to the edge 
capacity on each edge leaving the source and zero on all other edges, and with 
some initial sink labeling d. The algorithm then repetitively performs, in any order, 
the basic operations, push and relabel, described in Figure 1. When there are no 
active vertices, the algorithm terminates. A summary of the algorithm appears in 
Figure 2. 

The basic operations modify the preflowfand the labeling d. A push from v to 
w increasesf(v, w) and e(w) by 6 = min(e(v), rf(v, w)) and decreasesf(w, v) and 
e(v) by the same amount. The push is saturating if r-(v, w) = 0 after the push and 
nonsaturating otherwise. A relabeling of v sets the label of v equal to the largest 
value allowed by the valid labeling constraints. 

LEMMA 2.1. If f is a prejlow, d is any valid labeling for f; and v is any active 
vertex, then either a push or a relabel operation is applicable to v. 

PROOF. For any any residual edge (v, w), the definition of a valid labeling 
implies that d(v) 5 d(w) + 1. If a push is not applicable to v, then d(v) < 
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d(w) + 1 for every residual edge (v, w). By the integrality of valid labelings, 
d(v) 5 d(w) for all residual edges (v, w), and a relabeling is applicable to v. Cl 

There is one part of the algorithm we have not yet specified: the choice of an 
initial labeling d. The simplest choice is d(s) = y1 and d(v) = 0 for v E V - (s). 
A more accurate choice (indeed, the most accurate possible choice) is d(v) = 
min(dc,(v, t), dc/(v, S) + n) for v E I’, where fis the initial preflow. The latter 
labeling can be computed in O(m) time using backward breadth-first searches from 
the sink and from the source in the residual graph. The resource bounds we shall 
derive for the algorithm are correct for any valid initial labeling. To simplify the 
proofs, we assume that the algorithm starts with the simple labeling. 

3. Correctness and Termination 
We shall prove that the generic algorithm is correct assuming that it terminates 
and then prove termination. 

LEMMA 3.1. The algorithm maintains the invariant that d is a valid labeling. 

PROOF. We use induction on the number of pushing and relabeling operations. 
The simple labeling used initially is valid because labels of all vertices other than s 
are zero, and all edges leaving s are saturated. Given that d is a valid labeling, a 
relabeling operation changing d(v) must produce a new valid labeling. Consider 
a pushing operation that sends flow from v to w. This operation may add (w, v) 
to G, and may delete (v, w) from Gf. Since d(w) = d(v) - 1, the addition of 
(w, v) to G/does not affect the invariant that d is a valid labeling. The deletion of 
(v, w) removes the corresponding constraint, which also leaves the labeling 
valid. Cl 

To prove correctness, we use the concept of an augmenting path. An augmenting 
path is a simple path from s to t in the residual graph Gf. Our proof of correctness 
is based on the following classical theorem of Ford and Fulkerson [7]: 

THEOREM 3.2. A jlowf is maximum tfand only tfthere is no augmenting path; 
that is, t is not reachable from s in Gy. 

LEMMA 3.3. Iff is a prejlow and d is any valid labelingforf; then the sink t is 
not reachable from the source s in the residual graph Gf. 

PROOF. Assume by way of contradiction that there is an augmenting path 
s= VI), VI, . . . . VI = t. Then 1 < n and (vi, vi+ 1) E Ef for 0 5 i < 1. Since d is 
a valid labeling, we have d(vi) 5 d(vi+,) + 1 for 0 5 i < 1. Therefore, we have 
d(s) 5 d(t) + 1~ n, since d(t) = 0, which contradicts d(s) = n. 0 

THEOREM 3.4. Suppose that the algorithm terminates and all distance labels 
are finite at termination. Then the preflow f is a maximum flow; that is, the 
algorithm is correct. 

PROOF. If the algorithm terminates and all distance labels are finite, all vertices 
in V - (s, t 1 must have zero excess, because there are no active vertices. Therefore 
f must be a flow. This flow is maximum by Lemma 3.3 and Theorem 3.2. Cl 

Now we show that the algorithm terminates and that the distance labels stay 
finite during the execution of the algorithm. First we prove the following lemma: 

LEMMA 3.5. If f is a prefow and v is a vertex with positive excess, then the 
source s is reachable from v in the residual graph Gf. 
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PROOF. Let S be the set of vertices reachable from v in G,-, and suppose s 4 S. 
Let 3 = V - S. The choice of S implies that, for every vertex pair u, w with w E S 
and u E 3, we have f(u, w) 5 0. Thus 

1 e(w) = ,,,~w,,f’uT w) WES 
= ,,E;wEsf@, w) + u &f(% w) 

= i f(u, WI 
UES.WE.9 

5 0. 

The ten-n ILwE~ f(u, w) in the second line equals zero by antisymmetry. Sincefis 
a preflow, we have e(w) = 0 for all w E S, and in particular we have e(v) = 0. Cl 

LEMMA 3.6. For any vertex v, the distance label d(v) never decreases. An 
application of a relabeling operation to v increases d(v). 

PROOF. Since the labeling d is changed using relabeling operations only, it is 
enough to prove the second statement of the lemma. Suppose a relabeling operation 
is applicable to v. Then for all w such that (v, w) E EJ, we have d(w) z d(v), which 
implies that min(d(w) + 1 I( v, w) E Ef) > d(v), so the relabeling must increase 
d(v). q 

We have shown that an application of the relabeling operation to a vertex 
increases the vertex label. The next lemma shows that the labels cannot increase 
too much. In particular, the lemma implies that the labels stay finite during an 
execution of the algorithm. 

LEMMA 3.7. At any time during the execution of the algorithm and for any 
vertex v E V, d(v) 5 2n - 1. 

PROOF. The lemma is trivial for v = s and v = t. Suppose v E V - (s, t 1. Since 
the algorithm changes only labels of active vertices, it is enough to prove the lemma 
for an active vertex v. If v is active, then e(v) > 0, so by Lemma 3.5 there is a 
simple path from v to s in G,-. Let v = vo, vI , . . . , v/ = s be such a path. The length 
1 of the path is at most n - 1. Since d is a valid labeling and (vi, vi+,) E Ef, we 
have d(vi) 5 d(vi+,) + 1. Therefore, we have d(v) = d(vo) 5 d(v,) + 1 I d(s) + 
(n- 1)=2n- 1. •i 

Lemma 3.7 allows us to amortize the work done by the algorithm over increases 
in vertex labels. The next two lemmas bound the number of relabelings and the 
number of saturating pushes. 

LEMMA 3.8. The number of relabeling operations is at most 2n - 1 per vertex 
and at most (2n - 1) (n - 2) < 2n2 overall. 

PROOF. Relabeling operations apply only to vertices v E V - (s, t 1. A relabeling 
of v increases d(v). The label d(v) is zero initially, and the label can grow to 
at most 2n - 1. Therefore, there are at most 2n - 1 relabelings of each vertex in 
V - {s, t 1, and the total number of relabelings is at most (2n - l)(n - 2). Cl 

LEMMA 3.9. The number of saturating push operations is at most 2nm. 

PROOF. For any pair of vertices v and w, consider the saturating pushes from v 
to w and from w to v. If there are any such pushes, then either (v, w) E E 
or (w, v) E E. Consider a saturating push from v to w. In order to push flow from 
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v to w again, the algorithm must first push flow from w to v, which cannot happen 
until d(w) increases by at least 2. Similarly, d(v) must increase by at least 2 between 
saturating pushes from w to v. Since d(v) + d(w) 2 1 when the first push 
between v and w occurs and d(v) + d(w) 5 4n - 3 when the last such push occurs 
(by Lemma 3.7), the total number of saturating pushes between v and w is at most 
2n - 1. Thus the total number of saturating pushes is at most 2n - 1 per edge, for 
a total over all edges of at most (2n - 1)m < 2nm. Cl 

Next we bound the number of nonsaturating pushes. 

LEMMA 3.10. The number of nonsaturating pushing operations is at most 4n2m. 

PROOF. Let @ = &“I vi,activel d(v). Each nonsaturating push from a vertex v to 
another vertex w causes @ to decrease by at least 1, since the push makes v inactive 
and d(w) = d(v) - 1. A saturating pushing operation causes @ to increase by at 
most 2n - 1. The total increase in Cp due to saturating pushes is at most (2n - 1) 
x 2nm by Lemma 3.9. The total increase in @ over the entire algorithm due to 
relabeling operations is at most (2n - l)(n - 2) by Lemma 3.8. Before the first 
push or relabel operation + is zero, and at the end of the algorithm @ is also zero. 
Thus the total decrease in a’, and hence the total number of nonsaturating pushing 
operations, is equal to the total increase in a’, which is at most (2n - 1)2nm + (2n 
- l)(n - 2) 5 4n*m (recall the assumption m 1 n - 1). q 

THEOREM 3.11. The generic algorithm terminates after O(n2m) basic opera- 
tions. 

PROOF. Immediate from Lemmas 3.8, 3.9, and 3.10. q 

The running time of the generic algorithm depends on the order in which basic 
operations are applied and the details of implementation, but it is clear that any 
reasonable sequential implementation of the algorithm will run in polynomial 
time. In the next section we discuss one possible implementation with an O(n’m ) 
time bound. We also show that a particular ordering of the basic operations yields 
an O(n3) time bound. 

We conclude this section with a discussion of a variant of the generic maximum- 
flow algorithm. Let us recall a classical concept from network flow theory, that of 
a cut. A cut S, s is a partition of the vertex set V (that is, S U S = I’ and S n 3 = 
0) such that s E S and t E 3. The capacity of the cut is 

- 
- 

c(S, S) = z c(v, w). “E.s,WES 
A cut is minimum if it has minimum possible capacity. The max-jlow, min-cut 
theorem of Ford and Fulkerson [7, 81 states that the value of a maximum flow 
equals the capacity of a minimum cut. 

In many applications in which the maximum-flow problem occurs, only the 
maximum-flow value or a minimum cut is needed, not an actual maximum flow 
[24]. For such applications our maximum-flow algorithm can be modified to 
compute a minimum cut and the maximum-flow value without actually computing 
a maximum flow. The only change necessary is to redefine an active vertex to be 
a vertex v E V - (s, t) such that e(v) > 0 and d(v) < n. When the modified 
algorithm terminates, the excess e(t) at the sink is the value of a maximum flow, 
and the cut S, 3 such that S contains exactly those vertices from which t is reachable 
in G/- is a minimum cut [ 161. For this variant of the algorithm, the bounds in 
Lemmas 3.8-3.10 can be improved by roughly a factor of 2. The results we derive 



A New Approach to the Maximum-Flow. Problem 929 

in subsequent sections for the maximum-flow algorithm apply to this minimum- 
cut algorithm as well. 

4. Sequential Implementation 
Any reasonable implementation of the generic maximum-flow algorithm runs in 
polynomial time. Some implementations, however, are more efftcient than others. 
We start with a simple implementation that runs in O(n2m) time and then reline 
it to improve its efficiency. 

We need some data structures to represent the network and the preflow. We call 
an unordered pair (v, w ) such that (v, w) E E or (w, v) E E an undirected edge of 
G. We associate the three values c(v, w), c(w, v), andf(v, w)(= -f(w, v)) with 
each undirected edge {v, w]. Each vertex v has a list of the incident undirected 
edges (v, w ), in fixed but arbitrary order. Thus each edge 1 v, w 1 appears in exactly 
two lists, the one for v and the one for w. Each vertex v has a current edge (v, w), 
which is the current candidate for a pushing operation from v. Initially, the current 
edge of v is the first edge on the edge list of v. The main loop of the implementation 
consists of repeating the push/relabel operation described in Figure 3 until there 
are no active vertices. (We discuss the maintenance of active vertices later.) The 
push/relabel operation is applicable to an active vertex v. This operation pushes 
excess through the current edge (v, w) of v if a pushing operation is applicable to 
this edge. If not, the operation replaces (v, w) as the current edge of v by the next 
edge on the edge list of v; or if (v, w ) is the last edge on this list, it makes the first 
edge on the list the current one and relabels v. 

We need to show that push/relabel uses the relabeling operation correctly. 

LEMMA 4.1. The push/relabel operation does a relabeling only when the rela- 
beling operation is applicable. 

PROOF. A push/relabel operation relabels a vertex v only when v is active. Just 
before the relabeling, for each edge (v, w), either d(v) 5 d(w) or rf(v, w) = 0. This 
is because the distance label d(v) has not changed since (v, w) was the current 
edge, d(w) never decreases, and rr(v, w) cannot increase unless d(w) > d(v). The 
lemma follows from the definition of a relabeling operation. Cl 

The implementation needs one additional data structure, a set Q containing 
all active vertices. Initially Q = (v E V - (s, t ) 1 c(s, v) > 0). Maintaining Q takes 
only 0( 1) time per push/relabel operation. (Such an operation applied to an edge 
{v, w ] may require adding w to Q and/or deleting v.) 

THEOREM 4.2. The push/relabel implementation of the maximum-flow algo- 
rithm runs in O(nm) time plus O(1) time per nonsaturating pushing step, for a 
total of O(n 2m) time. 

PROOF. Let v be a vertex in I/ - (s, t), and let A, be the number of edges on 
the edge list of v. Relabeling v requires a single scan of the edge list of v. By Lemma 
3.8, the total number of passes through the edge list of v is at most 4n - 1, one for 
each of the at most (2n - 1) relabelings of v, one before each relabeling as the 
current edge runs through the list, and one after the last relabeling. Every push/ 
relabel operation selecting v either causes a push, changes the current edge of v, or 
increases d(v). The total time spent in push/relabel operations selecting v is thus 
O(nA,) plus 0( 1) per push out of v. Summing over all vertices and applying 
Lemmas 3.9 and 3.10, we obtain the theorem. Cl 
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Push/Relabel(v). 
Applicability: v is active. 
Action: Let (v, w) be the current edge of v. 

If push(v, w) is applicable then push(v, w) 
else 

if {v, w) is not the last edge on the edge list of v then 
replace {v, w) as the current edge of v 

by the next edge on the edge list of v 
else begin 

make the first edge on the edge list of v the current edge; 
relabel(v); 

end. 

FIG. 3. The push/relabel operation. 

Discharge. 
Applicability: Q # 0. 
Action: Remove the vertex v on the front of Q. 

(Vertex v must be active.) 
Repeat 

push/relabel(v); 
if w becomes active during this push/relabel operation then 

add w to the rear of Q; 
until e(v) = 0 or d(v) increases. 
If v is still active then add v to the rear of Q. 

FIG. 4. The discharge operation. 

To obtain a better running time, we need to reduce the number of nonsaturating 
pushes. We do this in a way similar to that used by Shiloach and Vishkin [26]. 
Namely, we exploit the freedom we have in selecting vertices for push/relabel 
operations by using a first-in, first-out selection strategy; that is, we maintain Q as 
a queue. Thefirst-in, jkst-out algorithm consists of applying the discharge operation 
until Q is empty. The discharge operation consists of removing the vertex on the 
front of Q, applying push/relabel operations to this vertex at least until the excess 
becomes zero or the label of the vertex increases, and adding any newly active 
vertices to the rear of Q (including v if it is still active). 

There is still some flexibility in this algorithm, namely, in how long we keep 
applying push/relabel operations to a vertex v. Figure 4 describes one extreme case, 
in which we stop as soon as e(v) = 0 or v is relabeled. At the other extreme we can 
continue until v becomes inactive, which may involve several relabelings of v. In 
the sequential case, our analysis is valid for both extremes and all intermediate 
variants. In the parallel case, our analysis applies only to the version described in 
Figure 4, but it can be easily modified to handle other cases as well. 

To analyze the first-in, first-out algorithm, we need to introduce the concept of 
passes over the queue. Pass one consists of the discharging operations applied to 
the vertices added to the queue during the initialization. Given that pass i is defined, 
pass i + 1 consists of the discharging operations applied to vertices on the queue 
that were added during pass i. 

LEMMA 4.3. The number ofpasses over the queue is at most 4n2. 

PROOF. Let @ = max(d(v) ] v is active). Consider the effect on @ of a single pass 
over the queue. If no distance label changes during the pass, each vertex has its 
excess moved to lower-labeled vertices, so 9 decreases during the pass. If + is not 
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changed by the pass, some vertex label must increase by at least . If + increases, 
some vertex label must increase by at least as much as @ increases. The total 
number of passes in which @ stays the same or increases is thus at most 2n2 by 
Lemma 3.7. Since + = 0 initially and at the end of the algorithm, the total number 
of passes in which @ decreases is also at most 2n2. Hence the total number of 
passes is at most 4n2. Cl 

COROLLARY 4.4. The number of nonsaturating pushes during the first-in, first- 
out algorithm is at most 4n3. 

PROOF. There is at most one nonsaturating push per vertex in V - (s, t ) per 
pass. Cl 

THEOREM 4.5. The first-in, first-out algorithm runs in O(n 3, time. 

PROOF. Immediate from Theorem 4.2 and Corollary 4.4 0 

An alternative strategy for vertex selection, which we call the maximum-distance 
method, is always to select a vertex v in Q with d(v) maximum. This strategy also 
gives an O(n3) running time, as a proof similar to that of Theorem 4.5 shows. 
A third method giving an O(n3) bound is the wave method, described in [15] 
and [ 171. 

5. Use of Dynamic Trees 
We have now matched the O(n3) time bound of Karzanov’s algorithm. To obtain 
a better bound, we must reduce the time per nonsaturating pushing operation 
below 0( 1). We do this by using the dynamic tree data structure of Sleator and 
Tarjan [28-301. This data structure allows us to maintain a set of vertex-disjoint 
rooted trees in which each vertex v has an associated real value g(v), possibly m or 
-m. We regard a tree edge as directed toward the root, that is, from child to parent. 
We denote the parent of a vertex v by p(v). We adopt the convention that every 
vertex is both an ancestor and a descendant of itself. The tree operations we shall 
need are described in Figure 5. 

The total time for a sequence of I tree operations starting with a collection of 
single-vertex trees is O(I log k), where k is an upper bound on the maximum 
number of vertices in a tree. (The implementation of dynamic trees presented in 
[29] and [30] does not support find-size operations, but it is easily modified to do 
so. See the Appendix.) 

In our application the edges of the dynamic trees form a subset of the current 
edges of the vertices. The current edge (v, w 1 of a vertex v E I/ - (s, t ) is eligible 
to be a dynamic tree edge (with p(v) = w) if d(v) = d(w) + 1 and rf(v, w) > 0. 
Not all eligible edges are tree edges, however. The value g(v) of a vertex v in its 
dynamic tree is r-1(v, p(v)) if v has a parent and UJ if v is a tree root. Initially, each 
vertex is in a one-vertex dynamic tree and has value 03. We limit the maximum 
tree size to k, where k is a parameter to be chosen later. 

By using appropriate tree operations we can push flow along an entire path in a 
tree, either causing a saturating push or moving flow excess from some vertex in 
the tree all the way to the tree root. By combining this idea with a careful analysis, 
we are able to show that the number of times a vertex is added to Q is O(nm + 
n3/k). At a cost of O(log k) for each tree operation, the total running time of the 
algorithm is O((nm + n3/k)10g k), which is minimized to within a constant factor 
at O(nm log(n2/m)) for the choice k = n2/m. 
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j&root(v): Find and return the root of the tree containing vertex v. 
find-size(v): Find and return the number of vertices in the tree containing 

vertex v. 
Jind-value(v): Compute and return g(v). 

find-min(v): Find and return the ancestor w of v of minimum value g(w). 
In case of a tie, choose the vertex w closest to the root. 

change-value(v, x): Add real number x to g(w) for each ancestor w of v. [We adopt 
the convention that m + (-a)) = 0.1 

link(v, w): Combine the trees containing vertices v and w by making w 
the parent of v. This operation does nothing if v and w are 
in the same tree or if v is not a tree root. 

cut(v): Break the tree containing v into two trees by deleting the edge 
from v to its parent. This operation does nothing if v is a 
tree root. 

FIG. 5. Dynamic tree operations. 

Send(v). 
Applicability: v is active. 
Action: Whilefind-root(v) # v and e(v) > 0 do begin 

send 6 c min(e(v),Jind-value(Jind-min(v))) units of flow 
along the tree path from v by performing change-value(v, -6); 

whilefind-vulue(find-min(v)) = 0 do begin 
u -find-min(v); 
perform cut(u) followed by change-vulue(u, m); 

end; 
end. 

FIG. 6. The Send operation. 

The details of the improved algorithm, which we call the dynamic tree algorithm, 
are as follows. The heart of the algorithm is the procedure send(v), defined in 
Figure 6, which pushes excess from a nonroot vertex v to the root of its tree, cuts 
edges saturated by the push, and repeats these steps until e(v) = 0 or v is a tree 
root. 

At the top level, the dynamic tree algorithm is exactly the same as the first-in, 
first-out algorithm of Section 4: We maintain a queue Q of active vertices 
and repeatedly perform discharging operations until Q is empty. However, we 
replace the push/relabel operation with the tree-push/relabel operation described 
in Figure 7. 

A tree-push/relabel operation applies to an active vertex v that is the root of a 
dynamic tree. There are two main cases. The first case occurs if the current edge 
{v, w) of v is eligible for a pushing operation. If the trees containing v and w 
together have at most k vertices, the tree-push/relabel operation links these trees 
by making w the parent of v and then does a send operation from v. If these trees 
together contain more than k vertices, tree-push/relabel does an ordinary pushing 
operation from v to w followed by a send from w. The second case occurs if the 
edge (v, w] is not eligible for a pushing operation. In this case tree-push/relabel 
updates the current edge of v and relabels v if necessary. If v is relabeled, tree-push/ 
relabel cuts all tree edges entering v, thereby maintaining the invariant that all 
dynamic tree edges are eligible for pushing operations. 

It is important to realize that this algorithm stores values of the preflowfin two 
different ways. If (v, w ) is an edge that is not a dynamic tree edge, f(v, w) is stored 
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Tree-Push/Relabel(v). 
Applicability: v is an active tree root. 

Action: Let (v, w} be the current edge of v. 
(1) If d(v) = d(w) + 1 and r,(v, w) > 0 then begin 

(la) Iffind-size(v) +find-size(w) 5 k then begin 
make w the parent of v by performing 

change-va/ue(v, --03), change-value(v, T/(v, w)), and link(v, w); 
push excess from v to w by performing send(v); 

end 
(lb) else ((Jim&size(v) +find-size(w) > k)) begin 

apply a pushing operation to move excess from v to w; 
perform send(w); 

end; 
end 

(2) else ((d(v) 5 d(w) or r/(v, w) = 0)) 
(2a) if (v, w) is not the last edge on the edge list of v then 

replace {v, w) as the current edge by the next edge on the list 
(2b) else ((iv, w) is the last edge on the edge list of v) ) begin 

make the first edge on the list the current one: 
perform cut(u) and change-value(u, CQ) for every child u of v; 
apply a relabeling operation to v; 

end. 
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FIG. 7. The tree-push/relabel operation. 

explicitly, with (v, w]. If ( v, w ) is a dynamic tree edge, with w the parent of v, then 
g(v) = c(v, w) - f(v, w) is stored implicitly in the dynamic tree data structure. 
Whenever a tree edge (v, w) is cut, g(v) must be computed andf(v, w) updated to 
its current value. In addition, when the algorithm terminates, flow values must be 
computed for all edges remaining in dynamic trees. 

Two observations imply that the dynamic tree algorithm is correct. First, any 
edge (v, w) that is in a dynamic tree has d(v) = d(w) + 1. Therefore in case (la) 
of tree-push/relabel, vertices v and w are in different trees, and the algorithm never 
attempts to link a dynamic tree to itself. Second, a vertex v that is not a tree root 
can have positive excess only in the middle of case (I) of a tree-push/relabel 
operation. To see this, note that only in this case does the algorithm create an 
active vertex that is not a tree root, and this event is followed by a send operation 
that moves the nonroot excess to one or more roots. 

LEMMA 5.1. The dynamic tree algorithm runs in O(nm log k) time plus 
O(log k) time per addition of a vertex to Q. 

PROOF. The condition in subcase (la) of tree-push/relabel guarantees that the 
maximum size of any dynamic tree is k. Thus the time per dynamic tree operation 
is O(log k). Each tree-push/relabel operation takes O(1) time plus O(1) tree 
operations plus 0( 1) tree operations per cut operation (in invocations of send and 
in subcase (2b)) plus time for relabeling (in subcase (2b)). The total relabeling time 
is O(nm). The total number of cut operations is at most the number of link 
operations, which is at most 2nm by a proof like that of Lemma 3.9. (Another way 
of getting a bound on the number of cut and link operations is to observe that a 
cut operation corresponds to a saturating push or to an edge scan during relabeling, 
and the number of link operations exceeds the number of cut operations by at 
most n - 1.) The total number of tree-push/relabel operations is O(nm) plus one 
per addition of a vertex to Q. Combining these observations gives the lemma. 0 
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We define passes over the queue Q exactly as in Section 4. The proof of 
Lemma 4.3 remains valid, which means that the number of passes is at most 4n2. 

The next lemma is the crucial part of the analysis. 

LEMMA 5.2. The nwnber of times a vertex is added to Q is O(nm + n3/k). 

PROOF. A vertex v can be added to Q only after d(v) increases, which happens 
at most 2n2 times, or as a result of e(v) increasing from zero, which can happen 
only in subcases ( 1 a) and ( 1 b) of tree-push/relabel. In either subcase the number 
of vertices added to Q is at most one more than the number of cuts performed 
during the invocation of send in the subcase. Thus the number of additions to Q 
in subcases (la) and (lb) is at most 2nm (the maximum number of cuts) plus the 
number of occurrences of the subcases. There are at most 2nm occurrences of (la) 
(the maximum number of links). There are at most 2nm occurrences of (lb) in 
which the invocation of send(w) causes a cut and at most 2nm occurrences of (lb) 
in which the push from v to w is saturating. Let us call an occurrence of 
( 1 b) nonsaturating if it adds a vertex to Q but causes neither a cut nor a saturating 
push. It remains for us to count the number of nonsaturating occurrences. 

We need a few definitions. For any vertex u, we denote the dynamic tree 
containing u by T,, and the number of vertices it contains by 1 T, I. Tree T,, is small 
if 1 T,, 1 5 k/2 and large otherwise. At any time, and in particular at the beginning 
of any pass, there are at most 2n/k large trees. 

Consider a nonsaturating occurrence of ( 1 b) during a given pass, say pass i. The 
condition in (1 b) guarantees that either T, or T, is large, giving us two cases to 
consider. 

Suppose T,, is large. Vertex v is the root of TV. The nonsaturating occurrence of 
( 1 b) removes all the excess from v, which means that a nonsaturating occurrence 
can apply to a given vertex v only once during a given pass. If T, has changed since 
the beginning of pass i, we charge the occurrence of (lb) to the link or cut that 
changed TV most recently before the occurrence. The number of such occurrences 
over all passes is at most one per link and two per cut, for a total of at most 6nm. 
(A link forms one new tree; a cut, two.) If TV has not changed since the beginning 
of pass i, we charge the occurrence of (1 b) to TV. Since T, is large and there are at 
most 2 n/k large trees at the beginning of pass i, there are at most 2n/k such charges 
per pass, for a total of at most 4n3/k over all passes. 

Suppose, on the other hand, that T, is large. The occurrence of (lb) adds the 
root of T,,,, say r, to Q (otherwise this occurrence of (1 b) is not counted). A given 
vertex r can be added to Q at most once during a given pass. If T, has changed 
since the beginning of pass i, we charge the occurrence of (lb) to the link or cut 
that changed T, most recently before the occurrence. The number of such occur- 
rences over all passes is at most 6nm. If T, has not changed, we charge the 
occurrence to T,,,. The number of such charges over all passes is at most 4n3/k. 

Summing our estimates, we find that there are at most 2n2 + 20nm + 8n3/k 
additions to Q altogether, giving the lemma. El 

THEOREM 5.3. The dynamic tree algorithm runs in O(nm log(n2/m)) time ifk 
is chosen equal to n2/m. 

PROOF. The proof is immediate from Lemmas 5.1 and 5.2. q 

As in Section 4, if we replace first-in, first-out selection of vertices for discharging 
steps by maximum-distance selection, then we still obtain the same running time 
bound. 
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Procedure Pulse. 
For all active vertices v in parallel do begin 

((stage 1)) 
push flow from v until e(v) = 0 or VW such that d(w) = d(v) - 1, T/(v, w) = 0; 
((when pushing flow from v to w, reduce e(v) but do not increase e(w)) ) 

((stage 2)) 
if e(v) > 0 then begin 

d’(v) + min(d(w) + 1 1 q(v, w) > 0); 
((stage 3)) 

if d(v) # d’(v) then begin 
d(v) c d’(v); 
broadcast d(v) to all neighbors of v; 

end; 
end; 

((stage 4)) 
add flow pushed to v in stage 1 to e(v). 

end. 
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FIG. 8. The Pulse operation. 

6. Parallel and Distributed Implementation 
The synchronous parallel version of our algorithm is a modification of the first-in, 
first-out algorithm of Section 4. The algorithm proceeds in pulses, each of which 
consists of a number of operations applied in parallel. Each pulse is divided into 
four stages. Pushing of flow is done during the first stage, relabeling of vertices is 
done in the second stage, broadcasting of new labels is done in the third stage, and 
flow pushed to a vertex in the first stage is added to its excess in the fourth stage. 
We make three changes in the algorithm. First, we restrict the algorithm so that it 
stops processing a vertex v as soon as e(v) = 0 or v is relabeled. Second, instead of 
using a queue for selection of vertices to be processed, we process all active vertices 
in parallel. Third, the flow pushed to a vertex v during a pulse is not added to e(v) 
until the fourth stage. To be more precise, the parallel version consists of repeating 
the pulse operation described in Figure 8 until there are no active vertices. 

The parallel algorithm is almost a special case of the first-in, first-out algorithm, 
the only difference being in the values used in relabeling and flow excess compu- 
tations: In the first-in, first-out algorithm, these computations in pass i use the 
most recent label and excess values, some of which may have been computed 
earlier in pass i. Nevertheless, a proofjust like that of Lemma 4.3 gives the following 
analogous result for the parallel algorithm: 

LEMMA 6.1. The number of pulses made by the parallel algorithm is at 
most 4n2. 

COROLLARY 6.2. The number of nonsaturating pushes made by the parallel 
algorithm is at most 4n3. 

For the distributed implementation of this algorithm, our computing model is 
as follows [2, 131. We allow each vertex v of the graph to have a processor with an 
amount of memory proportional to A”, the number of neighbors of v. This processor 
can communicate directly with the processors at all neighboring vertices. We 
assume that local computation is much faster than interprocessor communication. 
Thus as a measure of computation time we use the number of rounds of message 
passing. We are also interested in the total number of messages sent. 
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A synchronous distributed implementation of the parallel algorithm works as 
follows: Each vertex processed during a pulse sends updated flow values to the 
appropriate neighbors. New vertex labels are also transmitted to neighbors, but 
after flow pushing. Since flow always travels in the direction from larger to smaller 
labels, this delaying of the label broadcasting guarantees that flow only travels 
through an edge in one direction during a pulse. An easy analysis shows that in the 
synchronous case the distributed algorithm takes O(n2) rounds of message-passing 
and a total of O(n3) messages. 

For parallel implementation, our computing model is an exclusive-read, 
exclusive-write parallel random-access machine (PRAM) [9] or a distributed 
random-access machine (DRAM) [20]. The implementation in this model is very 
similar to that of the distributed implementation, except that computations on 
binary trees must be performed to allow each vertex to access its incident edges 
fast. Because of these binary trees, each pulse takes O(log n) time, and the parallel 
time of the algorithm is O(n’log n). The ideas of Shiloach and Vishkin [26] apply 
to our algorithm to show that O(n) processors suffice to obtain the O(n’log n) 
time bound. See [26] for details. A different parallel implementation of the 
algorithm that uses parallel prefix operations as primitives is described in [ 151. 

Now we discuss two implementations of the algorithm in the asynchronous 
distributed model of parallel computation [2, 131. Awerbuch (private communi- 
cation, 1985) has observed that in the asynchronous case, the synchronization 
protocol of [2] can be used to implement our algorithm in O(n*log n) rounds and 
O(n3) messages. The same bounds can be obtained for the Shiloach-Vishkin 
algorithm [26] but only by allowing more memory per processor: The processor at 
a vertex v needs O(nA,) storage. Vishkin (private communication, 1986) has 
reduced the space required by this algorithm to a total of O(n2) (from O(nm)). 
Nevertheless, our algorithm has an advantage in situations in which memory is at 
a premium. 

Our algorithm can be modified to work in the asynchronous model without the 
use of the synchronization protocol, achieving a better running time but using 
more messages. This asynchronous version of the algorithm synchronizes locally 
using ucknowledgments. When a vertex v pushes flow to a vertex w such that, 
according to the local information at v, d(v) = d(w) + 1, it sends a message 
(v, 6, d(v)) and updates e(v). The vertex v will not push flow to w again or change 
d(v) until v receives an acknowledgment from w. When a vertex w receives a 
message (v, 6, d(v)), it first checks if d(v) = d(w) + 1 (because the value of d(w) in 
the processor v at the time it sent the message may be out of date). If d(v) = 
d(w) + 1, then w sends to v a message of the form (accept, w, 6, d(w)). Otherwise, 
it sends to v a message of the form (reject, w, 6, d(w)), where d(w) is the correct 
value of the distance label of w. The accepting or rejecting messages serve as 
acknowledgments. In addition, a rejecting message causes v to update its excess, its 
local value of d(w), and d(v) if necessary. When a distance label of a vertex 
increases, it informs its neighbors about the new value of the label. 

THEOREM 6.3. The asynchronous distributed implementation of the algorithm 
that uses acknowledgments runs in O(n2) time using O(n’m) messages and O(A,) 
memory per processor. 

PROOF. To analyze the message complexity of the algorithm, note that the total 
number of messages is the number of messages generated by the distance label 
increases plus twice the number of (accepting or rejecting) acknowledge messages. 
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The number of messages generated by the distance label increases is at most 2nm. 
There is at most one rejecting message per edge per distance label increase, 
for a total of 2nm (by Lemma 3.7). The same arguments as in the proofs of 
Lemmas 3.9 and 3.10 give 2nm and 4n 2m bounds on the number of accepting 
messages corresponding to saturating and nonsaturating pushes. The total message 
complexity of the algorithm is thus O(n’m). 

To bound the running time of the algorithm, we need to introduce a unit of 
time. Given an execution of an algorithm, we define a time unit to be the longest 
interval from the time when a message is originated by a sender to the time when 
the message is processed by the receiver. For example, a push-acknowledgment 
pair of operations takes two units of time. Note that if during a time interval 
(t, t + 41 no vertex label increases, then the @ function defined as in the proof of 
Lemma 4.3 must decrease during this time interval. To see this, observe that during 
the time interval [t + 1, t + 4) each vertex has the correct information about 
the distance labels of its neighbors, so all pushes initiated during the time interval 
[t + 1, t + 2) are accepted by time t + 4. A proof similar to that of Lemma 4.3 
yields an O(n2) bound on the running time of the algorithm. Cl 

An alternative way to obtain a fast distributed or parallel algorithm is to use 
a parallel version of maximum distance selection: During each pulse, apply 
push/relabel operations to every active vertex v for which d(v) is maximum. This 
requires a preprocessing step at the beginning of each pulse to compute the 
maximum d(v), but it simplifies other calculations, since during a given pulse a 
vertex cannot both send and receive flow, which allows the computations of flow 
excess to proceed concurrently with the push/relabel steps. 

7. Remarks 
Our concluding remarks concern three issues: (i) better bounds, (ii) exact distance 
labeling, and (iii) efficient practical implementation. Regarding the possibility of 
obtaining better bounds for the maximum flow problem, it is interesting to note 
that the bottleneck in the sequential version of our algorithm is the nonsaturating 
pushes, whereas the bottleneck in the parallel version is the saturating pushes. 
Recently, Ahuja and Orlin [I] devised a scaling algorithm based on the approach 
described in this paper. Their algorithm runs in O(nm + n210g U) time, assuming 
that the edge capacities are integers not exceeding U. This improves Gabow’s 
bound of O(nm log U) mentioned in the introduction. We wonder whether an 
O(nm) sequential time bound can be obtained through more careful handling of 
the nonsaturating pushes, possibly avoiding the use of the dynamic tree data 
structure. Perhaps also an O(m (log n)k) parallel time bound can be obtained 
through the use of a parallel version of the dynamic tree data structure. 

It is possible to modify our algorithm so that when a pushing operation is 
executed, each distance label corresponds exactly to the distance to the sink or to 
the source in the residual graph (i.e., if d(v) < n, then d(v) = &,(v, t); if d(v) 2 n, 
then d(v) = &,(v, s) + n). The modification involves a stronger interpretation of 
the current edge of a vertex, which should be unsaturated and lead to a vertex with 
a smaller label. If a pushing step saturates the current edge of v, a new current edge 
is found by scanning the edge list of v and relabeling if the end of the list is reached, 
as in a push/relabel step. If a relabeling step changes the label of v, the current edge 
must be updated for each vertex u such that (u, v) is the current edge of u. One 
can show that these computations take O(nm) time in total during the algorithm. 
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Whether maintaining exact distance labels improves the practical performance 
of the algorithm is not clear, because the work of maintaining the exact labels may 
exceed the extra work due to nonexact labels. The above observation, however, 
suggests that as long as we are interested in an Q(nm) upper bound on an 
implementation of the generic algorithm, we can assume that the exact labeling is 
given for free. 

Our algorithm is practical [ 15, 221. We offer a heuristic that may make the 
algorithm even faster. The heuristic periodically updates the distance labels by 
performing breadth-first searches backward from the sink and source in the residual 
graph. These searches compute, for each vertex v, the distances &,(v, s) and 
&,(v, t). The new distance label of v is set to min(&,(v, s) + n, &,(v, t)). There 
are several possible strategies for deciding when to recompute labels. One is to do 
so after every n relabeling operations. Another is to do so every time an edge into 
the sink is saturated or an edge out of the source has its flow reduced to zero. 
Neither of these strategies affects the asymptotic time bound of the algorithm, but 
they may improve its practical performance. 

Another important issue in a practical implementation is what strategy to use 
for selecting vertices for discharging steps. Although the best theoretical bounds we 
have obtained are for first-in, first-out selection, maximum-distance selection, and 
the wave method [ 15, 171, other strategies, such as last-in, fust-out selection and 
maximum-excess selection, deserve consideration. The Ahuja-Orlin algorithm [I], 
for example, uses a variant of the idea of always selecting a vertex of largest excess. 

- 

Appendix Finding Sizes of Dynamic Trees 

The dynamic tree implementation of [29] and [30] does not support find-size 
operations but can be easily modified to do so as follows: We assume some 
familiarity with [29] or [30]. The implementation represents each dynamic tree by 
a virtual tree having the same vertex set but different structure. To allow find-size 
operations to be performed efficiently, we store with each virtual tree vertex the 
size of its virtual subtree. This information is easy to update after each dynamic 
tree operation; the updating increases the time per operation by only a constant 
factor. A find-size operation is performed just like a find-root operation: find- 
root(v) has the effect of locating the root of the virtual tree containing v, which 
contains the tree size. 

Notes Added in ProoJ: The conference publication of the early version of this 
paper [ 161 prompted much related work, and several improvements in the results 
mentioned in the paper have been obtained. Cheriyan and Maheshwari [2a] proved 
that the maximum-distance method defined at the end of Section 4 has a running 
time of O(n2m’12). Ahuja et al. [la] improved the Ahuja-Orlin algorithm and 
incorporated the dynamic tree data structure, thereby obtaining a running time of 
O(nm log((n/m) log U + 2)) Ahuja and Orlin (private communication, 1987) 
observed that the running time of the parallel algorithm presented in Section 6 can 
be reduced to O(n210g((m/n) + 2)) by transforming the problem graph so that the 
maximum vertex degree is O(m/n); this increases the number of vertices by only 
a constant factor. 
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