
Friday: Global Comprehension for Distributed Replay

Dennis Geels†, Gautam Altekar†, Petros Maniatisφ, Timothy Roscoeφ‡, Ion Stoica†

UC Berkeley†, Intel Research Berkeleyφ, National ICT Australia, Sydney‡

Abstract
Debugging and profiling large scale distributed applica-
tions is a daunting task. We present Friday, a system
for debugging distributed applications that combines de-
terministic replay of components with the power of sym-
bolic, low-level debugging and a simple language for ex-
pressing higher-level distributed conditions and actions.
Friday allows the programmer to understand the col-
lective state and dynamics of a distributed collection of
coordinated application components, as part of the de-
bugging process.

To evaluate Friday, we consider several distributed
problems, including routing consistency in overlay net-
works, and temporal state abnormalities caused by route
flaps. We show via microbenchmarks and larger scale,
application measurement that Friday can be used inter-
actively to debug large distributed applications under re-
play on common hardware.

1 Introduction
Distributed applications are complex, hard to design
and implement, and harder to validate once deployed.
The difficulty derives from the distribution of applica-
tion state across many distinct execution environments,
which can fail individually or in concert, span large ge-
ographic areas, be connected by brittle network chan-
nels, and operate at varying speeds and capabilities. Cor-
rect operation is frequently a function not only of single-
component behavior, but also of the global collection of
states of multiple components. For instance, in a mes-
sage routing application, individual routing tables may
appear correct while the system as a whole exhibits rout-
ing cycles, flaps, wormholes or other inconsistencies.

To face this difficulty, ideally a programmer would be
able to debug the whole application, inspecting the state
of any component at any point during a debugging ex-
ecution, or even creating custom invariant checkers on
global predicates that can be globally evaluated continu-
ously as the system runs. In the routing application ex-

ample, a programmer would be able to program her de-
bugger to check continuously that no routing cycles exist
across the running state of the entire distributed system,
with the same ease as we read the current state of pro-
gram variables in typical symbolic debuggers.
Friday, the system we present in this paper, is a first

step towards realizing this vision. Friday takes on the
challenge by (1) capturing the distributed execution of a
system, (2) replaying the captured execution trace within
a symbolic debugger in a single location, and (3) extend-
ing the debugger’s programmability for complex predi-
cates that involve the whole state of the replayed system.
To our knowledge, this is the first replay-based debug-
ging system for unmodified distributed applications that
can track arbitrary global invariants at the fine granular-
ity of source symbols.

Capture and replay in Friday are performed using
liblog [7], which can record the execution of a dis-
tributed application and then replay it deterministically
and consistently. Replay takes place under control of a
symbolic debugger, which in theory provides the devel-
oper with all the information needed to debug the appli-
cation. But simple replay does not supply the global view
of the system required to diagnose emergent misbehavior
of the application as a whole.

For global predicate monitoring or replayed applica-
tions (the subject of this paper), Friday combines the
flexibility of symbolic debuggers on each replayed node,
with the power of a general-purpose, embedded script-
ing language, bridging the two to allow a single global
invariant checker script to monitor and control the global
execution of multiple, distinct replayed components.

Contributions: Friday makes two contributions.
First, it provides primitives for detecting events in the
replayed system based on data (watchpoints) or control
flow (breakpoints). These watchpoints and breakpoints
are distributed, coordinating detection across all nodes
in the replayed system, while presenting the abstraction
of operating on the global state of the application.

1

Second, Friday enables users to attach arbitrary
commands to distributed watchpoints and breakpoints.
Friday gives these commands access to all application
state as well as a persistent, shared store for saving de-
bugging statistics, building behavioral models, or shad-
owing global state.

We have built an instance of Friday for the popu-
lar GDB debugger, using Python as the script language,
though our techniques are equally applicable to other
symbolic debuggers and interpreted scripting languages.

Applicability: Many distributed applications can ben-
efit from Friday’s functionality, including both fully
distributed systems (e.g., overlays, protocols for repli-
cated state machines) and centrally managed distributed
systems (e.g., load balancers, cluster managers, central-
ized resource managers, grid job schedulers). Using
Friday’s facilities, developers can evaluate global con-
ditions during replay to validate a particular execution
for correctness, to debug distributed problems, to catch
inconsistencies between a central management compo-
nent and the actual state of the distributed managed com-
ponents, and to express and iterate behavioral regression
tests. For example, in implementing an IP routing proto-
col that drops an unusual number of packets, a developer
might hypothesize that the cause is a routing cycle, and
use Friday to verify cycle existence. If the hypothesis is
true, the developer can further use Friday to capture cy-
cle dynamics (e.g., are they transient or long-lasting?),
identify the likely events that cause them (e.g., router
failures, processor overload, congestion on the control
plane), and finally identify the root cause by performing
step-by-step debugging and analysis on a few instances
involving such events, all the time without the need for
recompilation or annotation of source code.

However, Friday does not come without limitations.
First, Friday inherits several limitations of liblog,
such as large storage requirements for logs and an in-
ability to execute threads in parallel on multi-processor
or multi-core machines [7]. In addition, the current im-
plementation of Friday incurs a significant slowdown
that limits its applicability to large data intensive appli-
cations.

Structure: We start with background on liblog in
Section 2. Section 3 presents the design and implemen-
tation of Friday. We then present in Section 4 concrete
usage examples in the context of two distributed applica-
tions: the Chord DHT [22], and a reliable communica-
tion toolkit for Byzantine network faults [23]. We evalu-
ate Friday both in terms of its primitives and these case
studies in Section 5. Finally, we present related work in
Section 6 and conclude.

2 Background: liblog
Friday leverages liblog [7] to deterministically and
consistently replay the execution of a distributed applica-

tion. In this section, we give a brief overview of liblog
and discuss its limitations.
liblog is a replay debugging tool for distributed

libc- and POSIX C/C++-based applications on
Linux/x86 computers. To achieve deterministic replay,
each application process records its execution to a local
log, with sufficient detail such that the same execution
can be replayed later, from the beginning or from
intermediate checkpoints, faithfully reproducing race
conditions and non-deterministic failures. In this way,
liblog ensures the programmer can follow the same
code paths during replay, see the file and network I/O,
and even reproduce signals and other IPC. The replay
could run in parallel with the original execution, after the
original process dies, or even on a completely different
machine. The library-based implementation has low
overhead, as it requires neither extra context switches
nor virtualization.

In addition, liblog ensures consistent group replay-
ing, by maintaining Lamport clocks [14] during logging,
which ensures that replay is causally consistent. That
is, replay obeys the happens-before relation; for exam-
ple, the reception of every message is replayed after the
transmission of that message.

Finally, liblog can operate in an open environ-
ment, by allowing the liblog-instrumented application
to communicate with applications that are not instru-
mented (e.g., DNS).

While liblog provides the programmer with the ba-
sic information and tools for debugging distributed ap-
plications, the process of tracking down the root cause
of a particular problem remains a daunting task. The in-
formation presented by liblog can overwhelm the pro-
grammer, who is put, more often than not, in the position
of finding a “needle in the haystack.” Friday enables
the programmer to prune the problem search space by
expressing complex global conditions on the state of the
whole distributed application.

In the next section, we present in detail the two key fa-
cilities provided by Friday: (1) distributed watchpoints
and breakpoints that operate on the global state of the ap-
plication, and (2) commands that allow one to associate
arbitrary code with breakpoints and watchpoints, that op-
erate on the application’s global state.

3 Design
Friday presents to users a central debugging console,
which is connected to replayed node processes, each of
which runs an instance of a traditional symbolic debug-
ger such as GDB (see Figure 1). The console includes an
embedded script language interpreter, which interprets
actions and can maintain central state for the debugging
session. Most user input is passed directly to the un-
derlying debugger processes, allowing full access to the
debugger’s data analysis and control functions. Friday

2

��������	

�����

��������	

�����

���

�������

�������

������	

�����������

�����������	

�������

�����	

������

�����������	

�������

�����	

������

Figure 1: Overall architecture of Friday

extends the debugger’s commands to handle distributed
breakpoints and watchpoints, and to show status infor-
mation about the whole system of debugged processes.

3.1 Distributed Watchpoints and Break-
points

Traditional watchpoints allow a symbolic debugger to
react—stop execution, display values, or evaluate a pred-
icate on the running state—when the debugged process
updates a particular variable location. Though watch-
points are defined in terms of writes to a specific set of
memory addresses, debuggers allow these addresses to
be specified via the symbolic names defined by the ap-
plication’s source code.

In addition to this traditional functionality, Friday’s
distributed watchpoints can specify variables and expres-
sions that belong to multiple nodes in the replayed dis-
tributed application. For example, a programmer debug-
ging a ring network can use Friday to watch a variable
called successor on all machines by specifying “watch
successor” or for a single machine (here, #4) from the
replay group “4 watch successor”.

A command of the form “<node number>, ... watch

<variable>, ...” specifies both a set of nodes on which
to watch variables, and a set of variables to watch. When
no list of nodes is indicated, a watch expression refers
to all nodes. The node numbering used is private to
Friday; to identify a particular node by its application-
specific identifier such as an IP address or an overlay ID,
an appropriate mapping watchpoint can be provided—
see Section 3.2 for an example.

Distributed breakpoints in Friday have a similar fla-
vor. Like traditional breakpoints, they allow the debug-
ger to react when the debugged process executes a par-
ticular instruction, specified symbolically as a source line
number or a function name. Friday allows the installa-
tion of such breakpoints on one, several, or all replayed
nodes.

3.1.1 Implementation
Friday implements distributed watchpoints and break-
points by setting local instances on each replay process
and mapping the individual watch- or breakpoint num-
bers and addresses to a global identifier for easier opera-
tion from the replay console. These map tables are used
to re-write and forward requests to disable or re-enable
a distributed watch- or breakpoint, and also to map local
events back to the global index in order to notify the user
and find any attached commands to execute.

Local breakpoints simply use GDB breakpoints,
which internally either use debugging registers on the
processor or inject trap instructions into the code text.
In contrast, Friday implements its own mechanism for
local watchpoints. Friday uses the familiar technique of
write-protecting the memory page where the value corre-
sponding to a given symbol is stored [25]. When a mem-
ory write to the page containing the watched variable
occurs, the ensuing SEGV signal is captured by Friday,
which unprotects the page and completes the write before
passing control to any state manipulation scripts attached
to the watchpoint.

This implementation can of course give rise to false
positives, that is, trapping into Friday for unwatched
data changes, since writes to any variable sharing a page
with a watchpoint will cause a trap. The more densely
populated a memory page, the more such false positives
occur. Furthermore, if the watched variable shares a page
with an unwatched, but frequently updated, value, the
overhead can become significant. Nevertheless, we de-
cided that protection-based watchpoints are preferable to
alternative implementations, as explained next.

3.1.2 Why a New Watchpoint Mechanism?
We explored but rejected four other alternatives to im-
plement watchpoints: hardware watchpoints, single step-
ping, implementation via breakpoints, and time-based
sampling.

Hardware watchpoints are offered by many processor
architectures. They are extremely efficient, causing es-
sentially no runtime overhead, but most common pro-
cessors have small, hard limits on the number of hard-
ware watchpoint registers (a typical value is 8, and these
are shared with breakpoints), as well as on the width of
the watched variable (typically, a single machine word).
These limits are too restrictive for the flexible predicates
that we wanted to support; however, we have planned a
hybrid system that uses the fast hardware watchpoints as
a cache for our more flexible mechanism.

Single-stepping, or software watchpoints, can imple-
ment watchpoints by executing one machine instruc-
tion at a time and checking for variable modifications at
each step. Unfortunately, single-stepping is prohibitively
slow—we compare it to our method in Section 5.4 and
demonstrate that it is a few thousand times slower.

3

Local breakpoints can emulate watchpoints by iden-
tifying the points where the watched variable could be
modified and only checking for changes there. When
this identification step is accurate the technique is highly
efficient, but unfortunately it requires comprehensive
knowledge of the program code. It is more work for the
programmer, and prone to false negatives, that is, missed
data changes for watched variables.

Periodic sampling of watched variable values (e.g., ev-
ery k logical time ticks) to check for modifications en-
ables a trade-off between replay speedup and watchpoint
accuracy: it is potentially faster than all the techniques
described above, but it may be difficult to identify pre-
cisely when the value was changed. Combined with re-
play checkpointing and backtracking, it might prove a
valuable but not complete alternative.

3.1.3 Implementation Complexity
Building a new watchpoint mechanism in Friday re-
quired reconstructing some functionality normally pro-
vided by the underlying symbolic debugger, GDB.
Namely, debuggers maintain state for each watched
expression, including the stack frame where the vari-
able is located (for local variables) and any muta-
ble subexpressions whose modification might affect the
expression’s value. For example, a watchpoint on
srv->successor->addr should trigger if the pointers srv or
srv->successor change, pointing the expression to a new
value. Because GDB does not expose this functionality
cleanly, we replicated it in Friday.

Also, the new watchpoint mechanism conflicts with
GDB’s stack maintenance algorithms. When Friday re-
moves write permissions from a page of memory on the
stack, which is later modified, Friday will catch the seg-
mentation fault and attempt to restore permissions, as
described in Section 3.1.1. This operation should suc-
ceed, because GDB creates a new stack for calling func-
tions in the target application’s address space. Unfortu-
nately, GDB performs a small amount of initialization
that touches the main application stack, which is still un-
writable, so the call to restore permissions (via mprotect)
fails. We have solved this problem by avoiding GDB’s
normal calling method and creating our own, manipulat-
ing the application’s PC directly. However, this solution
conflicts with GDB’s breakpoint maintenance routines if
the application is stopped at a breakpoint when we mod-
ify the application PC. We are working on alleviating this
adverse interaction between Friday and GDB, but we
have not encountered the problem in our use of the sys-
tem, including our case studies presented in this paper.

3.2 Commands
The second crucial feature of Friday is the ability to
view and manipulate the distributed state of replayed
nodes. These actions can either be performed inter-

actively or triggered automatically by watchpoints or
breakpoints. Interactive commands such as backtrace

and set are simply passed directly to the named set of
debugger processes. They are useful for exploring the
distributed state of a paused system.

In contrast, automated commands are written in a
scripting language for greater expressiveness. These
commands are typically used to maintain additional
views of the running system to facilitate statistics gather-
ing or to reveal complex distributed (mis)behaviors.
Friday commands can maintain their own arbitrary

debugging state, in order to gather statistics or build
models of global application state. In the examples be-
low, emptySuccessors and nodesByID are debugging state,
declared in Friday via the python statement; e.g., python
emptySuccessors = 0. This state is shared among com-
mands and is persistent across command executions.
Friday commands can also read and write vari-

ables in the state of any replayed process, referring
to symbolic names exposed by the local GDB in-
stances. To simplify this access, Friday embeds into
the scripting language appropriate syntax for calling
functions and referencing variables from replayed pro-
cesses. For example, the statement “@4(srv.successor)
== @6(srv.predecessor)” compares the successor vari-
able on node 4 to the predecessor variable on node 6. By
omitting the node specifier, the programmer refers to the
state on the node where a particular watchpoint or break-
point was triggered. For example, the following com-
mand associated with a watchpoint on srv.successor in-
crements the debugging variable emptySuccessors when-
ever a successor pointer is set to null, and continues ex-
ecution:

if not @(srv.successor):

emptySuccessors++

cont

For convenience, the node where a watchpoint or
breakpoint was triggered is also accessible within com-
mand scripts via the NODE metavariable, and all nodes
are available in the list ALL . For example, the
following command, triggered when a node updates
its application-specific identifier variable srv.node.id,
maintains the global associative array nodesByID:

nodesByID[@(srv.node.id)] = __NODE__

cont

Furthermore, Friday provides commands with access
to the logical time kept by the Lamport clock exported
by liblog, as well as the “real” time recorded at each
log event. Because liblog builds a logical clock that
is closely correlated with wall clock during trace ac-
quisition, these two clocks are usually closely synchro-
nized. Friday exposes the global logical clock as the
LOGICALCLOCK metavariable and node i’s real clock at

the time of trace capture as @i(REALCLOCK).

4

Similarly to GDB commands, our language allows
setting and resetting distributed watchpoints and break-
points from within a command script. Such nested
watchpoints and breakpoints can be invaluable in selec-
tively picking features of the execution to monitor in re-
action to current state, for instance to watch a variable
only in between two breakpoints in an execution. This
can significantly reduce the impact of false positives. It
can also enable powerful debugging usage patterns ef-
ficiently, such as observing whether the distributed ex-
ecution of an application follows a parametric global
state machine—for example, observing that after vari-
able @nodeA(neighbor) is set then variable @neighbor(X)

should be set. Nested watchpoints allow us to watch
@neighbor(X) only after @nodeA(neighbor) has been set, re-
ducing the overhead significantly.

3.2.1 Language Choice
The Friday commands triggered by watchpoints and
breakpoints are written in Python, with extensions for in-
teracting with application state, which we describe in the
next section.

Evaluating Python inside Friday is straightforward,
because the console is itself a Python application, and
dynamic evaluation is well supported. We chose to de-
velop Friday in Python for its high-level language fea-
tures and ease of prototyping; these benefits also apply
when writing watchpoint command scripts.

We could have used a compiled command language
instead, as C is used in IntroVirt [10]. Such an approach
might provide better performance, and it allows the de-
bugging predicates to share the application’s namespace.
Unfortunately this option requires recompiling a shared
library and loading it into the application each time the
user thinks of a new predicate; we wanted to support a
more dynamic, interactive model.

We could have avoided the compilation step by lever-
aging GDB’s “command list” functionality, which lets
the user attach a series of normal GDB commands and
simple conditional expressions to a watchpoint or break-
point. Unfortunately these commands lack the high-level
language expressiveness of Python, like the ability to
construct new data structures. Furthermore, that would
require execution of Friday commands on individual
nodes’ GDB instances, which would reprise the problem
of local, partial knowledge of application state. Using
a general-purpose language like Python running at the
console was a more flexible choice.

3.2.2 Syntax
When a distributed command is entered, Friday exam-
ines every statement to identify references to the target
application state. These references are specified with the
syntax @<node>(<symbol>[=<value>]) where the node de-
faults to that which triggered the breakpoint or watch-

point. These references are replaced with calls to internal
functions that read from or write to the application using
GDB commands print and set, respectively. Metavari-
ables such as LOGICALCLOCK are interpolated similarly.
Furthermore, Friday allows commands to refer to appli-
cation objects on the heap whose symbolic names are not
within scope, especially when stopped by a watchpoint
outside the scope within which the watchpoint was de-
fined. Such pointers to heap objects that are not always
nameable can be passed to watchpoint handlers as pa-
rameters at the time of watchpoint definition, much like
continuations (see Section 4.2.1 for a detailed example).
The resulting statements are compiled, saved, and later
executed within the global Friday namespace and per-
sistent command local namespace.

If the value specified in an embedded assignment in-
cludes keyed printf placeholders, i.e., %(<name>)<fmt>, the
value of the named Python variable will be interpolated
at assignment time. For example, the command

tempX = @(x)

tempY = @other(y)

@(x=%(tempY)d)

@other(y=%(tempX)d)

swaps the values of integer variables x at the current node
and y at the node whose number is held in the python
variable other.

Commands may call application functions using simi-
lar syntax:

@<node>(<function>(<arg>,....))

These functions would fail if they attempted to write to a
memory page protected by Friday’s watchpoint mecha-
nism, so Friday conservatively disables all watchpoints
for that replay process for the duration of the function
call. Unfortunately that precaution may be very costly
(see Section 5). If the user is confident that a function
will not modify any protected memory, she may start
the command with the safe keyword, which instructs
Friday to leave all watchpoints enabled. This option is
helpful, for example, if the invoked function only mod-
ifies the stack, and watchpoints are only set on global
variables.

The value returned by GDB using the @() operator
must be converted to a Python value for use by the com-
mand script. Friday understands strings (type char*

or char[]), and coerces pointers and all integer types
to Python long integers. Any other type, including any
structs and class instances, are extracted as a tuple con-
taining their raw bytes. This solution allows simple iden-
tity comparisons, which was sufficient for all useful case
studies we have explored so far.

Finally, our extensions had to resolve some keyword
conflicts between GDB and Python, such as cont and
break. For example, within commands continue refers to

5

the Python keyword whereas cont to GDB’s keyword. In
the general case, we can prefix the keyword gdb in front
of GDB keywords within commands.

3.3 Limitations
We have found Friday to be a powerful and useful tool;
however, it has several limitations that potential users
should consider.

We start with limitations that are inherent to Friday.
First, false positives can slow down application replay.
False positive rates depend on application structure and
dynamic behavior, which vary widely. In particular,
watching variables on the stack can slow Friday down
significantly. In practice we have circumvented this limi-
tation by recompiling the application with directives that
spread the stack across many independent pages of mem-
ory. Though this runs at odds with our goal of avoiding
recompilation, it is only required once per application, as
opposed to requiring recompilations every time a mon-
itored predicate or metric must change. Section 5 has
more details on Friday performance.

The second Friday-specific limitation involves re-
playing from a checkpoint, as opposed to from the be-
ginning of a replay trace. Since some Friday predi-
cates build up their debugging state by observing the dy-
namic execution of a replayed application, when starting
from a checkpoint these predicates must rebuild that state
through observation of a static snapshot of the applica-
tion at that checkpoint. While such rebuilding of debug-
ging state is straightforward for the applications we study
in Section 4, it may be more involved for applications
with less clean, complex data structures. We are cur-
rently working on a method for checkpointing and stor-
ing debugging state along with liblog checkpoints at
debug time, to simplify further the predicate complexity
required of programmers for quick replays.

Thirdly, we have found that Friday’s centralized and
type-safe programming model makes predicates consid-
erably simpler than the distributed algorithms they verify.
Nevertheless, most Friday predicates do require some
debugging themselves. For example, Python’s dynamic
type system allowed us to refer to application variables
that were not in dynamic scope, causing runtime errors.
These issues can be addressed by using a statically-typed
language like OCaml.

Beyond Friday’s inherent limitations, the system in-
herits certain limitations from the components on which
it depends. First, an application may copy a watched
variable and modify the copy instead of the original,
which GDB is unable to track. This pattern is common,
for example, in STL collection templates, and requires
the user of GDB (and consequently Friday) to under-
stand the program well enough to place watchpoints on
all such copies. The problem is exacerbated by the dif-
ficulty of accessing these copies, mostly due to GDB’s

inability to place watchpoints on STL’s many inlined ac-
cessor functions.

A second inherited limitation is unique to stack-based
variables. As with most common debuggers, we have
no solution for watching stack variables in functions that
have not yet been invoked. To illustrate, it is difficult
to set up ahead of time a watchpoint on the command
line argument variable argv of the main function across
all nodes before we have entered the main at all nodes.
Nested watchpoints are a useful tool in that regard.

Finally, Friday inherits from liblog its non-trivial
storage requirements for logs and an inability to log or re-
play threads in parallel on multi-processor or multi-core
machines. The latter may be a feature disguised as a lim-
itation, since most human programmers are not quite as
proficient at debugging in parallel as computers are.

4 Case Studies
In this section, we present use cases for the new dis-
tributed debugging primitives presented above. First,
we look into the problem of consistent routing in the
i3/Chord DHT [21], which has occupied networking and
distributed research literature extensively. Then we turn
to debugging Tk, a reliable communication toolkit [23],
and demonstrate sanity checking of disjoint path compu-
tation over the distributed topology, an integral part of
many secure-routing protocols. For brevity, most exam-
ples shown omit error handling, which typically adds a
few more lines of Python script.

4.1 Routing Consistency
In this section, we describe Friday predicates to demon-
strate debugging of routing inconsistencies in i3/Chord.
In such a distributed lookup service, routing consistency
is the property of answering the same lookup with the
same result at the same time, regardless of who is ask-
ing. All examples refer to the srv data structure, which
contains a node’s successor and predecessor pointers in
Chord’s ring topology, and a node’s application-specific
identifier srv.node.id and IP address srv.node.addr.

We show examples that detect link reciprocity, extract
consistency statistics, and detect routing state oscillation,
a common misbehavior of routing protocols that might
result in route flaps, wormholes, or even blackholes.

4.1.1 Ring Consistency
Routing inconsistency can result when basic assumptions
on the connectivity graph are violated. For example, in
overlays that organize members in a bidirectional ring
topology, the symmetry of ring links is such an assump-
tion. The specific invariant in terms of individual nodes’
states is that every node is its immediate ring successor’s
predecessor and its immediate ring predecessor’s succes-
sor. Figure 2 provides an illustration.

6

���������	��

�������

��	
�����

�����
���	��

�������

��	
��

���������	��

���������

��	
��

��
	

��
	

�

��
	

�

Figure 2: At the top, we show what node n hopes the ring topology
looks like around it. At the bottom, we see the relevant state as stored
by the involved nodes n, s and p. The thick routing entry from node
s to its predecessor, which points to p instead of node n illustrates a
possible inconsistency with node p and s’s successor pointers.

Checking that successor/predecessor consistency con-
ditions hold at all times is unnecessary. Instead, it is
enough to check the conditions only when a successor
or predecessor pointer changes, and only check those
specific conditions in which the changed pointers par-
ticipate. We can encode these two symmetric checks in
Friday as follows:
watch srv.successor

command

successor_id = @(srv.successor->id)

if @(srv.node.id) !=

@nodesByID[successor_id](srv.predecessor->id):

print __NODE__, "’s successor link is asymmetric."

end

and symmetrically for the predecessor’s successor. Re-
call that in the absence of a node specifier, a variable in
a distributed command applies to the node that triggered
the watchpoint. Also, the index nodesByID is maintained
as described in Section 3.2.

4.1.2 Ring Consistency Statistics
The techniques of Section 4.1.1 will typically issue in-
consistency warnings many times during any system exe-
cution. Such inconsistencies occur transiently even when
the system operates perfectly while an update occurs,
e.g., when a new node is inserted into the ring. With-
out transactional semantics across all involved nodes in
which checks are performed only before or after a tran-
sition, such warnings are unavoidable. Therefore, an in-
teresting question might be “how long do such incon-
sistencies last?” Given this measure, a programmer can
conclude whether an inconsistency warning is a transient
or a pathological one.

In Friday, we can characterize the execution of the
system by computing the fraction of time during which
the ring topology lies in an inconsistent state. Specif-
ically, by augmenting the monitoring statements from
Section 4.1.1, one can instrument transitions from con-
sistent to inconsistent state and back, to keep track of the
time when those transitions occur, and averaging over the
whole system.

watch srv.successor, srv.predecessor

command

myID = @(srv.node.id)

successorID = @(srv.successor->id)

predecessorID = @(srv.predecessor->id)

if not (myID ==

@nodesByID[successorID](srv.predecessor->id) ==

@nodesByID[predecessorID](srv.successor->id)):

inconsistent now

if consistent[myID]:

consistentTimes +=

(@(__REALCLOCK__) - lastEventTime[myID])

consistent[myID] = False

lastEventTime[myID] = @(__REALCLOCK__)

else:

converse: consistent now

if not consistent[myID]:

inconsistentTimes +=

@((__REALCLOCK__) - lastEventTime[myID])

consistent[myID] = True

lastEventTime[myID] = @(__REALCLOCK__)

cont

end

py consistent =

py lastEventTime =

py consistentTimes = inconsistentTimes = 0

This example illustrates how to keep track of how much
time each replayed machine is in the consistent or incon-
sistent state, with regards to its ring links. The monitor-
ing specification keeps track of the amounts of time node
i is consistent or inconsistent in the debugging coun-
ters consistentTimes and inconsistentTimes, respectively.
Also, it remembers when the last time a node switched
to consistency or inconsistency in the debugging hash ta-
bles consistent and inconsistent, respectively. When the
distributed commands are triggered, if the node is now
inconsistent but was not before (the last time of turning
consistent is non-empty), the length of the just-ended pe-
riod of consistency is computed and added to the thus-far
sum of consistency periods. The case for inconsistency
periods is symmetric and computed in the “else” clause.

Periodically, or eventually, the relevant ratios can be
computed as the ratio of inconsistent interval sums over
the total time spent in the experiment, and the whole sys-
tem might be characterized taking an average or median
of those ratios.

4.1.3 State Oscillation
The previous case studies have focused on detecting rout-
ing consistency. Consider a scenario in which a system
operator has used those tools to note a large amount of
inconsistency. She would next like to determine the rea-
son.

One common cause of routing inconsistency is a net-
work link that, whether due to high loss rates or intermit-
tent hardware failure, makes a machine repeatedly dis-
appear and reappear to its neighbor across the link. This
oscillation may cause routes through the nodes to flap
to backup links, or even create routing wormholes and

7

black holes. The system operator could analyze the de-
gree of oscillation in her network with the following sim-
ple Friday breakpoint commands.

break remove_finger

command

finger = @(f->node.addr)

’f’ is parameter to remove_finger()

eventTable = routeEvents[@(srv.node.addr)]

if finger not in eventTable:

eventTable[finger] = []

eventTable[finger].append(("DOWN",__LOGICALCLOCK__))

cont

end

break insert_finger

command

finger = @(addr)

’addr’ is parameter to insert_finger()

eventTable = routeEvents[@(srv.node.addr)]

if finger in eventTable:

lastEvent,time = eventTable[finger][-1]

if lastEvent == "DOWN":

eventTable[finger].append(("UP",__LOGICALCLOCK__))

cont

end

The first command adds a log entry to the debugging ta-
ble routeEvents (initialized elsewhere) each time a rout-
ing peer, or finger, is discarded from the routing table.
The second command adds a complementary log entry if
the node is reinserted. The two commands are slightly
asymmetric because insert finger may be called redun-
dantly for existing fingers, and also because we wish to
ignore the initial insertion for each finger. The use of vir-
tual clocks here allows us to correlate log entries across
neighbors.

4.1.4 Misdelivered Packets
Our last study moves beyond calculating the frequency
and duration of routing inconsistencies to check an ex-
ecution for actual occurrences of packets being misde-
livered. To do so, we first build a table containing the
application-specific ID for each node. We intentionally
extract the ID as a string, rather than the internal binary
representation, so that we can use the application func-
tion atoid to regenerate this binary representation on de-
mand. This approach is less efficient than simply copy-
ing the internal ID but allows us to demonstrate the abil-
ity in Friday to pass debugger data back into application
functions.
py ids =

py failures = []

break chord.c:58

command

’id’ is string from configuration file

ids[__NODE__] = @((char*)id)

cont

end

break process.c:63

command

failures.append(("ALONE",ids[__NODE__],

__LOGICALCLOCK__))

cont

end

break process.c:69

command

for peer in __ALL__:

@((chordID)_liblog_workspace =

atoid("%(ids[peer])s"))

if @(is_between((chordID*)&_liblog_workspace,

packet_id, &successor->id)) :

failures.append(("MISSING",ids[__NODE__],

ids[peer], __LOGICALCLOCK__))

break

cont

end

We use two breakpoints in the packet-delivery method
to detect misdelivered packets. The first is located on the
clause that handles empty networks. Because we are run-
ning these tests on non-trivial networks, a node should
never believe that it is alone.

The second breakpoint checks every packet that the
process believes has reached its best destination. We iter-
ate across all peers in the network, using the atoid func-
tion to load the peer’s ID into application scratch space
and then to check ownership of the packet’s ID using the
application logic found in the is between function1. If a
better destination can be found, we log the packet ID as a
failure. Construction of such a global index of all nodes
is a powerful technique of catching inconsistencies that
is virtually impossible in a distributed and efficient fash-
ion.

4.2 A Reliable Communication Toolkit
In the second scenario, we investigate Tk [23], a toolkit
that allows nodes in a distributed system to communi-
cate reliably in the presence of k adversaries. The only
requirement for reliability is the existence of at least k

disjoint paths between communicating nodes. To en-
sure this requirement is met, each node pieces together
a global graph of the distributed system based on path-
vector messages and then computes the number of dis-
joint paths from itself to every other node using the max-
flow algorithm. A bug in the disjoint path computation
or path-vector propagation that mistakenly registers k or
more disjoint paths would seriously undermine the secu-
rity of the protocol. Here we show how to detect such a
bug.

4.2.1 Maintaining a Connectivity Graph
When performing any global computation, including
disjoint-path computation, a graph of the distributed sys-
tem is a pre-requisite. The predicate below constructs

1The liblog workspace, linked into the application’s address
space by liblog, provides that scratch space for passing large argu-
ments by reference.

8

such a graph by keeping track of the connection status of
each node’s neighbors.

py graph = zero_matrix(10, 10)

break server.cpp:355

command

neighbor_pointer = "(*(i->_M_node))"

neighbor_status_addr =

@(&(%(neighbor_pointer)s->status))

Set watchpoint at memory location

neighbor_status_addr with parameter

neighbor_pointer and associated command.

watchpoint(["*%d"%neighbor_status_addr],

np=@(%(neighbor_pointer)s))

command

status = @((((Neighbor*)(%(np)d))->status))

neighbor_id = @((((Neighbor*)(%(np)d))->id))

my_id = @(server->id)

if status > 0:

graph[my_id][neighbor_id] = 1

compute_disjoint_paths() # Explained below.

cont

end

cont

end

This example showcases the use of nested watch-
points, which are necessary when a watchpoint must be
set at a specific program location. In this application,
a neighbor’s connection status variable is available only
when the neighbor’s object is in scope. Thus, we place
a breakpoint at a location where all neighbor objects
are enumerated, and as they are enumerated, we place
a watchpoint on each neighbor object’s connection sta-
tus variable. When a watchpoint fires, we set the corre-
sponding flag in an adjacency matrix.

A connection status watchpoint can be triggered from
many programs locations, making it hard to determine
what variables will be in scope for use within the watch-
point handler. In our example, we bind a watchpoint han-
dler’s np argument to the corresponding neighbor object
pointer, thereby allowing the handler to access the neigh-
bor object’s state even though a pointer to it may not be
in the application’s dynamic scope.

4.2.2 Computing Disjoint Paths
The following example checks the toolkit’s disjoint path
computation by running a centralized version of the dis-
joint path algorithm on the global graph created in the
previous example. The predicate records the time at
which the k-path requirement was met, if ever. This tim-
ing information can then be used to detect disagreement
between Friday and the application or to determine node
convergence time, among other things.

py time_friday_found_k_paths = zero_matrix(10, 10)

def compute_disjoint_paths():

Benchmark Latency (ms)
False Positive 13.2
Null Command 15.6
Value Read 15.9
Value Write 15.9
Function Call 26.1
Safe Call 16.5

Table 1: Micro-benchmarks - single watchpoint

my_id = @(server->id)

k = @(server->k)

for sink in range(len(graph)):

friday_num_disjoint_paths =

len(vertex_disjoint_paths(graph, my_id, sink))

if friday_num_disjoint_paths >= k:

time_friday_found_k_paths[my_id][sink] =

__VCLOCK__

The disjoint path algorithm we implemented in
vertex disjoint paths, not shown here, employs a
brute force approach—it examines all k combinations of
paths between source and destination nodes. A more ef-
ficient approach calls for using the max-flow algorithm,
but that’s precisely the kind of implementation com-
plexity we wish to avoid. Since predicates are run of-
fline, Friday affords us the luxury of using an easy-to-
implement, albeit slow, algorithm.

5 Performance
In this section, we evaluate the performance of Friday,
by reporting its overhead on fundamental operations
(micro-benchmarks) and its impact on the replay of large
distributed applications. Specifically, we evaluate the ef-
fects of false positives, of debugging computations, and
of state manipulations in isolation, and then within re-
plays of a routing overlay.

For our experiments we gathered logs from a 62-node
i3/Chord overlay running on PlanetLab [3]. After the
overlay had reached steady state, we manually restarted
several nodes each minute for ten minutes, in order to
force interesting events for the Chord maintenance rou-
tines. No additional lookup traffic was applied to the
overlay. All measurements were taken from a 6 minute
stretch in the middle of this turbulent period. The logs
were replayed in Friday on a single workstation with
a Pentium D 2.8GHz dual-core x86 processor and 2GB
RAM, running the Fedora Core 4 OS with version 2.6.16
of the Linux kernel.

5.1 Micro-benchmarks
Here we evaluate Friday on six micro-benchmarks that
illustrate the latency overhead required to watch data val-
ues and execute code on replayed process state. Table 1

9

contains latency measurements for the following opera-
tions:
• False Positive: A false positive occurs when a vari-

able watchpoint is triggered by the modification of
an unwatched variable that happens to occupy the
same memory page as the watched variable.

• Null Command: A null command is the simplest
command we can execute once a watchpoint has
passed control to Friday. The overhead includes
reading the new value (8 bytes) of the watched vari-
able and evaluating a simple compiled Python ob-
ject.

• Value Read: This is a single fetch of a variable from
the state of one of the replayed processes for read-
ing. The overhead involves contacting the appropri-
ate GDB process and obtaining the requested vari-
able’s contents.

• Value Write: A value write updates the contents of a
single variable in a single replayed process.

• Function Call: The command calls an application
function that returns immediately. All watchpoints
(only one in this experiment) must be disabled be-
fore, and re-enabled after the function call.

• Safe Call: The command is marked “safe” to obviate
the extra watchpoint management.

These measurements indicate that the latency of han-
dling the segmentation faults dominates the cost of pro-
cessing a watchpoint. Our implementation of watch-
points is therefore sensitive to the false positive rate, and
we could expect watchpoints that share memory pages
with popular variables to slow replay significantly.

Fortunately, the same data suggests that executing the
user commands attached to a watchpoint is inexpensive.
Reading or writing variables or calling a safe function
adds less than a millisecond of latency over a null com-
mand, which is only a few milliseconds slower than a
false positive. The safe function call is slightly slower
than simple variable access, presumably due to the extra
work by GDB to set up a temporary stack, marshal data,
and clean up afterwards.

A normal “unsafe” function call, on the other hand, is
50% slower than a safe one. The difference (9.6 ms) is
attributed directly to the cost of temporarily disabling the
watchpoint before invoking the function.

Next we break down the processing latency by major
phases:
• Unprotect: Temporarily disable memory protection

on the watched variable’s page, so that the faulting
instruction can complete. This step requires calling
mprotect for the application, through GDB.

• Step: Re-execute the faulting instruction, potentially
modifying a watched variable. Also requires setting
and triggering one temporary breakpoint, used to re-
turn to the instruction from the segmentation fault

 0

 5

 10

 15

 20

 25

 30

safe
call

function
call

value
write

value
read

null
command

false
positive

La
te

nc
y

(m
s)

other
reprotect

check/execute
step

unprotect

Figure 3: Latency breakdown for various watchpoint events.

handler.
• Reprotect: Re-enable memory protection with

mprotect.
• Check and Execute: If the faulting address falls in a

watched variable (as opposed to a false positive), its
new value is extracted from GDB. If the value has
changed, any attached command is evaluated by the
Python interpreter. The command may interact with
GDB further.

• Other: Miscellaneous tasks, including reading the
faulting address and PC from the signal’s user con-
text structure.

Figure 3 highlights how the steps required to process
a false positive also consume the same amount of time
for any type of watchpoint hit. The dark segments in the
middle of each bar show the portion required to execute
the user command. It is small and approximately equal
for each case except the unsafe function call, where it
dominates.

5.2 Micro-benchmarks: Scaling of Com-
mands

Next we explored the scaling behavior of the four com-
mand micro-benchmarks: value read, value write, func-
tion call, and safe call. Figure 4 shows the cost of pro-
cessing a watchpoint as the command reads, writes, or
calls a function in an increasing number of nodes. All
data points for each graph are averaged over the same
number of watchpoints; the latency increases because
more GDB instances must be contacted.

The figure includes the best-fit slope for each curve,
which approximates the overhead added for each addi-
tional node that the command reads, writes, or calls. For
most of the curves this amount closely matches the dif-
ference between a null command and the correspond-
ing single-node reference. In contrast, the unsafe func-
tion call benchmark increases at a faster rate—almost
double—and with higher variance than predicted by the
single node overhead. We attribute both phenomena to

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 25 50 75 100

La
te

nc
y

(m
s)

% Processes Accessed

0.38 ms/node0.41 ms/node0.5
6 m

s/n
od

e

Read
Write

Safe Call

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 25 50 75 100
% Processes Accessed

12
.84

 m
s/n

od
e

Function Call

Figure 4: Microbenchmarks indicating latency and first standard de-
viation (y axis), as a function of the percentage of nodes involved in
the operation (x axis). The population contains 62 nodes.

greater contention in the replay host’s memory hierarchy
due to the extra memory protection operations.

5.3 Micro-benchmarks on Replayed
Chord

We continue by evaluating how the same primitive op-
erations described in the previous section affect a base-
line replay of a distributed application. For each bench-
mark, we average across 6 consecutive minute-long peri-
ods from the i3/Chord overlay logs described above.

We establish a replay baseline by replaying all 62
traced nodes in liblog without additional debugging
tasks. Average replay slowdown is 3.12x, with a stan-
dard deviation of .08x over the 6 samples. liblog

achieves a slowdown less than the expected 62x by skip-
ping idle periods in each process. By comparison, simply
replaying the logs in GDB, but without liblog, ran 11
times faster, for a replay speedup of 3.5x. The differ-
ence between GDB and liblog is due to the schedul-
ing overhead required to keep the 62 processes replaying
consistently. liblog must continually stop the running
process, check its progress, and swap in a new process to
keep their virtual clocks synchronized. Conversely, we
let GDB replay each log fully before moving on to the
next.

To measure false positives, we add an otherwise incon-
sequential watchpoint on a variable inhabiting a mem-
ory page that is written about 4.7 times per second per
replayed node; the total average replay slowdown goes
up to 7.95x (0.2x standard deviation), or 2.55x slower
than baseline replay. This is greater than what our mi-
crobenchmarks predict: 4.7 triggered watchpoints per
second should expand every replayed second from the
baseline 3.12 second by an additional 4.7×62×0.0132 =
3.87 seconds for a slowdown of 4.87x. We conjecture
that this difference is caused by cache contention on the
replay machine, though further testing will be required

Benchmark Slowdown (dev) Relative
No Watchpoints 3.12 (.08) 1
False Positives Only 7.95 (0.22) 2.55
Null Command 8.24 (0.24) 2.64
Value Read 8.25 (0.17) 2.65
Value Write 8.26 (0.21) 2.65
Function Call 9.01 (0.27) 2.89
Safe Call 8.45 (0.26) 2.71

Table 2: Micro-benchmarks: slowdown of Chord replay for watch-
points with different commands.

to validate this.
To measure Friday’s slowdown for the various types

of watchpoint commands, we set a watchpoint on a vari-
able that is modified once a second on each node. This
watchpoint falls on the same memory page as in the pre-
vious experiment, so we now see one watchpoint hit and
3.7 false positives per second. The slowdown for each
type of command is listed in Table 2.

The same basic trends from the micro-benchmarks ap-
pear here: function calls are more expensive than other
commands, which are only slightly slower than null com-
mands. Significantly, the relative cost of the commands
is dwarfed by the cost of handling false positives. This is
expected, because the latency of processing a false pos-
itive is almost as large as a watchpoint hit, and because
the number of false positives is much greater than the
number of hits for this experiment. We examine differ-
ent workloads later, in Section 5.4.

First, we scale the number of replayed nodes on whose
state we place watchpoints, to verify that replay perfor-
mance scales with the number of watchpoints. These ex-
periments complement the earlier set which verified the
scalability of the commands.

As expected, as the number of memory pages incur-
ring false positives grows, replay slows down relative to
the baseline. Figure 5(a) shows that the rate at which
watchpoints are crossed—both hits and false positives—
increases as more processes enable watchpoints. The
correlation is not perfectly linear, because some nodes
were more active in the i3/Chord overlay and executed
the watched inner loop more often than others.

Figure 5(b) plots the relative slowdown caused by the
different types of commands as the watchpoint rate in-
creases. These lines suggest that Friday does indeed
scale with the number of watchpoints enabled and false
positives triggered.

5.4 Case Studies
Finally, we turn to the performance overheads incurred
by Friday in the case studies from Section 4. Unlike the
experiments up to this point, these case studies include
realistic and useful commands. They exhibit a range of

11

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 25 50 75 100

W
at

ch
po

in
t C

ro
ss

in
gs

 /
se

co
nd

% Watchpoints Enabled

(a)

all
FPs
hits

 1

 1.5

 2

 2.5

 3

 0 25 50 75 100
Re

pl
ay

 S
lo

wd
ow

n
(v

s.
 B

as
ic

Re
pl

ay
)

% Watchpoints Enabled

(b)

Call
Safe call

Write
Read
Noop

All FPs

Figure 5: (a) Number of watchpoints crossed vs. percentage of nodes
with watchpoints enabled (i3/Chord logs). Approximately linear. (b)
Replay slowdown vs. percentage of nodes with watchpoints enabled,
relative to baseline replay (i3/Chord logs).

Predicate Slowdown
None 1.00
Ring Consistency Stat. 2.53
State Oscillation 1.48
Misdelivered Packets 9.05
Software Watchpoints 8470.0

Table 3: Normalized replay slowdown under three different case
studies. The last row gives the slowdown for the Ring Consistency
Statistics predicate when implemented in GDB with single-stepping.

performance, and two of them employ distributed break-
points instead of watchpoints.

We used Friday to replay the same logs used in ear-
lier experiments with the predicates for Ring Consis-
tency Statistics, (Section 4.1.2), State Oscillation (Sec-
tion 4.1.3), and Misdelivered Packets (Section 4.1.4).
Figure 6 plots the relative replay speed vs. baseline re-
play against the percentage of nodes on which the pred-
icates are enabled. Table 3 summarizes the results. Re-
sults with the examples of Section 4.2 were comparable,
giving a 100%-coverage slowdown of about 14 with a
population of 10 nodes.

Looking at the table first, we see that the three case
studies range from 1.5 to 9 times slower than base-
line replay. For comparison, we modified Friday to
use software watchpoints in GDB instead of our mem-
ory protection-based system, and reran the Ring Consis-
tency Statistics predicate. As the table shows, that ex-
periment took over 8000 times longer than basic replay,
or about 3000 times slower than Friday’s watchpoints.
GDB’s software watchpoints are implemented by single-
stepping through the execution, which consumes thou-
sands of instructions per step. The individual memory
protection operations used by Friday are even more ex-
pensive but their cost can be amortized across thousands
of non-faulting instructions.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 25 50 75 100

Re
pl

ay
 S

lo
wd

ow
n

(v
s.

 B
as

ic
Re

pl
ay

)

% Watchpoints Enabled

(a)

consistency
oscillation

misdelivery

 0

 1

 2

 3

 4

 5

 6

 0 25 50 75 100

O
cc

ur
re

nc
es

 /
se

co
nd

% Watchpoints Enabled

(b)

cons. hits x 100
cons. FPs

oscillation brk
misdelivery brk

Figure 6: (a) Replay slowdown statistics for case study predicate
performance vs. percentage of nodes with watchpoints enabled. (b)
Watchpoint, breakpoint, and false positive rates vs. percentage of nodes
with watchpoints/breakpoints enabled.

Turning to Figure 6, the performance of the Ring
Consistency Statistics predicate closely matches that of
the micro-benchmarks in the previous section (cf., Fig-
ure 5(b)). This fact is not surprising: performance here is
dominated by the false positive rate, because these pred-
icates perform little computation when triggered. Fur-
thermore the predicate measured here and the micro-
benchmarks in Figure 5(b) all watch variables located on
the same page of memory, due to the internal structure of
the i3/Chord application, so their false positive rates are
the same.

The figure shows that the State Oscillation predicate
encounters more breakpoints than the Ring Consistency
predicate does watchpoints. However, handling a break-
point is almost free, and the commands are similar in
complexity, so Friday runs much faster for State Oscil-
lation predicates.

The last case study, which checks for Misdelivered
Packets, hit even fewer breakpoints, and ran the fewest
number of commands. Those commands were very
resource-intensive, however, requiring dozens of (safe)
function calls each time. Overall performance, as shown
in Figure 6(a), is the slowest of the three predicates.

6 Related Work
In this section, we survey related literature focusing on
the axes defining debugging with Friday: replay vs. log-
based, and off-line vs. on-line.

6.1 Replay vs. Log-based Debugging
Friday utilizes library interposition to obtain a re-
playable deterministic trace of distributed executions.
Much research has gone instead into replay debugging
via virtualization, which can capture system effects be-
low the system library level. Harris first made the case
for pervasive, distributed debugging [8] through virtu-
alization. Several projects have pursued that agenda

12

since [10, 11, 20], albeit only for single-thread, single-
process, or single-machine applications. Furthermore,
symbolic debugging in such systems faces greater chal-
lenges than with Friday, since the “semantic gap” be-
tween application-defined symbols and the virtual ma-
chine interface must be bridged at some computational
and complexity cost.

Closer to Friday, Jockey [17] and Flashback [20] use
system call interposition, binary rewriting, and some op-
erating system modifications to capture deterministic re-
playable traces, but only for a single node. DejaVu [13]
targets distributed Java applications, but lacks the state
manipulation facilities of Friday.

Moving away from replay debugging, many systems
focus on extracting execution logs and then mining those
logs for debugging purposes [1, 2, 5, 6, 9, 19, 26]. Such
systems face the challenge of reconstructing meaningful
data- and control-flow from low-level logged monitoring
information. Friday circumvents this challenge, since
it can fully inspect the internal state of the nodes in the
system during a replay of the traced execution and, as a
result, need not guess causality (as with black-box ap-
proaches) or recompile the system (as with annotation-
based systems).

Notable logging-based work in closer alignment with
Friday comes from the Bi-directional, Distributed
BackTracker (BDB) [12] and Pip [16]. BDB tracks and
logs causality among events within a distributed sys-
tem. These logs allow tracing identified back-door pro-
grams backwards to the events that enabled them or for-
wards to their further implications. Most of the causal-
ity tracing rules used by BDB can be implemented using
Friday, except for those relying on kernel-level inter-
actions, which lie beyond our library tracing granularity.
However, a bidirectional distributed backtracker imple-
mented with Friday may be able to take advantage of
successive replays to refine causality tracking for BDB
rules that are inherently “noisy,” e.g., directory listing
filesystem operations.

Pip [16] works by comparing actual behavior and ex-
pected behavior to expose bugs. Such behaviors are de-
fined as orderings of logged operations at participating
threads and limits on the values of annotated and logged
performance metrics. They can be extracted automati-
cally from the logs, or specified by the programmer and
matched against the logs. Unlike Pip, Friday does not
learn behaviors from a running system and has a much
cruder, textual interface. However, Friday offers pro-
grammers greater flexibility in describing and captur-
ing system behaviors for two reasons. First, it applies
not only to manually annotated events but to any source
symbol—without need for manual instrumentation; this
means that behavior exploration on a trace can be re-
fined, redefined, and extended without the need to col-

lect new traces that include new metrics or new events
logged. Second, Friday can encode dynamic behaviors
that go beyond pattern matching against logs. Such are
the parametrized link symmetry checks of Section 4.1.1,
where the identities of the pairs of processes that must
satisfy the symmetry pattern are unknown until runtime
and change as the system evolves.

6.2 Off-line vs. On-line
Most distributed debuggers in the literature, like Friday,
are off-line: they perform their operations on logs or
traces that have been collected during an execution of
the system. In contrast, the P2 debugger [18] operates on
the P2 [15] system for the high-level specification and
implementation of distributed systems. Like Friday,
this debugger allows programmers to express distributed
invariants in the same terms as the running system, al-
beit at a much higher-level of abstraction than Friday’s
libc-level granularity. Unlike Friday, P2 targets on-line
invariant checking, not replay execution. As a result,
though the P2 debugger can operate in a completely dis-
tributed fashion and without need for log back-hauling,
it can primarily check invariants that have efficient on-
line, distributed implementations. Friday, however, can
check expensive invariants such as the existence of dis-
joint paths, since it has the luxury of operating outside
the normal execution of the system.

Further afield, many distributed monitoring systems
can perform debugging functions, typically with a sta-
tistical bend [4,24,27]. Such systems employ distributed
data organization and indexing to perform efficient dis-
tributed queries on the running system state, but do not
capture control path information equivalent to that cap-
tured by Friday.

7 Conclusion and Future Work
Friday is a replay-based symbolic debugger for dis-
tributed applications that enables the developer to main-
tain global, comprehensive views of the system state.
It extends the GDB debugger and liblog replay li-
brary with distributed watchpoints, distributed break-
points, and actions on distributed state. Friday provides
programmers with sophisticated facilities for checking
global invariants—such as routing consistency—on dis-
tributed executions. We have described the design, im-
plementation, usage cases, and performance evaluation
for Friday, showing it to be powerful and efficient for
demanding distributed debugging tasks that were, thus
far, underserved by commercial or research debugging
tools.

The road ahead is ripe for further innovation in dis-
tributed debugging. One direction of future work re-
volves around reducing watchpoint overheads via the
reimplementation of the malloc library call and mem-
ory page fragmentation, or through intermediate binary

13

representations, such as those provided by the Valgrind
tool. Building a hybrid system that leverages the limited
hardware watchpoints, yet gracefully degrades to slower
methods, would also be rewarding.

Another feature we seek to include in the near future
is the ability to checkpoint Friday state during replay.
This would allow a programmer to replay in Friday

a traced session with its predicates from its beginning,
constructing any debugging state along the way, but
only restarting further debugging runs from intermediate
checkpoints, without the need for reconstruction of de-
bugging state. This would also make it easier to “debug
the debugger” on those occasions when Friday predi-
cates themselves become complicated and/or buggy.

We are considering better support for thread-level par-
allelism in Friday and liblog. Currently threads exe-
cute serially with a cooperative threading model, to order
operations on shared memory. We have also designed a
mechanism that supports preemptive scheduling in user-
land, and we are also exploring techniques for allowing
full parallelism in controlled situations.

Further down the road, we are very interested in im-
proving the ability of the system operator to reason about
time. Perhaps our virtual clocks could be optimized to
track “real” or average time more closely when the dis-
tributed clocks are poorly synchronized. Better yet, it
could be helpful to make stronger statements in the face
of concurrency and race conditions. For example, could
Friday guarantee that an invariant always held for an
execution, given all possible interleavings of concurrent
events?

In the long term, many promising directions exist in
predicate expressiveness and functionality. For example,
we have experimented with exposing messages as first-
class objects in distributed predicates. This would allow
the user to easily correlate transmission and reception,
detect dropped messages, and trace message paths across
a network. Growing in scope, our work with Friday mo-
tivates a renewed look at on-line distributed debugging as
well. Our prior experience with P2 debugging [18] indi-
cates that a higher-level specification of invariants, e.g.,
at “pseudo-code level,” might be beneficially combined
with system library-level implementation of those invari-
ants, as exemplified by Friday, for high expressibility
yet deep understanding of the low-level execution state
of a system.

References
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance Debugging for Distributed Sys-
tems of Black Boxes. In SOSP, 2003.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie
for Request Extraction and Workload Modelling. In OSDI, 2004.

[3] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak. Op-
erating system support for planetary-scale network services. In
NSDI, 2004.

[4] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: support-
ing scalable multi-attribute range queries. In SIGCOMM, 2004.

[5] A. Chanda, K. Elmeleegy, A. Cox, and W. Zwaenepoel. Cause-
way: System Support for Controlling and Analyzing the Execu-
tion of Distributed Programs. In HotOS, 2005.

[6] M. Y. Chen, A. Accardi, E. Kıcıman, J. Lloyd, D. Patterson,
A. Fox, and E. Brewer. Path-based Failure and Evolution Man-
agement. In NSDI, 2004.

[7] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay Debug-
ging for Distributed Applications. In USENIX Annual Technical
Conference, 2006.

[8] T. L. Harris. Dependable Software Needs Pervasive Debugging
(Extended Abstract). In SIGOPS EW, 2002.

[9] J. Hollingsworth and B. Miller. Dynamic Control of Performance
Monitoring of Large Scale Parallel Systems. In Super Computing,
1993.

[10] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting
Past and Present Intrusions through VulnerabilitySpecific Predi-
cates. In SOSP, 2005.

[11] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating
systems with time-traveling virtual machines. In USENIX Annual
Technical Conference, 2005.

[12] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen. En-
riching intrusion alerts through multi-host causality. In NDSS,
2005.

[13] R. Konuru, H. Srinivasan, and J.-D. Choi. Deterministic replay
of distributed java applications. In IPDPS, 2000.

[14] L. Lamport. Time, Clocks, and the Ordering of Events in a Dis-
tributed System. Communications of the ACM, 21(7):558–565,
July 1978.

[15] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe,
and I. Stoica. Implementing Declarative Overlays. In SOSP,
2005.

[16] P. Reynolds, J. L. Wiener, J. C. Mogul, M. A. Shah, C. Killian,
and A. Vahdat. Pip: Detecting the Unexpected in Distributed
Systems. In NSDI, 2006.

[17] Y. Saito. Jockey: A user-space library for record-replay debug-
ging. In International Symposium on Automated Analysis-Driven
Debugging, 2005.

[18] A. Singh, P. Maniatis, T. Roscoe, and P. Drushel. Using Queries
for Distributed Monitoring and Forensics. In EuroSys, 2006.

[19] R. Snodgrass. A Relations Approach to Monitoring Complex
Systems. IEEE Transactions on Computer Systems, 6(2):157–
196, 1988.

[20] S. M. Srinivashan, S. Kandula, C. R. Andrews, and Y. Zhou.
Flashback: A lightweight extension for rollback and determinis-
tic replay for software debugging. In USENIX Annual Technical
Conference, 2004.

[21] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Inter-
net indirection infrastructure. In SIGCOMM, 2002.

[22] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A Scal-
able Peer-to-peer Lookup Protocol for Internet Applications.
IEEE/ACM Transactions of Networking, 11(1):17–32, 2003.

[23] L. Subramanian. Decentralized Security Mechanisms for Routing
Protocols. PhD thesis, University of California at Berkeley, 2005.

[24] R. van Renesse, K. P. Birman, D. Dumitriu, and W. Vogel. Scal-
able management and data mining using Astrolabe. In IPTPS,
2002.

[25] R. Wahbe. Efficient data breakpoints. In ASPLOS, 1992.
[26] O. Wolfson, S. Sengupta, and Y. Yemini. Managing Communica-

tion Networks by Monitoring Databases. IEEE Transactions on
Software Engineering, 17(9):944–953, 1991.

[27] P. Yalagandula and M. Dahlin. A Scalable Distributed Informa-
tion Management System. In SIGCOMM, 2004.

14

