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ABSTRACT
This paper describes the design, implementation, and evaluation of
a Federated Array of Bricks (FAB), a distributed disk array that pro-
vides the reliability of traditional enterprise arrays with lower cost
and better scalability. FAB is built from a collection ofbricks, small
storage appliances containing commodity disks, CPU, NVRAM,
and network interface cards. FAB deploys a new majority-voting-
based algorithm to replicate or erasure-code logical blocks across
bricks and a reconfiguration algorithm to move data in the back-
ground when bricks are added or decommissioned. We argue that
voting is practical and necessary for reliable, high-throughput stor-
age systems such as FAB. We have implemented a FAB prototype
on a 22-node Linux cluster. This prototype sustains 85MB/second
of throughput for a database workload, and 270MB/second for a
bulk-read workload. In addition, it can outperform traditional master-
slave replication through performance decoupling and can handle
brick failures and recoveries smoothly without disturbing client re-
quests.

Categories and Subject Descriptors
D.4.5 [Software]: Operating systems—Reliability; C.5.5 [Computer
system implementation]: Servers; H.3.4 [Information storage
and retrieval]: Systems and software—Distributed systems

General Terms
Algorithms, Management, Performance, Reliability

Keywords
Storage, disk array, replication, erasure coding, voting, consensus

1. INTRODUCTION
A Federated Array of Bricks(FAB) is a distributed disk array

that provides reliable accesses to logical volumes using only com-
modity hardware. It solves the two problems, scalability and cost,
associated with traditional monolithic disk arrays.

Traditional disk arrays drive collections of disks using central-
ized controllers. They achieve reliability via highly customized,
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redundant and hot swappable hardware components. They do not
scale well, because there is a high up-front cost for even a mini-
mally configured array, and a single system can only grow to a lim-
ited size. These limitations force manufacturers to develop multiple
products for different system scales, which multiplies the engineer-
ing efforts required. These issues, coupled with relatively low man-
ufacturing volumes, drive up their cost—high-end arrays retail for
many millions of dollars, at least 20 times more than the price of
consumer-class systems with equivalent capacity.

FAB consists of a collection ofbricks—small rack-mounted com-
puters built from commodity disks, CPU, and NVRAM—connected
by standard networks such as Ethernet. Bricks autonomously dis-
tribute data and functionality across the system to present a highly
available set of logical volumes to clients through standard disk-
access interfaces such as iSCSI [32]. FAB can scale incremen-
tally, starting from just a few bricks and adding more bricks as
demand grows, up to several hundred bricks. It is also cheaper
than traditional arrays: due to the economies of scale inherent in
high-volume production, a brick with 12 SATA disks and 1GB of
NVRAM can be built for less than $2000, with a total system cost
of about 20% to 80% of traditional arrays, even with three-way
replication.

Commodity hardware is, of course, far less reliable than its en-
terprise counterparts. Using the reliability figures reported in [4,
3], we expect the mean time between failures of a typical network
switch to be 4 years, and that of a typical brick to be 4 to 30 years,
depending on the quality of disks and the internal disk organiza-
tion (e.g., RAID-5 is more reliable than RAID-0). FAB inevitably
faces frequent changes to the system, including brick failures or
additions, and network partitioning.

The FAB project tries to achieve two goals in such environments.
First, FAB should providecontinuous service, masking failures
transparently and ensuring stable performance over diverse work-
loads. Second, it should ensurehigh reliability, comparable to that
of today’s high-end disk arrays: 10,000+ mean years before the first
data loss, tolerating the failures of disks, CPUs, or networks.

The key idea behind FAB to achieve these goals is replication
and erasure coding byvoting. Acting on behalf of a client, a read
or write request coordinator communicates with a subset (quorum)
of bricks that store the data. Voting allows FAB to tolerate failed
bricks and network partitioning safely without blocking. It also en-
ablesperformance decoupling[24]—tolerating overloaded bricks
by simply ignoring them, as long as others are responsive. This is
especially effective in systems like FAB, in which brick response
times fluctuate due to the randomness inherent in disk-head mech-
anisms. Voting-based replication is not new, but it has seen little
use in high-throughput systems, because of concerns about ineffi-
ciency, as reading data must involve multiple remote nodes [35]. In



this paper, we show that voting is indeed practical and often neces-
sary for reliable, high throughput storage systems. Specifically, our
contributions are:

New replication and erasure-coding algorithms:
We present asynchronous voting-based algorithms that ensure
strictly linearizable accesses [17, 2] to replicated or erasure-
coded data. They can handle any non-Byzantine failures, in-
cluding brick failures, network partitioning, and slow bricks.
Existing algorithms [5, 27], in contrast, not only lack erasure-
coding support, but also could break consistency when a brick
that coordinates a request crashes in the middle.

A new dynamic quorum reconfiguration algorithm: FAB
can adjust quorum configurations dynamically, while allowing
I/O requests from clients to proceed unimpeded. It improves
reliability by allowing the system to tolerate more failures than
in a system with fixed-quorum voting, and by adding a new
brick after another brick is decommissioned.

Efficient implementation and evaluation of FAB: We
present several techniques that improve the efficiency of these
algorithms and implement them in FAB.

We have implemented a FAB prototype on a 22-node Linux clus-
ter. As we show in Section 7, this prototype sustains 85MB/second
of throughput for a database workload, and 270MB/second for a
bulk-read workload. In addition, it can outperform traditional master-
slave replication through performance decoupling and can handle
brick failures and recoveries smoothly without disturbing client re-
quests.

2. RELATED WORK
Today’s standard solution for building reliable storage systems

are centralized disk arrays employing RAID [7], such as EMC
Symmetrix, Hitachi Lightning, HP EVA, and IBM ESS. To ensure
reliability, these systems incorporate tightly synchronized, hardware-
level redundancy at each layer of the system’s functionality, includ-
ing processing, cache, disk controllers and RAID control. As re-
viewed in the previous section, this architecture limits their capac-
ity, throughput, and availability. FAB distributes the functionality
of array controllers across bricks while maintaining the consistency
semantics of a single disk.

The idea of distributed, composable disk arrays was pioneered by
TickerTAIP [6] and Petal [22]. Petal uses a master-slave replication
protocol, which cannot tolerate network partitioning. In addition,
it has a period (∼30 seconds) of unavailability during fail-over,
which can cause clients to take disruptive recovery actions, such as
database-log or file-system scanning. In contrast, FAB can mask
failures safely and instantaneously using voting, and it supports
Reed-Solomon erasure coding in addition to replication. Recently,
LeftHand Networks [23] and IBM [19] have proposed FAB-like
storage systems, but no details about them have been published.

Network-attached secure disks (NASD) [13] let clients access
network-attached disks directly and safely. Both FAB and NASD
try to build scalable distributed storage, but with different emphases:
FAB focuses on availability and reliability through redundancy,
whereas NASD focuses on safety through access-control mecha-
nisms. These systems complement each other.

The ability of voting algorithms to tolerate failures or slow nodes
has led to their recent adoption in storage systems. FarSite [1] is a
distributed serverless file system that uses voting-based algorithms
to tolerate Byzantine failures.Self-* is also a serverless file sys-
tem that uses quorum-based erasure-coding algorithms [12, 16].
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Figure 1: The structure of a FAB system. Bricks are connected to
each other and to clients by commodity networks. All bricks run the
same set of software modules, shown in the right-hand picture. Volume
layouts, seggroups, and diskmaps are on-disk data structures, normally
cached in memory. The buffer cache and timestamp table are stored in
NVRAM.

OceanStore [31] is a wide-area file system that uses voting to tol-
erate Byzantine failures and erasure coding for long-term, space-
efficient data storage. Unlike these systems, FAB is designed as a
high-throughput local-area storage system. It tolerates only stop-
ping failures, but it ensures consistent data accesses without chang-
ing the clients or exploiting file-system semantics. Ling [24] and
Huang [18] use voting to build a high-throughput storage system,
but they support only replication, with only single-client accesses,
and require a special protocol to run on each client.

Consistent reconfiguration has been studied in viewstamped repli-
cation [29], which uses two-phase commits for updating data and
Paxos [20, 21] for transitioning views. More recently, RAMBO [27]
proposed the idea of concurrent active views and background state
synchronization. This idea is used in FAB as well, but whereas
RAMBO is based on single register (logical block) emulation, FAB
runs more efficient voting algorithms over multiple logical blocks.

3. OVERVIEW
Figure 1 shows the structure of a FAB system. FAB is a sym-

metrically distributed system—each brick runs the same set of soft-
ware modules and manages the same types of data structures. FAB
clients, usually file or database servers, use iSCSI [32] for reading
and writing logical blocks, and a proprietary protocol for adminis-
trative tasks, such as creating and deleting logical volumes. At a
high level, a read or write request is processed as follows:

1. The client sends an iSCSI request of the form〈volume-id, off-
set, length〉 to acoordinator, that is, a brick that acts as a gate-
way for the request. Because of FAB’s symmetric structure,
the client can choose any brick as the coordinator to access
any logical volume. Different requests, even from the same
client, can be coordinated by different bricks. In practice, the
client uses either hard-wired knowledge or a protocol such as
iSNS [33] (a name service for iSCSI) to pick a coordinator.

2. The coordinator finds the set of bricks that store the requested
blocks. These are thestorage bricks for the request.

3. The coordinator runs the replication or erasure-coding proto-
col against the storage bricks, passing the tuple〈volume-id,
offset, length〉 to them.

4. Each storage brick converts the tuple〈volume-id, offset, length〉
to physical disk offsets and accesses the requested data.

3.1 Key data structures and software modules
The steps described above are carried out using the following

key data structures:



• Volume layoutmaps a logical offset to aseggroupat segment
granularity for each volume. A segment, set to 256MB, is the
unit of data distribution.
• Seggroupdescribes the layout of a segment, including the set

of bricks that store the segment. The volume layout and seg-
groups are used in step 2 to locate the set of storage bricks for
a request. A seggroup is also the unit of reconfiguration, as we
discuss further in Section 5.
• Diskmapmaps a logical offset to the tuple〈disk-number, disk-

offset〉 atpagegranularity for each logical volume. A page, set
to 8MB, is the unit of disk allocation. Diskmap contents are
unique to each brick. Diskmaps are used in step 4.
• Timestamp tablestores timestamp information for recently mod-

ified blocks. The contents of this table are unique to each
brick. This data structure is used in steps 3 and 4 to access
replicated or erasure-coded blocks in a consistent fashion. We
discuss FAB’s replication and erasure-coding algorithms and
their use of timestamp tables in more detail in Section 4.

Figure 2 shows an example of I/O request processing. Volume
layouts and seggroups are called theglobal metadata, because they
are replicated on every brick and are read by the request coordi-
nator. Following the approach pioneered by Petal [22], we use
Paxos [20, 21], an atomic broadcast protocol, to maintain the con-
sistency of the global metadata across bricks. Paxos allows bricks
to receive exactly the same sequence of metadata updates, even
when updates are issued concurrently and bricks fail and recover.
Thus, by letting bricks initially boot from the same (empty) global
metadata and use Paxos for updates, they can keep their metadata
consistent. As discussed further in Section 5.2, FAB is designed
to withstand stale global metadata, so long as bricks eventually re-
ceive metadata updates. As such, reading global metadata is done
directly against the local copy.

These data structures are managed by software modules that are
roughly divided into three groups. Thefrontend receives requests
from clients (step 1). Thecore contains modules needed to locate
logical blocks and maintain data consistency (steps 2 and 3). In par-
ticular, thecoordinator module is responsible for communicating
with the backend modules of remote bricks to access blocks con-
sistently. Thestatus monitor keeps track of the disk usage and load
of other bricks. It is used to assign less-utilized segment groups to
volumes while creating volumes (Section 3.2), and to pick a brick
in the quorum that reads data from disk (Section 4.4). It currently
deploys two mechanisms. First, the status information is piggy-
backed on every message exchanged between bricks; this gives a
timely view of the status of a small set of bricks. Second, we use
a variation of the gossip-based failure detector [?] to advertise the
status to a random brick every three seconds; this gives an older,
but more comprehensive, view of the system. Finally, thebackend
modules are responsible for managing and accessing NVRAM and
physical disks (step 4).

3.2 Data layout and load balancing
All the segments assigned to a seggroup must use the same re-

dundancy policy: replication of the same degree or erasure coding
with the same layout. FAB’s policy is to create, for each redun-
dancy policy, an average of four seggroups that contain a specific
brick. Logical volume segments are assigned to seggroups semi-
randomly when the volume is created, favoring seggroups contain-
ing bricks with less utilized disks (the status monitor is consulted
for this purpose). The assignment of physical disk blocks to pages
(i.e., diskmap) is done randomly by each brick when the page is
written for the first time.
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Figure 2: Example of locating a logical 1KB block at offset
768MB of a volume. The client sends a request of the form
〈volume-id, 768MB, 1KB〉 to a random coordinator. In the top
half of the diagram, the coordinator locates the volume layout
from the local copy of the global metadata and finds the seg-
group for the offset 768MB. The seggroup shows that the data is
stored on bricksB,D, andE. The coordinator then executes the
replication or erasure-coding protocol against bricksB,D and
E. In the bottom half of the diagram, each of the bricksB,D,
and E consult the local diskmap to convert the offset 768MB to
disk addresses.
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Figure 3: Mean time to data loss (MTTDL) of FAB in systems
with 256 TB logical capacity.

The choice of number of seggroups per brick reveals a tension
between load balancing and reliability. After a brickb fails, the
“read” requests normally handled byb are now served by the other
bricks in the seggroups thatb belongs to. Thus, the more seggroups
per brick, the more evenly the extra load is spread. Creating too
many seggroups, however, reduces the system’s reliability, since
this increases the number of combinations of brick failures that can
lead to data loss. Figure 3 shows how the reliability changes with
the number of seggroups per brick. This analysis is based on a
Markov model assuming bricks with twelve 256GB SATA disks.
Failures are assumed to be independent. We assume a disk mean
time to failure (MTTF) of 57 years, based on manufacturers’ spec-
ifications and a brick (enclosure) MTTF of 30 years, based on data
from [4]. The time to repair a failure depends on the failure type
and is based on the time required to copy the data to spare space —
we assume that spare space is always available. Based on this, we
pick an average of four seggroups per brick because this meets our
goal of a 10,000 year MTTDL, while still allowing the load to be
spread evenly.

The choice of segment and page sizes involves several trade-offs.
A larger segment size reduces the global-metadata management
overhead, but at the cost of less storage allocation freedom, because
bricks in a seggroup must store all its segments. The page is cho-
sen to be smaller than the segment to reduce the storage waste for
erasure-coded volumes (Section 4.2), or for logical volumes whose



size is not segment-aligned. Too small a page size, however, could
also hurt performance by increasing disk-head movement. We find
that the current setting of 256MB segments and 8MB pages offers
a good balance for the next few years—even with bricks with 10TB
raw capacity and one thousand 1TB logical volumes in the system,
the size of the global metadata and diskmaps would be only 5MB
and 10MB, respectively.

4. VOTING-BASED REPLICATION AND
ERASURE CODING

FAB provides two redundancy mechanisms, replication and erasure-
coding. Both are based on the idea of voting: each request makes
progress after receiving replies from a (random) quorum of storage
bricks. Our protocols require no persistent state on the request co-
ordinator. This feature allows any brick to act as a coordinator and
helps FAB become truly decentralized without changing clients.

Section 4.1 describes our basic replication protocol for a single
logical block, and Section 4.2 describes how it can be extended
for erasure coding. Multi-block requests are logically handled by
running multiple instances of these algorithms in parallel, but in
practice, we batch and run them as efficiently as single-block re-
quests. We discuss this and other implementation-related issues in
later sections.

4.1 Replication
The task of a request coordinator is straightforward in theory:

when writing, it generates a new unique timestamp and writes the
new block value and timestamp to a majority of storage bricks;
when reading, it reads from a majority and returns the value with
the newest timestamp. The challenge lies in the handling of the
failure of the participants in the middle of a “write” request: the
new value may end up on only a minority of bricks. A storage
system must ensurestrict linearizability [2, 17]—it must present a
single global ordering of (either successful or failed) I/O requests,
even when they are coordinated by different bricks. Put another
way, after a “write” coordinator fails, future “read” requests to the
same block must all return the old block value or all return the new
value, until the block is overwritten by a newer “write” request.
Prior approaches, e.g., Gifford’s use of two-phase commits [14]
cannot ensure a quick fail-over, and Ling et al.’s use of end-to-end
consistency checking [24] conflicts with our goal of leaving the
client interface (iSCSI) unchanged.

FAB takes an alternative approach, performing recovery lazily
when a client tries to read the block after an incomplete write. Fig-
ure 4 shows the pseudocode of FAB’s algorithm. Each replicated
block keeps two persistent timestamps:valTs is the timestamp of
the block currently stored, andordTs is the timestamp of the newest
ongoing “write” request. An incomplete “write” request is indi-
cated byordTs > valTs on some brick. A “write” runs in two
phases. First, in theOrder phase, the replicas update theirordTs
to indicate a new ongoing update and ensure that no request with
an older timestamp is accepted. In the second,Write, phase, the
replicas update the actual disk block andvalTs. A “read” request
usually runs in one phase, but takes two additional phases when
it detects an incomplete past “write”—the coordinator first discov-
ers the value with the newest timestamp from a majority, and then
writes that value back to a majority with a timestamp greater than
that of any previous writes. In this protocol, a “write” request still
tries to write toall the bricks in the seggroup; the coordinator just
does not wait for all the replies. Thus, a read-recovery phase usu-
ally happens only when there is an actual failure. Figure 5 shows
an example of I/Os using this algorithm.

// I/O coordinator code.
proc write(val)

ts ← NewTimestamp()
send [Order, {}, ts] to bricks in the seggroup
if a majority reply ‘‘yes’’

send [Write, val , ts] to bricks in the seggroup
if a majority reply ‘‘yes’’ return OK

return ABORTED
proc read()

send [Read] to bricks in the seggroup
if a majority reply ‘‘yes’’ and all timestamps are equal

return the val in a reply.
ts ← NewTimestamp() // Slow ‘‘recover’’ path starts
send [Order, ‘‘all’’, ts] to bricks in the seggroup
if a majority reply ‘‘yes’’

val ← the value with highest valTs from replies
send [Write, val , ts] to bricks in the seggroup
if a majority reply ‘‘yes’’ return val

return ABORTED

// Storage handler code. Variable val stores the block contents.
when Receive [Read]

status ← (valTs ≥ ordTs)
reply [status, valTs, val ]

when Receive [Order, targets, ts]
status ← (ts > max(valTs, ordTs))
if status ordTs ← ts
if targets = ‘‘all’’ or this block ∈ targets reply [valTs, val , status]
else reply [valTs, status]

when Receive [Write, newVal , ts]
status ← (ts > valTs and ts ≥ ordTs)
if status val ← newVal ; valTs ← ts
reply [status]

Figure 4: FAB’s replication algorithm for a single logical block.
The function NewTimestamp generates a locally monotoni-
cally increasing timestamp by combining the real-time clock
value and the brick ID (used as a tie-breaker).

One unusual feature of our protocol is that a request may abort
when it encounters a concurrent request with a newer timestamp. In
this case it is up to the client or the coordinator to retry. In practice,
abortion is rare, given that protocols such as NTP can synchronize
clocks with sub-millisecond precision [28, 10]. Being able to abort
requests, however, offers two benefits. First, it allows for an effi-
cient protocol—a “read” request can complete in a single round as
opposed to two in previous algorithms [5, 27], skipping the round
to discover the latest timestamp. Second, abortion enablesstrict
linearizability—that is, only by sometimes aborting requests can
an algorithm properly linearize requests whose coordinators could
crash in the middle. A theoretical treatment of this issue appears in
separate papers [11, 2].

4.2 Erasure coding
FAB also supports genericm,n Reed-Solomon erasure coding.

Reed-Solomon codes have two characteristics. First, they gener-
aten−m parity blocks out ofm data blocks, and can reconstruct
the original data blocks from anym out of n blocks. Second, they
provide a simple function, which we callDelta, that enables in-
cremental update of parity blocks [30]. Using this function, when
writing to a logical blockX, the new value of any parity block can
be computed byxor(old-parity, Delta(old-x, new-x)), whereold-
parity is the old parity block value, andold-x andnew-x are the old
and new values of blockX.

Figure 7 shows our data-access algorithm for erasure-coded vol-
umes. Supporting erasure-coded data requires three key changes
to the basic replication protocol: segment layout, quorum size, and
update logging.
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We currently use the entire segment as the erasure-code chunk,
as shown in Figure 6, unlike typical RAID systems that use smaller
chunk sizes such as 64KB. We chose this layout because it lets a
large logical sequential request be translated into a large sequential
disk I/O at each brick. The downside is that it may abort writes
spuriously, when two blocks that happen to be in the same strip are
updated concurrently. With a database transaction workload (Sec-
tion 7.3), however, the conflict rate is measured to be< 0.001%,
and we consider that the benefits outweigh the downsides.

As in replication, each request contacts a subset of the bricks that
store the segment. However, withm,n erasure coding, a coordina-
tor must collect replies fromm+ d(n−m)/2e bricks—that is, the
intersection of any two quorums must contain at leastmbricks—to
be able to reconstruct the strip value during a future “read”. We call
this quorum system anm-quorum. For instance, them-quorum size
is 3 for a 2,4 erasure code, and 8 for a 6,10 erasure code.

The final change involves the need for strip recovery. Suppose
that a “write” coordinator crashes after writing the new value to
less thanm bricks in the second round. The subsequent “read” re-
quest must recover the old value, which might become impossible
if the “write” request simply overwrote the blocks and ifn < 2m
(which is a rather common setting). We solve this situation byup-
date logging— a storage brick merely logs the new value in the sec-
ond round of the “write”. A read request, when recovering the old
value, scans the log on anm-quorum of bricks and finds the newest
strip value that can be fully reconstructed. The “write” coordina-
tor, after it replies to the client, instructs the bricks to overwrite the

// I/O coordinator code. ‘‘idx’’ is the block number within the strip.
proc write(val, idx)

ts ← NewTimestamp()
send [Order, {idx}, ts] to bricks in the seggroup
if an m-quorum reply ‘‘yes’’ and idx ’th brick replies with oldval

delta← Delta(oldval , val , idx)
send [Write-EC, val , ts] to the idx ’th brick.
send [Write-EC, NULL, ts] to other data bricks.
send [Write-EC, delta, ts] to parity bricks
if an m-quorum reply ‘‘yes’’

send [Commit, ts] to bricks in the seggroup
return OK

return ABORTED
proc read(idx)

send [Read] to bricks in the seggroup
if an m-quorum and idx reply ‘‘yes’’ and all timestamps are equal

return the val returned by idx ’th brick.
ts ← NewTimestamp() // Slow recovery path begins
send [Order&ReadLog, ts] to bricks in the seggroup
ts’ ← Pick the largest timestamp that appears in at least m replies.
strip← Reconstruct the original strip for ts’
send [Write, strip[i ], ts] to i ’th brick, for each i in the seggroup
if an m-quorum returns ‘‘yes’’

send [Commit, ts] to bricks in the seggroup
return strip[idx ]

return ABORTED

// Storage handler code
when Receive [Write-EC, newval , ts]

status ← (ts > valTs and ts ≥ ordTs)
if status

if this brick is for parity, add [xor(newval , val), ts] to the log.
elseif newval 6= NULL, add [newval , ts] to the log.
else add [val , ts] to the log

reply status
when Receive [Order&ReadLog, ts]

status ← (ts > max(valTs, ordTs))
reply [status, all the log entries]

when Receive [Commit, ts]
Wait for a while to reject requests with stale timestamps.
if there is a log entry for ts

val ← the associated log value.
Remove log entries with timestamps ts or smaller.

Figure 7: Erasure coding algorithm for a single strip. Pro-
cedure “write” is invoked by the I/O coordinator to write to
the idx ’th block in the strip. Procedure “read” reads from the
idx ’th block in the strip.

old block value, and thus compress their log, in an asynchronous
Commit phase. In practice, the log is implemented in each brick’s
NVRAM cache, and the third round—replacing the block value
with the log entry—is performed simply by modifying the cache
index. Thus, logging does not create any additional disk-I/O or
memory-copying traffic in the common case when no brick fails
during request processing.

4.3 Reducing the overhead of timestamp
management

One challenge of FAB is the timestamp management overhead:
for every 1 TB of data, with 24 byte timestamps recorded for every
512B block, 48 GB of space could be required for timestamps. This
information must be kept persistently, yet this amount of NVRAM
is infeasible. We employ two techniques to reduce the overhead of
timestamp management.

First, we observe that timestamps are used only to disambiguate
concurrent updates and to recover from previous failures. Thus,
when all replicas of a logical block are functional, timestamps can
be discarded after all of them have acknowledged an update. Replies



to the client are made as soon as a majority of the replicas have ac-
knowledged an update. The coordinator, in the background, sends
aGC (garbage collect) message to bricks only afterall bricks in the
seggroup reply; for erasure-coded volumes, this message is piggy-
backed onto theCommit message when possible. Each recipient
of this message removes the corresponding entry in the timestamp
table after waiting for a short period (10 seconds), just long enough
to detect out-of-order requests with older timestamps. This period
is conservatively chosen to be larger than the maximum clock skew
plus the maximum possible scheduling delay on any brick [25].

Another improvement can be made by observing that a single
“write” request usually updates multiple blocks, and that each of
the blocks affected will have the same timestamp. We thus organize
the timestamp table as an ordered tree, with a set of timestamps kept
for a range of blocks rather than per-block. When a new request
arrives for a part of an existing range in the timestamp table, we
then split the range into two (or three) and replace only the part
overwritten by the new request.

The combination of these techniques can reduce the timestamp
overhead substantially. In the non-failure case, a brick needs to
keep timestamps only for blocks that are actively updated. Steady-
state size of the timestamp table per brick is measured to be 10KB,
which can easily be kept in NVRAM. When a brick fails, the times-
tamps need to be kept until the reconfiguration protocol removes it
from the segment group usually in less than an hour (Section 5).
However, simulation results with real workloads show that the time-
stamp-table size increases by at most 4MB per brick per hour even
after brick failure [10]. It is extremely unlikely that the number of
timestamps will exceed what a brick can store in memory.

4.4 Improving the efficiency of voting
One of the criticisms of majority voting is its inefficiency, be-

cause “read” requests must contact multiple remote nodes [35].
This problem, however, does not apply to FAB for two reasons.

First, we apply an “optimistic read” technique for the common
case scenario of reading from a logical block that is already con-
sistent. Here, the coordinator reads the actual block contents (val )
from an idle, live replica and reads only timestamps from others
in the quorum. This technique, in effect, reduces the number of
disk accesses to one per “read” request, as timestamps are kept in
NVRAM. Second, FAB is naturally a disk-I/O-bound system; the
CPU spends much of the time waiting for disk I/Os to complete,
so the CPU overhead of timestamp processing does not slow the
system down.

4.5 Handling coordinator failures
When a coordinator fails, it is up to the client to connect to

a different coordinator and retry. Most enterprise-class storage
clients already have such a fail-over capability. Moreover, because
of FAB’s strict linearizability guarantee, a client can fail over as
quickly as it wishes—in fact, it allows a single client to use multi-
ple coordinators concurrently, e.g., in a round-robin fashion.

5. RECONFIGURATION
FAB’s reconfiguration protocol changes the quorum configura-

tion of segment groups. It is activated, for example, when a brick
failure, recovery, decommissioning, or addition is detected. This
protocol and the data-access protocol complement each other—
the data-access protocol enables transparent masking of failures
or slow bricks, whereas the reconfiguration protocol enables long-
term improvement of the system’s reliability by allowing the sys-
tem to tolerate more failures than would otherwise be possible us-
ing a fixed-quorum algorithm. For example, Figure 8 shows how a
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Figure 8: Reconfiguration example. This seggroup initially
replicates data on bricksA,B,C, with witnessesD,E participat-
ing only in view transition. At the top, the set of active quorums
formed at each moment is shown. AfterA and B crash,C is still
able to form a singleton view with help from the witnesses. Af-
ter B recovers andF is added, they ensure that they store values
written to the seggroup before removing the old view{C}.

3-way replicated seggroup can handle two failures over time using
the reconfiguration protocol.

This protocol runs independently for each seggroup in the sys-
tem. The list of live bricks agreed upon by the members of the
seggroup form aview; until the view changes, read and write re-
quests that happen in the view must contact anm-quorum of the
bricks in the view. Figure 8 overviews the reconfiguration proto-
col. First, a view-agreement protocol lets bricks agree on a new
view after brick failure or addition (step (2)). A new view is super-
posed on the existing view (step (3)), forcing all new requests to
collect replies from anm-quorum of each of the old and new views.
The old view is removed after ensuring that values written in the
old view are also written to anm-quorum of the bricks in the new
view (state synchronization; steps (4) and (5)). In the rare event
in which more than two views are formed in a short period, they
are removed in the FIFO order. By decoupling view formation and
state synchronization from foreground request processing, FAB al-
lows client requests to be processed undisturbed. The following
sections describe these steps in more detail.

5.1 View agreement via dynamic voting
FAB’s view agreement protocol lets bricks in a seggroup agree

on a single sequence of primary views; i.e., it ensures that disjoint,
concurrent views (a “split-brain” situation) never happen. We use
dynamic voting [26]1—a protocol similar to Paxos [20, 21], but
optimized for view agreement—for this purpose.

The participants of the dynamic voting protocol are the set of
bricks that store blocks in the seggroup, plus at least two additional
witness bricks that participate only in the view-agreement proto-
col (witnesses are chosen randomly when the seggroup is created).
Witnesses allow the seggroup to transition views safely, in partic-
ular when there are only two storage bricks in the view. We use
the phrasevote view to refer to this extended set of bricks to distin-
guish them from aview, which is a subset that contains only storage
bricks.

This protocol consists of three phases. First, a brick that de-
tects the failure or recovery of another brick becomes a leader and
computes a new “candidate” vote view. FAB uses a three-round
membership protocol [8] because it settles a new view quickly, but
alternatives, e.g., pairwise heartbeats, could also be used. The rest

1Caution: The dynamic voting protocol is unrelated to FAB’s
voting-based data access protocols.



of the protocol ensures that the candidate view indeed ensures a
global total order. This is done by having each brick keep the list
of ambiguous views that are attempted, but not yet fully formed.
In the second phase, the leader proposes the candidate view to its
members. A recipient accepts the view only if it is a majority of the
current view as well as each of the ambiguous views. The recipient
also adds the candidate view to the ambiguous-view list. Upon re-
ceiving acceptance from all bricks in the candidate view, the leader
sends another message to let them update their current view and
empty the ambiguous-views lists. When the leader or any other
participant dies during this process, another brick becomes a leader
and re-runs the protocol.

5.2 Logical-block synchronization
Just forming a new view is not sufficient to ensure consistent

accesses to volumes. Before removing the old view, bricks must
performstate synchronization. Consider a seggroup replicated on
five bricks,b1 to b5 (witnesses are immaterial in this scenario). The
initial view contains all five bricks. Write requestW completes,
storing the value on bricksb3,b4 andb5. Bricksb4 andb5 then fail
simultaneously, and a new view{b1,b2,b3} is formed. Here, the
value ofW must be written to at least a majority of the new view
before the old view is discarded. Otherwise, a read request might
contact onlyb1 andb2 and missW.

Figure 9 shows the basic state synchronization algorithm (due to
space constraints, we show it only for replicated volumes). This
protocol resembles “recovery read” that runs after an incomplete
write is found (Figure 4), with one difference: it leavesordTs un-
changed in the first phase, because this operation itself need not be
linearized. This change also avoids aborting new I/O requests by
clients.

After the state synchronization finishes, the reconfiguration leader
sends out aRemoveView message to let bricks discard the old
view. When the reconfiguration leader dies during state synchro-
nization, another brick will restart the view-agreement protocol.
However, the blocks already synchronized by the former leader
need not be re-synchronized again, and the total amount of syn-
chronization needed after a failure stays constant even when the
protocol restarts.

An I/O coordinator learns the list of active views in the seg-
group by initially assuming that all bricks in the seggroup are alive.
When a storage brick notices that the coordinator’s knowledge of
the views is stale, it piggybacks its own view list on the reply. The
coordinator updates its active-view list transitively, until it receives
replies for the I/O request from anm-quorum of every view in the
list.

5.3 Streamlining synchronization
The basic algorithm described so far can, in fact, be vastly op-

timized in many of the common situations. We describe two tech-
niques used in FAB.

5.3.1 Exploiting the quorum containment property
Quorum containmenthappens when every quorum in the old

view is a superset of another quorum in the new view. We can
skip block synchronization altogether if this condition is satisfied.
This happens, in particular, when a brick fails in a two-brick view,
as exemplified in step (6) of Figure 8.

5.3.2 Embedding the respondents in the timestamp
table

We piggyback additional information on the optional third back-
ground phase of the “write” request (Section 4.3) to let each storage

proc synchronize(sgid , newView , oldView)
blocks← findBlocksInTimestampTable(sgid)
foreach block in blocks

send [SyncPoll, block] to bricks in oldView
Wait until an m-quorum in the oldView reply
maxValTs, maxVal ← Pick the maximum valTs

and corresponding value from the replies
maxOrdTs ← Pick the maximum ordTs

from the replies.
send [SyncWrite, block, maxValTs, maxOrdTs, maxVal]

to bricks in newView
Wait until an m-quorum in newView reply.

proc findBlocksInTimestampTable(sgid , oldView)
send [FindBlocks, sgid] to bricks in oldView
Wait until an m-quorum in the oldView reply
return the union of all blocks in the replies

when Receive [SyncPoll, block ]
return [valTs, ordTs, val] for the block

when Receive [SyncWrite, newValTs, newVal , newOrdTs]
if newOrdTs > ordTs then ordTs ← newOrdTs
if newValTs > valTs then

valTs ← newValTs
val ← newVal

when Receive [FindBlocks, sgid ]
return block numbers in the timestamp table for seggroup sgid.

Figure 9: State synchronization after a view change. This pro-
tocol runs independently for each segment group in the system.

brick remember the set of bricks that have successfully executed
the secondWrite phase. This set is stored in the timestamp table,
in-line with the timestamps for the block.

This information can be used to distinguish blocks in the times-
tamp table that need to be synchronized before the old view can
be removed (called the“must” blocks), and those blocks that could
wait (“may” blocks). Specifically, in theFindBlocks phase in Fig-
ure 9, each brick returns a block as “must” only when the respondents-
set is not a quorum of the new view. If the set is a quorum of, but not
the superset of the new view, then the block is returned as “may”
(“may” block are still synchronized so that bricks can remove en-
tries from the timestamp tables; Section 4.3). Otherwise, the block
need not be synchronized at all. This technique often allows the
system to remove an old view very quickly and then synchronize
“may” blocks at a leisurely speed. We will examine the effect of
this technique in Section 7.5.

5.4 Handling permanent changes
The mechanisms described in the previous section can also be

used to remove bricks permanently or add bricks to the system.
To handle such events, the system administrator chooses a random
brick as the reconfiguration leader and informs it that a failed brick
has no hope of recovering. For each affected seggroup, the leader
runs the dynamic voting protocol and creates a new view that ex-
cludes the dead brick and adds a new brick. After the old view
is removed, the leader issues a Paxos update to change the seg-
group entry of the global metadata. The newly added brick per-
forms the whole-seggroup synchronization, copying every block,
not just those in the timestamp tables.

6. CHOOSING THE RIGHT REDUNDANCY
SCHEMES

The main trade-offs between replication and erasure-coding in-
volve reliability, capacity efficiency, and performance. Figure 10
compares the expected mean-time to data loss (MTTDL) of a clus-
ter composed of bricks with 3TB capacity each. In order to achieve
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Figure 10: Mean time to first data loss in storage systems us-
ing 2-way replication, 3-way replication and 2,4 erasure coding.
With 2-way replication, MTTDL is adequate for very small sys-
tems but drops rapidly as system size grows. 3-way replication
and 2,4 erasure coding have similar MTTDL (the lines are su-
perposed). These provide adequate reliability for commercial
use.

our goal of 10,000 years MTTDL, we need at least 3 bricks per
logical block using replication. The primary reasons the system re-
quires such high a degree of replication are the use of failure-prone
commodity components [4, 3], and the size of the system. A FAB
system with a 256TB logical capacity can have over 100 bricks,
and the number of combinations of brick failures that can lead to
data loss increases with the number of bricks.

Erasure coding can gain higher capacity efficiency than repli-
cation, since anm,n erasure coding provides reliability similar to
(n−m+ 1)-way replication. For example, a system based on 2,4
erasure coding provides similar reliability to 3-way replication, but
uses the same raw capacity as 2-way replication. The capacity ef-
ficiency of erasure-coding-based systems comes at some cost in
performance for four main reasons. First, Reed-Solomon encoding
and decoding itself consumes CPU cycles. Second, there are fewer
disk spindles per logical capacity. Third, a small (strip) write en-
genders 2(n−m+1) disk I/Os inm,n erasure coding, as opposed
to (n−m+1) I/Os for the comparable(n−m+1)-way replication.
Fourth, each request must collect replies from anm-quorum, and
the latency is determined by the slowest bricks in the quorum. We
will quantify the erasure-coding overhead in the next section.

7. EVALUATION
We have implemented FAB on Linux. The prototype consists

of 80,000 lines of C++ code, of which 25,000 lines are for the
core replication, erasure coding, and reconfiguration protocols. The
global metadata and diskmap tables are implemented as in-memory
tables backed up by Berkeley DB. We emulate NVRAM using a
memory-mapped file. This simulated NVRAM is used for two pur-
poses: the timestamp table (Section 4), and the write-back buffer
cache. The buffer cache size is set to 512MB.

FAB is a user-space single-threaded program. It uses non-blocking
I/O (poll ) and the SCSI-generic driver [15] to multiplex low-level
network and disk I/O requests. This design can control resource
usage more precisely than, say, using kernel threads. In particular,
we run a lottery scheduler [34] for disk-request queue management
to ensure that potentially bursty state-synchronization traffic uses
only a fraction (5%) of the disk throughput. With our hardware,
FAB is disk-bound; thus, ensuring fair-share accesses to disks suf-
fices to ensure end-to-end fair share between different classes of
traffic. We examine the effect of this mechanism in Section 7.5.

7.1 System configurations
A cluster of PCs is used as bricks. Each machine is equipped

with two 1GHz Pentium 3 CPUs,2 2GB of memory, three Seagate

2Only one CPU per brick is actively used during the evaluation,
because FAB is single-threaded.

Cheetah 32GB SCSI disks (15K rpm, 3.6ms average seek time),and
two Intel Gigabit Ethernet interfaces. They run Debian 3.0 with the
Linux 2.4.24 kernel. On each brick, the first 6GB of one disk is
used by the host Linux file system, and the remaining 90GB is used
for FAB data. Up to 22 machines are used as FAB bricks, and an
additional 7 machines are used to generate workloads.

7.2 Application performance
We first examine FAB’s baseline performance by running ap-

plications on a single client on seven different storage platforms.
A run of the benchmark consists of three phases: (1) “untar” the
Linux 2.6.1 source code, 177MB in size, to a target (ext3) file sys-
tem [bulk write]; (2) “tar” the files back to the local file system
[bulk read ]; and (3) compile Linux on the target file system [a
mix of computation, reads and writes]. To exclude the effect of
the client-side buffer cache, we unmounted the target volume after
each step (the unmount latency is included in the numbers).

Table 1 shows the results. Overall, the performance of FAB with
3-way replication is comparable with iSCSI+raw disk, proving that
FAB’s extra protocol processing adds only a marginal overhead to
end-to-end performance. Erasure coded volumes are slower than
replication for the reasons discussed in Section 6. The 2,4 code is
slower than the 4,5 code because of the cost of erasure encoding
and decoding: whereas the 4,5 (i.e., RAID-5) code is a simple bit-
wise XOR, the 2,4 code involves GF(28) arithmetic that requires
multiple table lookups for each byte. On our hardware, encoding
or decoding 1KB of 2,4 erasure-coded blocks consumes 50µs of
CPU time. Bulk reading (tar) over iSCSI is significantly slower
than local disks. We believe that this is because the iSCSI client
on Linux (we use the Cisco iSCSI initiator) does not prefetch data
aggressively enough to keep reading disks sequentially.

Untar Tar Compile
Local disk 21.76 14.80 318.9
Local RAID 1 22.32 14.64 319.2
iSCSI+raw disk 24.21 24.32 323.9
FAB (3way repl.) 21.57 24.61 316.0
FAB (2,4 erasure code) 38.22 27.81 322.0
FAB (4,5 erasure code) 33.33 26.22 319.5
FAB (3way repl., no cache) 28.34 26.13 327.0

Table 1: End-to-end latency of application programs. The
numbers are an average over three runs. “Local disk”
and “Local RAID-1” use disks locally attached to the client.
“iSCSI+raw disk” uses a remote iSCSI server accessing a local
raw disk. “FAB” accesses data through FAB’s iSCSI gateway.
“FAB (no cache)” shows FAB with its NVRAM buffer cache
turned off.

7.3 Scalability
To study how FAB’s throughput grows with size, we ran three

types of synthetic workloads, because none of the real-world appli-
cations that we have can exert enough stress on FAB. The work-
load DB, modeled after SPC-1 [9],3 simulates a database trans-
action workload. DB uses three volumes. The first two are data
volumes that receive uniformly random as well as database-index-
accessing 4KB reads and writes. The third volume, whose size is
1/3 of the other two, receives sequential log writes of size 8KB to

3The primary difference between DB and SPC-1 is that SPC-1 de-
fines an open-queue workload with a fixed request arrival rate. DB
changes it to run in a closed queue with zero think time to stress the
system.
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Figure 12: Throughput of FAB with random large read/write
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64KB. Overall, DB issues requests with a read:write ratio of 4:6
and an average size of 8KB. We scaled the total logical volume
size to be 10N GB (N is the number of bricks in the cluster)—e.g.,
in a 22-brick cluster, the two data volumes are 94GB each, and the
log volume is 32GB. The other two workloads,r64k andw64k,
are random 64KB read and write requests over a volume of size
25NGB. The request size of 64KB is taken from SPC-2’s proposed
data mining and video-on-demand workloads [9]. Each workload
is generated by a total of 30N threads running in a closed queue
with zero think time on seven client machines.

Figures 11 and 12 show the results. Overall, as expected, FAB’s
throughput scales linearly with the cluster size. The exception is
64KB random reads, which hit a ceiling due to the capacity lim-
its of our Ethernet switches. Erasure-coded volumes sustain much
lower throughput than their replicated counterparts, for the reasons
discussed in Section 6.

7.4 Performance decoupling
This section compares our replication protocol to the master-

slave protocol, the traditional method for replicating data across
a network. We have built a variation of FAB that runs a master-
slave protocol similar to Petal’s [22]. In this protocol, the dynamic
voting protocol is used to let bricks agree on the single master for
each seggroup. Each I/O coordinator forwards the request to this
master. For read requests, the master simply reads its local disk and
returns the data to the coordinator. For write requests, the master
broadcasts the new value to the replicas in the current view, waits
for the replies from all of them, and then returns control back to
the coordinator. Freed from timestamp maintenance, this protocol
is far simpler than FAB’s.

Figure 13 shows the throughput of the two systems on the 22-
brick cluster with 3-way replication. Interestingly, for both DB and
64KB-random-write workloads, FAB outperforms the master-slave
protocol. This is due to the performance decoupling effect of the
voting protocols [24]—specifically, FAB can ignore slow bricks by
collecting replies only from a majority. Performance decoupling
is especially effective in a disk-bound system like FAB in which
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Figure 13: The throughput of the master slave protocol with
3-way replication. The FAB protocol is normalized to 1.0.
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Figure 14: CDF of end-to-end request latency under high load
for the DB workload. The master-slave protocol experiences
many high-latency “write” requests.

disk accesses, especially NVRAM flushing, often generate bursty
disk traffic that slows the brick down for a short period of time.
The performance-decoupling effect is visible especially for smaller
clusters, in which a single overloaded brick can have a large im-
pact on the overall performance. On the other hand, for 64KB-
random-read workloads, the master-slave protocol slightly outper-
forms FAB in a large cluster due to its simplicity, although this is
offset by FAB’s ability to read blocks from idle bricks (Section 4.4).
These effects can also be observed in the latency distribution as
shown in Figure 14.

7.5 Handling changes
This section studies how FAB handles changes to the system. We

start a 22-brick cluster with 3-way replication, run the DB work-
load, and artificially introduce brick failures or recoveries. Fig-
ure 15 shows the throughput transition when one brick fails and
recovers three minutes later. The brick failure causes a reconfig-
uration protocol to run, which causes bricks in the affected seg-
group to scan their timestamp tables. The CPU overhead of this
timestamp-table scan is the reason for the small drop in through-
put. No state synchronization is required, however, because for
every seggroup affected by the failure, the two bricks that form
the new view are already consistent. The system throughput does
not decrease noticeably during the crash period, because DB is a
write intensive workload—each remaining brick handles the same
amount of write traffic per request. After the recovery, another
timestamp-table scan happens. Virtually no “must” blocks (Sec-
tion 5.3.2) will be found, however, as the “write” requests issued
during the crash period to an affected seggroup will be written to
the remaining two, and these two form a quorum in the new, full
view. Thus, the old-view removal happens nearly instantaneously
after recovery. The synchronization of the “may” blocks, i.e., copy-
ing blocks written during the crash period to the recovered block,
happens slowly in the background over the next 2.5 minutes, due
to the lottery scheduling. Overall, no client-visible I/O error hap-
pens during the run. Note that our current client software cannot
handle session termination gracefully; thus, for the experiments in
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Figure 15: A brick fails then recovers in a 22-brick FAB cluster
running the 3-way quorum-based replication protocol under
the DB workload. FAB can mask the failure without causing
any I/O errors.
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Figure 16: A brick fails and then recovers in a 22-brick FAB
cluster running the 3-way master-slave replication protocol.
The “error” marks show the number (not megabytes) of I/O
errors encountered by clients.

this section, we set up the clients not to use failed brick(s) as I/O
coordinators.

In contrast, Figure 16 shows the same scenario, but using the
master-slave replication protocol. After the failure and recovery,
the throughput drops, not because of timestamp scanning but be-
cause “write” requests to seggroups that contain the failed brick
abort until the new view is formed 10 seconds later. This is evi-
dent from the “error” marks in the graph. The performance drop
is suppressed in this graph, because our DB workload generator
does not initiate the recovery activities, e.g., device resetting and
database log recovery, that usually happen after I/O failures—the
clients simply retry after waiting for a second.

Figure 17 shows a double-failure scenario for FAB’s quorum
protocol. Two bricks fail within two minutes and then recover.
After the second failure, there is a single seggroup in the system
whose view size changes from two to one. This causes requests to
this seggroup to abort until the new view is formed (the quorum
size of a two-brick view is always two). Recovery causes a little
more disruption, because the amount of state that needs to be syn-
chronized doubles. However, after about 5 minutes, state synchro-
nization finishes and the throughput is restored back to the original
level.

Figure 18 shows FAB’s reaction to permanent failures. A brick
fails, and is declared permanently dead four minutes later. For each
seggroup that includes the dead brick, another brick replaces the
dead one. These newly added bricks need to copy the existing data,
which consumes a steady portion of the disk traffic. No I/O errors
occur during this scenario. With DB running at full speed, as in
this picture, it takes about 1.5 hours to fully bring the new bricks
up to date. Without any foreground traffic, the disk synchronization
finishes after 25 minutes.
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Figure 17: Handling double failures in a 22-brick FAB clus-
ter. The second failure causes an I/O error on a segment group
that contains both the failed bricks. After the new view settles,
these segment groups can continue handling requests with one
remaining brick.
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Figure 18: A brick fails, and five minutes later, it is declared
dead and the affected segment groups are re-balanced across
surviving bricks.

8. CONCLUSION
This paper has described the design, implementation, and eval-

uation of FAB. FAB achieves two key requirements of enterprise
storage systems, stable, continuous service and high reliability, us-
ing two new mechanisms. First, it uses a voting-based protocol to
guarantee linearizable accesses to replicated or erasure-coded log-
ical blocks. This protocol transparently masks failures, and offers
better throughput than traditional master-slave replication by mask-
ing temporary overload conditions. Second, FAB deploys a dy-
namic quorum-reconfiguration protocol to allow the system to react
to brick additions or decommissioning without disrupting clients.
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