
15-853: Algorithms in the Real WorldConsistent HashingBased on the lecture by Bruce Maggs on November 14 2000 and the papersin the bibliography. Most of the �gures are taken from D. Lewin's MastersThesis [l98].November 14, 200Contents1 What is caching and why do we need it 22 Di�erent approaches to caching 33 The use of hashing in caching 64 Consistent hashing 95 Consistent hashing in practice 135.1 Using limited independence 145.2 Using limited precision numbers 145.3 An implementation of consistent hashing 156 Bibliography 17

1 What is caching and why do we need itCaching is a general strategy that has been employed to improve the ef-�ciency and reliability of data delivery over the Internet. The basic ideais to replicate information from content providers at special servers calledcaches. The following example shows how caches work and why they areuseful. Suppose a news site is set up in San Francisco and multiple usersin Boston access this site regularly. For each access to the site, a requestmessage and the requested information have to be routed across the countryover the Internet backbone (see Figure 1(i)).

Figure 1: (i) Multiple users in Boston access a news site across the coun-try. For every request made by a user in Boston the information is beingtransmitted across the backbone. (ii) When a cache is installed in Boston,the �rst user retrieves the data from across the country, but all the otherusers in Boston get the information locally from the cache. The cache pre-vents redundant tra�c from crossing the Internet backbone and reduces userlatency.If the same information is requested multiple times it will have to be

transmitted multiple times across the backbone. Now suppose a cache isinstalled in Boston. The �rst time a document is requested by a user inBoston it is sent across the country, but then it is kept in the cache so thatlater requests for this document can be served locally (see Figure 1(ii)).Installing a cache helps alleviate three problems impeding the performanceon the WWW:� Network CongestionAs we saw in the example, replicating information in a cache preventsredundant tra�c from crossing the Internet backbone. This reducesnetwork congestion and the problems related to it (packets might bedelayed or even dropped by routers if the network is congested).� Swamped serversThe load at the content provider is reduced. This is important forpopular sites which otherwise might be swamped with requests (the\hot-spot problem").� DistanceFinally, the user latency is reduced since the information is closer tothe user being served.2 Di�erent approaches to cachingThere are two extreme approaches to implementing caching. In the �rst onewe have a monolithic caching architecture where a single big cache is placedin a city to serve all of the users (see Figure 2). This is the approach thatwas used in the example in Section 1. This architecture has the disadvantagethat there is a single point of failure and that the cache may be congestedsince all users in the city use it. The second architecture overcomes theseproblems by using a distributed approach. Each neighborhood has its owncache that serves residents in that neighborhood (see Figure 3).This system circumvents the two problems above: it will survive a fail-ure and it spreads the work across several machines. Furthermore, it hasthe advantage that the caches are closer to the user and can therefore de-liver content faster. However, it also has some downsides. The biggest oneis that the hit rate will be lower. The �rst reason for that is that theyreceive requests from a smaller population. Another reason is that the in-dividual caches are smaller than the big cache in the monolithic approachand therefore hold only a smaller subset of the information from the contentprovider.

Figure 2: A monolithic caching architecture. A single cache is placed in thecity to server all of the users. Since the cache receives requests from a largepopulation, the hit rate is likely to be high. However, it has the disadvantagethat the cache must be a very large and fault-tolerant machine.Daniel Lewin and others developed in [K99],[L98] and [K97] a hybridapproach that strives to overcome the disadvantages of the above approachesabove while keeping the advantages. The design objectives they had in mindare the following:� Large distributed systemThe system should be built from a large number of small and cheapcaches that are distributed throughout the network. This way there isa cache near every user and the total load is distributed over severalmachines.� No centralized controlThe behavior of a cache should depend only on information availablelocally, or obtained in a non-centralized fashion without any centralcontrol that could be a critical point of failure.� Robust under di�erent viewsCaches can be added and removed from the network at any time andthere is no central control that keeps track of the status of cachingmachines. Thus, di�erent users may have di�erent views of the set ofcaches.

Figure 3: A distributed caching architecture. Each neighborhood has a cachethat serves residents in that neighborhood. Note that the caches are very closeto the users so any content that is in fact located in the cache is retrievedvery e�ciently. However, since any one cache only receives requests from asmall set of users, the hit rate is likely to be small.� Scale gracefullyThe Web grows every day, and so must the caching scheme if it is tokeep up with increasing use. Therefore the system should be designedto scale gracefully as the network grows.� Prevent swamping of hot spotsCaching machines and servers should never be swamped. Simply re-assigning responsibility for a hot page from a server to a cache willnot work since then the cache might be swamped. It will be necessaryto make copies of the hot page and distribute it to many caches. Aproblem is that it is impossible to predict the popularity of a page andonce a page becomes hot the cache it is assigned to might be swampedand become unable to communicate.� Minimize network usageThe system should be designed so that the total tra�c in the networkis reduced as much as possible. That means that the caching systemshould be designed so that as many requests as possible are served

close to the requester.� Balance storage requirementsThe storage capacity of a caching machine is limited. No cache shouldbe required to store a disproportionate fraction of the cached pages.� Low overheadThe caching scheme must be simple enough so that it won't increaseuser latency signi�cantly.Before going into their solution let's look at two ways of combining thetwo extreme approaches that have been described above.One idea (called harvest caching) is to have a hierarchical system withboth distributed neighborhood caches and a monolithic city cache (see Fig-ure 4). A request is �rst sent to the closest neighborhood cache and if a missoccurs, the request is forwarded to the city cache. This solution has some ofthe advantages of the two extreme approaches (good locality and high hitrate) but it also has the main drawback of the monolithic system: the bigcache has to be a large and fault tolerant machine, which is expensive oreven infeasible to build and maintain.The second solution tries to achieve the advantages of both extremeapproaches including the good cache hit rate of one large cache without theactual need for a big fault tolerant machine. The idea is to have a networkof distributed caches that cooperate. In such a system every client selectsone primary cache that he sends his requests to. If the primary cache missesit tries to locate the document in one of the other caches (by multicastingthe request to them) instead of going directly to the content provider. Thistechnique has all the advantages of the previous ones but it introduces anew problem: as the number of participating caches grows the number ofmessages between messages can become unmanageable.So the question is how to make a group of caches function together likeone big cache without having the inter-cache communication overhead ofthe above solution.3 The use of hashing in cachingThe idea of Lewin and others is to store each object only at one (or a few)machine(s) and have the user's browser directly contact the one cache thatshould contain the required object. The browsers make their decision withhelp of a hash function that maps URL's to the set of caches. Recall that

Figure 4: A hierarchy of caches with small neighborhood caches at the bot-tom of the hierarchy and a large monolithic city cache at the top. Requestsare �rst sent to the local neighborhood cache and on a miss they are for-warded to the city cache. The neighborhood caches bring content closer tothe user, while the city cache aggregates requests from a large population andthus prevents redundant tra�c from crossing the network outside the city.The problem with this system is that the city cache has to be a large andfault tolerant machine (or cluster of machines) which is expensive or eveninfeasible to build and maintain.in classical hashing a hash function is a mapping f of a set of items I to aset of buckets B: f : I ! Bwhere the goal is to spread the items evenly over the buckets. Typically, youdon't have one �xed hash function but you choose a hash function randomlyfrom a family of hash functions. This guarantees good expected performance.A commonly used family of hash functions is that of the linear congruentialhash functions. This family consists of all functionsf(x) = ax+ b mod p

where, p is prime, 0; 1; : : : ; p� 1 is the set of buckets and a and b are in0; 1; : : : ; p� 1. Figure 5 illustrates the use of linear congruential hash func-tions.
Figure 5: This �gure illustrates how hash functions distribute documentsbetween servers. Assume that document names are integers, and that thereare 13 servers 1; : : : ; 13. Documents are hashed to servers using a commontype of hash function which is f(d) = ad+b mod 13 for some �xed integersa and b. (i) shows the original distribution of 134 documents to servers.Note that some servers store many more documents than others, and thusin the model of equal access frequency they are more heavily loaded. (ii)shows the distribution of documents to servers by the hash function. Noserver is responsible for a disproportionately large share of documents.The question is whether these hash functions can be directly applied tothe caching problem by simply associating the URL's with items and thecaches with buckets and making sure that every browser knows the hashfunction.It turns out that there are couple of problems with this idea becauseof the dynamic nature of the Internet. While traditional hashing theoryassumes that the number of buckets is constant, in the Internet it happens

all the time that caches go down or that new caches are added. We could�x this problem by choosing a new random hash function every time thenumber of caches and therefore the range of the hash function changes.This solution, however, has two major drawbacks:1. All the users must be noti�ed when the hash function is changed, orall of their queries will go to the wrong cache.2. Furthermore, most items will be mapped to a di�erent bucket underthe new function which means in terms of caching that most objectswill have to be shu�ed to another cache. Figure 6 shows such a situ-ation.So what we really want is a class of hash functions that are still random(and therefore spread the items evenly over the buckets) but that don'tchange much when the range changes. This way only few objects haveto be shu�ed to another cache. It also takes care of the other problem:we can now allow di�erent users to have di�erent views of the system (i.e.,information about which caches are up or down) and to use di�erent hashingfunctions; since the hash functions don't change too much each object shouldbe mapped to only a small number of di�erent machines under the di�erentviews. This means we don't have to inform all users if caches go down orcome up.A hashing scheme that meets the above requirements, i.e., for most itemsthe mapping doesn't change if the range of the hash functions changes iscalled consistent hashing. The next section will formalize the ideas fromthis section and describe the class of consistent hash functions that Lewinand others developed.Please note at this point that while consistent hashing advances many ofour goals it is not su�cient to solve the hot-spot problem. It is still possiblethat a cache that contains a very popular document becomes a hot-spot.Avoiding the hot-spot problem requires a popular page to be stored in morethan one cache. [L98] describes how to do that using random trees.4 Consistent hashingLet's �rst summarize and formalize the properties we strive for in a consis-tent hash function:� Balance: Items are distributed to buckets \randomly".

Figure 6: The top �gure shows the assignment of 10 documents to 4 serversusing the hash function f(d) = d+ 1 mod 4. The bottom part of the �gureshows the new assignment after one additional server is added and the hashfunction changed to f(d) = d + 1 mod 5. Squares show the new mappingand circles show the mapping of the previous function. Note that almostevery document is mapped to a di�erent server as a results of the additionof the new server.� Monotonicity: When a bucket is added, the only items reassignedare those that are assigned to the new bucket.� Load: The load of a bucket is the number of items assigned to a bucketover a set of views. Ideally, the load should be small.� Spread: The spread of an item is the number of buckets an item isplaced in over a set of views. Ideally, the spread should be small.A consistent hash family is one that has all these properties. Before wedescribe the consistent hash family given by Lewin and others we need afew de�nitions:

De�nition: Let I be the set of items and B the set of buckets. A viewV � B is a subset of buckets. A ranged hash function is a function thatmaps (view, item) pairs to buckets:f : 2B � I ! BfV (i) gives the bucket item i is mapped to under view V .The hash family given by Lewin is called UCrandom which stands forUnit Circle Random. Let C be the circle of unit circumference. UCrandommaps both items and buckets to points on the unit circle using two standardhash functions rI and rB: rI : I ! CrB : B ! CGiven rI and rB, fV (i) is de�ned to be the �rst bucket in V that we come towhen traversing the circle clockwise from rI(i). The following two examplesillustrate this concept.Example 1: Figure 7 gives an example for a hash function from theUCrandom family with 6 buckets and 8 items. Both documents and serversare mapped to points on a circle using standard hash functions. A documentis assigned to the closest server going clockwise around the circle. For ex-ample, items 6, 7, and 8 are mapped to server F . Arrows show the mappingof documents to servers. When a new server is added the only documentsthat are reassigned are those now closest to the new server going clockwisearound the circle. In this case when we add the new server only items 6 and7 move to the new server. Items do not move between previously existingservers. The squares in the lower part of the �gure show the new mappingand circles are the previous mapping. As you can see that fewer items movethan under the standard hash function.Example 2: Figure 8 gives another example of a hash function fromthe UCrandom family. Note the unlucky placement of bucket points aroundthe unit circle. Bucket A is responsible for a disproportionately large sectionof the unit circle. Since items are distributed randomly around the circle itis very likely that bucket A will have many more items assigned to it thanother buckets do!To avoid situations like in the second example we add another littletweak: instead of mapping each bucket to one point on the unit circle wemap it to several points. Formally, we use a function rB : B � [m]! C tomap m copies of each bucket to the circle. This makes a poor distributionof buckets on the circle, where most of the items map to the same bucket,less likely. An example for two buckets and m = 4 is shown in Figure 9.

Figure 7: An example for a hash function from the UCrandom family with6 buckets and 8 items. When a bucket is added only two documents aremapped to a di�erent server than before.It is quite easy to show the monotonicity of UCrandom.Theorem 1: The family of hash functions UCrandom is monotone.Proof: We have to show that if buckets are removed the mappingchanges only for items that were originally in one of the removed buckets.Similarly, we have to show that if we add buckets then all the items whosemapping changes are now mapped to the new bucket. Let V1 � V2 � B betwo views of the buckets. Let f be any function in UCrandom. We need toshow that fV2(i) 2 V1 implies that fV1(i) = fV2(i). From fV2(i) 2 V1 followsthat none of the buckets in V2 n V1 lies between i and fV2(i) on the unitcircle. Therefore, adding or removing buckets in V2 n V1 doesn't change themapping of i. Figure 10 illustrates this proof.With respect to load, spread and balance the following can be proven:Theorem 2: Let V = V1; V2; : : : ; Vk be a set of views of the set ofbuckets B such that: jSkj=1 Vj j = T and for all 1 � j � k, jVjj � T=t. LetN > 1 be a con�dence factor. If each bucket is replicated and mapped m

Figure 8: Another example of a hash function from the UCrandom family.Note that this function has a very poor distribution of buckets and mostitems will be mapped to server A.times then:� Spread: For any item i 2 I , spreadf(V; i) = O(t log(Nk)) with proba-bility greater than 1� 1=N over the choice of f 2 UCrandom.� Load: For any bucket b 2 B, loadf(V; b) = O�� jIjT + 1� t log(Nmk)�with probability greater than 1�1=N over the choice of f 2 UCrandom.� Balance: For any �xed view V and item i, the probability that item iis mapped to bucket b in view V is O � 1jV j � log(N jV j)m + 1�� + 1N .Proof: The proof of this theorem is beyond the scope of this document.Please see [L98] for a full proof.Note that if we choose m =
(log jV j) and N = poly(jV j), then thebound simpli�es into O(1=jV j) which gives the de�nition of the balanceproperty.5 Consistent hashing in practiceIn practice, there would be two problems if we tried to implement consistenthashing in exactly the way we described it above. The �rst one is that storinga hash function from our family of consistent hash functions would requirein�nite space, since we are using real numbers. Second, choosing a functionfrom the family would require an in�nite number of random bits.

Fortunately, it is possible to change the basic scheme to remedy theseproblems. It turns out that it is su�cient to have limited independence inthe mapping of points to the circle and also to use limited precision in thereal numbers.5.1 Using limited independenceA family of functions is k-way independent if any k elements from the domainare mapped independently into the range, i.e., let x1; x2; : : : ; xk be elementsof the domain and y1; : : : ; yk be elements of the range. ThenProb[f(x1) = y1; f(x2) = y2; : : : ; f(xk) = yk] = �ki=1Prob[f(xi) = yi]:It can be proven that it is su�cient to use a k-way independent mappingof the buckets and items:Lemma 1: Theorem 1 and Theorem 2 still hold if the bucket and itempoints are each mapped
(t log(NTk))-way independently, where t, N , andT are the same as in Theorem 2.5.2 Using limited precision numbersEach function in the family UCrandom is de�ned by the mapping of jI j+mjBjrandom points on the real unit circle. The important observation is that itis not the exact position of these points but only their clockwise orderingaround the circle matters. Therefore, we need only enough precision bitsso that the ordering on a set of jI j + mjBj random points is with highprobability completely de�ned if we use only this number of bits in therepresentation of the points. Luckily, it turns out that this is already thecase for O(log jI j+mjBj) bits of precision. More precisely:Lemma 2: With probability at least 1 � 1=N , the clockwise orderingon n random points in the unit circle is determined by the 2 log(Nn) mostsigni�cant bits of the points (N is an arbitrary con�dence factor).And even better, this is still the case if the points are k-way indepen-dently distributed for k � 2, instead of completely randomly distributed.Putting the above results together gives us the following theorem.Theorem 3: If the mapping of items and buckets are
(t log(NTk))-way independent (N is a con�dence factor), items are mapped independentlyof bucket points and O(log(N(mjBj+ jI j))) bits of precision are used thenTheorem 1 and Theorem 2 hold with probability at least 1� 1=N .That means we can map items and buckets�
(t log(NTk))-way independently instead of completely randomly

� and only to those points on the unit circle that can be represented byno more than O(log(N(mjBj+ jI j))) bits of precisionand with high probability we will still have all the nice properties of theoriginal UCrandom function.5.3 An implementation of consistent hashingThe authors of [K98] founded a company called Akamai that actually em-ploys consistent hashing. This company maintains caches all over the worldand o�ers content providers to cache data for them. Akamai caches mainlypictures and other embedded �les. The reasons are that these are typicallythe big �les (while the frame document itself is usually small) which makeup most of the load at the content provider and are also mainly responsiblefor the high latency in retrieving a web page. Another reason for cachingonly pictures is that the content provider is still able to monitor the tra�cat their site.Akamai uses distributed caches that employ consistent hashing. Theinteresting question is where the hashing happens. It turns out that Akamaiuses a nameserver hack to allow you to get the �les from the nearest cache.Figure 11 illustrates how this works.The hashing is done in two steps:1. The content provider hashes the URL to a serial number, e.g. 212in the example. If this document is requested the local nameserver�rst asks the Akamai high-level nameserver for the IP-address of thelow-level nameserver.2. The low-level name server evaluates the consistent hash function forthe current view at the given serial number. It then returns the IP-addresses of the caches that the document is mapped to under theconsistent hash function.Akamai provides the content provider with a program that does the �rststep, i.e., the mapping of URLs to serial numbers. In general, it tries tomap all the URLs in an HTML-document to the same serial number so asto minimize the number of DNS lookups. However, if a certain limit on thetotal number of object bytes on a serial number is reached it will start usinga new serial number. The goal is to minimize DNS lookups without makingit di�cult to perform load balancing.Suppose a content provider hashes a document in step 1 to \a1.g.akamai.net".Below we use some useful tools to show how names resolution works for this

\akamaized" document and to track the way that a request for this docu-ment takes.dig (domain information groper) sends domain name query packets toname servers and can be used to gather information from the DomainName System servers. In Figure 12 we ran dig a1.g.akamai.net to �ndout which akamai server our document is mapped to. The output tellsus that \a1.g.akamai.net" resolves to the IP-addresses 206.245.157.79 and206.245.157.71 and that the query time was 1 msec.The second tool is traceroute. It prints the route packets take to a net-work host. Figure 13 shows the results of a traceroute a1.g.akamai.net.We see that it takes a packet 10 hops until it �nally reaches the akamaiserver with IP-address 206.245.157.79 (recall from above that this is one ofthe two IP-addresses that a1.g.akamai.net is mapped to). Furthermore, ittakes a packet on average around 16 ms to get there.

6 Bibliography[K99] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,K. Iwamoto, B. Kim, L. Matkins, Y. Yerushalmi. \Web Cachingwith Consistent Hashing." Proceedings of the 8th International WWWConference, May 1999.[L98] D. Lewin \Consistent hashing and random trees : algorithms forcaching in distributed networks." MIT Master Thesis, May 1998.[K97] D. Karger, Eric Lehman, Tom Leighton, Matthew Levine, DanielLewin, Rina Panigrahy, \Consistent Hashing and Random Trees : Dis-tributed Caching Protocols for Relieving Hot Spots on the World WideWeb." Proceedings of the 29th Annual ACM Symposium on Theory ofComputing, May 1997.

Figure 9: (i) A unit circle hash function with m = 4. Buckets A and Bhave 4 points associated with each of them. Items are mapped to the bucketsclosest to them going clockwise. Item 1 is closest to a point of bucket Aand item 2 is closest to a point of bucket B. Item 5 is closest clockwise toa point of bucket A. (ii) The unit circle drawn as an interval with lengthone where we imagine that the endpoints of the interval are glued together.(iii) The parts of the circle (viewed as an interval) that buckets A and Bare responsible for. Bucket points are responsible for the arc directly to theirleft. Since there are multiple copies of each bucket, buckets are responsiblefor a set of arcs.

Figure 10: Monotonicity for the family UCrandom. In this �gure the unitcircle is depicted by an interval of length one, which is obtained by cuttingthe unit circle at an arbitrary point. (i) The mapping of points to the circlefor a view V2 = A;B;C;D (m=2 in this example). The closest bucket pointclockwise of i's point is one associated with the bucket D. (ii) For any viewV1 2 V2 containing the bucket D (here V1 = C;D), the point closest to i'spoint will still be D. .
nameserver

local

Akamai
high-level

Akamai
low-level

nameserver

nameserver

206.245.167.66

128.11.47.240

g.akamai.net ?

206.245.157.72

206.245.167.66

a212.g.akamai.net

206.245.157.78Figure 11: The �gure shows how a request for a212.g.akamai.net is resolved.

; <<>> DiG 8.2 <<>> a1.g.akamai.net;; res options: init recurs defnam dnsrch;; got answer:;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 13, ADDITIONAL: 13;; QUERY SECTION:;; a1.g.akamai.net, type = A, class = IN;; ANSWER SECTION:a1.g.akamai.net. 7S IN A 206.245.157.79a1.g.akamai.net. 7S IN A 206.245.157.71;; Total query time: 1 msec;; FROM: gs116.sp.cs.cmu.edu to SERVER: default -- 127.0.0.1;; WHEN: Thu Nov 30 20:46:01 2000;; MSG SIZE sent: 33 rcvd: 484Figure 12: Using dig1 GIGROUTER.NET.CS.CMU.EDU (128.2.254.36) 0.462 ms 0.353 ms 0.350 ms2 RTRBONE-FA4-0-0.GW.CMU.NET (128.2.0.2) 0.713 ms 0.664 ms 0.562 ms3 killifish.psc.net (198.32.224.11) 1.388 ms 0.992 ms 1.582 ms4 Serial0-1-0.GW2.PIT1.ALTER.NET (157.130.19.241) 1.432 ms 2.164 ms 1.730 ms5 554.at-2-1-0.XR1.DCA1.ALTER.NET (152.63.40.94) 6.427 ms 6.419 ms 7.960 ms6 195.ATM6-0.GW4.PHL1.ALTER.NET (152.63.37.17) 10.451 ms 9.835 ms 10.468 ms7 fastnetoc-gw.customer.alter.net (157.130.251.174) 10.484 ms 10.804 ms 9.631 ms8 pos4-0-0-abepa.fast.net (206.245.159.113) 14.573 ms 15.731 ms 13.715 ms9 cust01-abe.fast.net (209.92.0.9) 15.190 ms 15.269 ms 16.962 ms10 a206-245-157-79.deploy.akamaitechnologies.com (206.245.157.79) 16.912 ms 15.424 ms 16.164 msFigure 13: Using Tracroute

