15-853: Algorithms in the Real World
Consistent Hashing

Based on the lecture by Bruce Maggs on November 14 2000 and the papers
in the bibliography. Most of the figures are taken from D. Lewin’s Masters
Thesis [198].

November 14, 200

Contents

1 What is caching and why do we need it 2

2 Different approaches to caching 3

3 The use of hashing in caching 6

4 Consistent hashing 9

5 Consistent hashing in practice 13
5.1 Using limited independence 14
5.2 Using limited precision numbers 14
5.3 An implementation of consistent hashing 15

6 Bibliography 17

1 What is caching and why do we need it

Caching is a general strategy that has been employed to improve the ef-
ficiency and reliability of data delivery over the Internet. The basic idea
is to replicate information from content providers at special servers called
caches. The following example shows how caches work and why they are
useful. Suppose a news site is set up in San Francisco and multiple users
in Boston access this site regularly. For each access to the site, a request
message and the requested information have to be routed across the country
over the Internet backbone (see Figure 1(i)).

D\ |

]

Internes Backhone Mews Site

Boson

(i)

Figure 1: (i) Multiple users in Boston access a news site across the coun-
try. For every request made by a user in Boston the information is being
transmitted across the backbone. (ii) When a cache is installed in Boston,
the first user retrieves the data from across the country, but all the other
users in Boston get the information locally from the cache. The cache pre-
vents redundant traffic from crossing the Internet backbone and reduces user
latency.

If the same information is requested multiple times it will have to be

transmitted multiple times across the backbone. Now suppose a cache is
installed in Boston. The first time a document is requested by a user in
Boston it is sent across the country, but then it is kept in the cache so that
later requests for this document can be served locally (see Figure 1(ii)).
Installing a cache helps alleviate three problems impeding the performance

on the WWW:

e Network Congestion
As we saw in the example, replicating information in a cache prevents
redundant traffic from crossing the Internet backbone. This reduces
network congestion and the problems related to it (packets might be
delayed or even dropped by routers if the network is congested).

e Swamped servers
The load at the content provider is reduced. This is important for
popular sites which otherwise might be swamped with requests (the
“hot-spot problem”).

e Distance
Finally, the user latency is reduced since the information is closer to
the user being served.

2 Different approaches to caching

There are two extreme approaches to implementing caching. In the first one
we have a monolithic caching architecture where a single big cache is placed
in a city to serve all of the users (see Figure 2). This is the approach that
was used in the example in Section 1. This architecture has the disadvantage
that there is a single point of failure and that the cache may be congested
since all users in the city use it. The second architecture overcomes these
problems by using a distributed approach. Each neighborhood has its own
cache that serves residents in that neighborhood (see Figure 3).

This system circumvents the two problems above: it will survive a fail-
ure and it spreads the work across several machines. Furthermore, it has
the advantage that the caches are closer to the user and can therefore de-
liver content faster. However, it also has some downsides. The biggest one
is that the hit rate will be lower. The first reason for that is that they
receive requests from a smaller population. Another reason is that the in-
dividual caches are smaller than the big cache in the monolithic approach
and therefore hold only a smaller subset of the information from the content
provider.

B Iniemet Backbone

Meighborhoods of Users

(i)

Figure 2: A monolithic caching architecture. A single cache is placed in the
city to server all of the users. Since the cache receives requests from a large
population, the hit rate is likely to be high. However, it has the disadvantage
that the cache must be a very large and fault-tolerant machine.

Daniel Lewin and others developed in [K99],[L.98] and [K97] a hybrid
approach that strives to overcome the disadvantages of the above approaches
above while keeping the advantages. The design objectives they had in mind
are the following;:

e Large distributed system
The system should be built from a large number of small and cheap
caches that are distributed throughout the network. This way there is
a cache near every user and the total load is distributed over several
machines.

e No centralized control
The behavior of a cache should depend only on information available
locally, or obtained in a non-centralized fashion without any central
control that could be a critical point of failure.

e Robust under different views
Caches can be added and removed from the network at any time and
there is no central control that keeps track of the status of caching
machines. Thus, different users may have different views of the set of
caches.

B Intemet Backbone

MNeighbarhoods of Users

L

Figure 3: A distributed caching architecture. Each neighborhood has a cache
that serves residents in that neighborhood. Note that the caches are very close
to the users so any content that is in fact located in the cache is retrieved
very efficiently. However, since any one cache only receives requests from a
small set of users, the hit rate is likely to be small.

e Scale gracefully
The Web grows every day, and so must the caching scheme if it is to
keep up with increasing use. Therefore the system should be designed
to scale gracefully as the network grows.

e Prevent swamping of hot spots

Caching machines and servers should never be swamped. Simply re-
assigning responsibility for a hot page from a server to a cache will
not work since then the cache might be swamped. It will be necessary
to make copies of the hot page and distribute it to many caches. A
problem is that it is impossible to predict the popularity of a page and
once a page becomes hot the cache it is assigned to might be swamped
and become unable to communicate.

e Minimize network usage
The system should be designed so that the total traffic in the network
is reduced as much as possible. That means that the caching system
should be designed so that as many requests as possible are served

close to the requester.

e Balance storage requirements
The storage capacity of a caching machine is limited. No cache should
be required to store a disproportionate fraction of the cached pages.

e Low overhead
The caching scheme must be simple enough so that it won’t increase
user latency significantly.

Before going into their solution let’s look at two ways of combining the
two extreme approaches that have been described above.

One idea (called harvest caching) is to have a hierarchical system with
both distributed neighborhood caches and a monolithic city cache (see Fig-
ure 4). A request is first sent to the closest neighborhood cache and if a miss
occurs, the request is forwarded to the city cache. This solution has some of
the advantages of the two extreme approaches (good locality and high hit
rate) but it also has the main drawback of the monolithic system: the big
cache has to be a large and fault tolerant machine, which is expensive or
even infeasible to build and maintain.

The second solution tries to achieve the advantages of both extreme
approaches including the good cache hit rate of one large cache without the
actual need for a big fault tolerant machine. The idea is to have a network
of distributed caches that cooperate. In such a system every client selects
one primary cache that he sends his requests to. If the primary cache misses
it tries to locate the document in one of the other caches (by multicasting
the request to them) instead of going directly to the content provider. This
technique has all the advantages of the previous ones but it introduces a
new problem: as the number of participating caches grows the number of
messages between messages can become unmanageable.

So the question is how to make a group of caches function together like
one big cache without having the inter-cache communication overhead of
the above solution.

3 The use of hashing in caching

The idea of Lewin and others is to store each object only at one (or a few)
machine(s) and have the user’s browser directly contact the one cache that
should contain the required object. The browsers make their decision with
help of a hash function that maps URL’s to the set of caches. Recall that

4 Intemet Backbone

Neighborhoods of Users

(i

Figure 4: A hierarchy of caches with small neighborhood caches at the bot-
tom of the hierarchy and a large monolithic city cache at the top. Requests
are first sent to the local neighborhood cache and on a miss they are for-
warded to the city cache. The neighborhood caches bring content closer to
the user, while the city cache aggregates requests from a large population and
thus prevents redundant traffic from crossing the network outside the city.
The problem with this system is that the city cache has to be a large and
fault tolerant machine (or cluster of machines) which is expensive or even
infeasible to build and maintain.

in classical hashing a hash function is a mapping f of a set of items [to a
set of buckets B:
f:I— B

where the goal is to spread the items evenly over the buckets. Typically, you
don’t have one fixed hash function but you choose a hash function randomly
from a family of hash functions. This guarantees good expected performance.
A commonly used family of hash functions is that of the linear congruential
hash functions. This family consists of all functions

f(z)=az+b modp

where, p is prime, 0,1,...,p— 1 is the set of buckets and a and b are in
0,1,...,p— 1. Figure 5 illustrates the use of linear congruential hash func-

tions.

50

30

23

12

Figure 5: This figure illustrates how hash functions distribute documents
between servers. Assume that document names are integers, and that there
are 13 servers 1,...,13. Documents are hashed to servers using a common
type of hash function which is f(d) = ad+b mod 13 for some fized integers
a and b. (i) shows the original distribution of 134 documents to servers.
Note that some servers store many more documents than others, and thus
in the model of equal access frequency they are more heavily loaded. (ii)
shows the distribution of documents to servers by the hash function. No
server is responsible for a disproportionately large share of documents.

The question is whether these hash functions can be directly applied to
the caching problem by simply associating the URL’s with items and the
caches with buckets and making sure that every browser knows the hash
function.

It turns out that there are couple of problems with this idea because
of the dynamic nature of the Internet. While traditional hashing theory
assumes that the number of buckets is constant, in the Internet it happens

all the time that caches go down or that new caches are added. We could
fix this problem by choosing a new random hash function every time the
number of caches and therefore the range of the hash function changes.
This solution, however, has two major drawbacks:

1. All the users must be notified when the hash function is changed, or
all of their queries will go to the wrong cache.

2. Furthermore, most items will be mapped to a different bucket under
the new function which means in terms of caching that most objects
will have to be shuffled to another cache. Figure 6 shows such a situ-
ation.

So what we really want is a class of hash functions that are still random
(and therefore spread the items evenly over the buckets) but that don’t
change much when the range changes. This way only few objects have
to be shuffled to another cache. It also takes care of the other problem:
we can now allow different users to have different views of the system (i.e.,
information about which caches are up or down) and to use different hashing
functions; since the hash functions don’t change too much each object should
be mapped to only a small number of different machines under the different
views. This means we don’t have to inform all users if caches go down or
come up.

A hashing scheme that meets the above requirements, i.e., for most items
the mapping doesn’t change if the range of the hash functions changes is
called consistent hashing. The next section will formalize the ideas from
this section and describe the class of consistent hash functions that Lewin
and others developed.

Please note at this point that while consistent hashing advances many of
our goals it is not sufficient to solve the hot-spot problem. It is still possible
that a cache that contains a very popular document becomes a hot-spot.
Avoiding the hot-spot problem requires a popular page to be stored in more
than one cache. [L.98] describes how to do that using random trees.

4 Consistent hashing

Let’s first summarize and formalize the properties we strive for in a consis-
tent hash function:

e Balance: Items are distributed to buckets “randomly”.

Servers

38

4
43

2 ® °
i L]
0 L] L] L]
—+ t + + 1 +
5 T 10 1 27 29 36
(i)
Servers
a1
3 m} ® O
2T ® a e O
4+ O o L
o+ ® e o [O
+ t + t +
5 7 10 1 7 ') 36

38

43

Figure 6: The top figure shows the assignment of 10 documents to 4 servers
using the hash function f(d) =d+1 mod 4. The bottom part of the figure
shows the new assignment after one additional server is added and the hash
function changed to f(d) = d+ 1 mod 5. Squares show the new mapping
and circles show the mapping of the previous function. Note that almost
every document is mapped to a different server as a results of the addition

of the new server.

e Monotonicity: When a bucket is added, the only items reassigned
are those that are assigned to the new bucket.

e Load: The load of a bucket is the number of items assigned to a bucket

over a set of views. Ideally, the load should be small.

e Spread: The spread of an item is the number of buckets an item is
placed in over a set of views. Ideally, the spread should be small.

A consistent hash family is one that has all these properties.

Before we

describe the consistent hash family given by Lewin and others we need a

few definitions:

Definition: Let I be the set of items and B the set of buckets. A view
V' C B is a subset of buckets. A ranged hash function is a function that
maps (view, item) pairs to buckets:

[:2Px15B

fv (i) gives the bucket item ¢ is mapped to under view V.

The hash family given by Lewin is called UC,4,d0m which stands for
Unit Circle Random. Let C' be the circle of unit circumference. UC,q4ndom
maps both items and buckets to points on the unit circle using two standard

hash functions r; and rpg:
rr: Il —C

rg:B— C

Given ry and rpg, fv (i) is defined to be the first bucket in V' that we come to
when traversing the circle clockwise from r;(¢). The following two examples
illustrate this concept.

Example 1: Figure 7 gives an example for a hash function from the
UC,andom family with 6 buckets and 8 items. Both documents and servers
are mapped to points on a circle using standard hash functions. A document
is assigned to the closest server going clockwise around the circle. For ex-
ample, items 6, 7, and 8 are mapped to server F. Arrows show the mapping
of documents to servers. When a new server is added the only documents
that are reassigned are those now closest to the new server going clockwise
around the circle. In this case when we add the new server only items 6 and
7 move to the new server. Items do not move between previously existing
servers. The squares in the lower part of the figure show the new mapping
and circles are the previous mapping. As you can see that fewer items move
than under the standard hash function.

Example 2: Figure 8 gives another example of a hash function from
the UC,4ndom family. Note the unlucky placement of bucket points around
the unit circle. Bucket A is responsible for a disproportionately large section
of the unit circle. Since items are distributed randomly around the circle it
is very likely that bucket A will have many more items assigned to it than
other buckets do!

To avoid situations like in the second example we add another little
tweak: instead of mapping each bucket to one point on the unit circle we
map it to several points. Formally, we use a function rg : B x [m] = C to
map m copies of each bucket to the circle. This makes a poor distribution
of buckets on the circle, where most of the items map to the same bucket,
less likely. An example for two buckets and m = 4 is shown in Figure 9.

{i))

Documents

Figure 7: An example for a hash function from the UC, ndom family with
6 buckets and 8 items. When a bucket is added only two documents are
mapped to a different server than before.

It is quite easy to show the monotonicity of UC, 4nd0m-

Theorem 1: The family of hash functions UC) 4,40, 18 monotone.

Proof: We have to show that if buckets are removed the mapping
changes only for items that were originally in one of the removed buckets.
Similarly, we have to show that if we add buckets then all the items whose
mapping changes are now mapped to the new bucket. Let V4 C Vo C B be
two views of the buckets. Let f be any function in UC,4,40m. We need to
show that fy, (i) € V; implies that fy, (i) = fv, (7). From fy,(¢) € V; follows
that none of the buckets in V5 \ Vj lies between ¢ and fy,(7) on the unit
circle. Therefore, adding or removing buckets in V5 \ V| doesn’t change the
mapping of 7. Figure 10 illustrates this proof.

With respect to load, spread and balance the following can be proven:

Theorem 2: Let V = Vi, V5, ..., V} be a set of views of the set of
buckets B such that: |Uf:1 Vil]=Tand forall 1 < j <k, |V;] > T/t. Let
N > 1 be a confidence factor. If each bucket is replicated and mapped m

Figure 8: Another example of a hash function from the UC, pdom family.
Note that this function has a very poor distribution of buckets and most
items will be mapped to server A.

times then:

e Spread: For any item 7 € I, spreads(V,i) = O(tlog(Nk)) with proba-
bility greater than 1 — 1/N over the choice of f € UC,qund0m-

e Load: For any bucket b € B, load;(V,b) = O (('Ti| + 1) tlog(Nmk))
with probability greater than 1—1/N over the choice of f € UC,4nd0m -

e Balance: For any fixed view V and item ¢, the probability that item ¢

is mapped to bucket b in view V is O (ﬁ (log(ﬁw + 1)) + ﬁ

Proof: The proof of this theorem is beyond the scope of this document.
Please see [L98] for a full proof.

Note that if we choose m = Q(log|V|) and N = poly(|V]), then the
bound simplifies into O(1/|V|) which gives the definition of the balance

property.

5 Consistent hashing in practice

In practice, there would be two problems if we tried to implement consistent
hashing in exactly the way we described it above. The first one is that storing
a hash function from our family of consistent hash functions would require
infinite space, since we are using real numbers. Second, choosing a function
from the family would require an infinite number of random bits.

Fortunately, it is possible to change the basic scheme to remedy these
problems. It turns out that it is sufficient to have limited independence in
the mapping of points to the circle and also to use limited precision in the
real numbers.

5.1 Using limited independence

A family of functions is k-way independent if any k elements from the domain
are mapped independently into the range, i.e., let zy, x5, ...,z be elements
of the domain and ¥y, ..., yx be elements of the range. Then

Prob[f(z1) = y1, f(22) = ya, ..., flag) = yk] = HleProb[f(xi) =y

It can be proven that it is sufficient to use a k-way independent mapping
of the buckets and items:

Lemma 1: Theorem 1 and Theorem 2 still hold if the bucket and item
points are each mapped Q(tlog(NTk))-way independently, where ¢, N, and
T are the same as in Theorem 2.

5.2 Using limited precision numbers

Each function in the family UC,4,dom is defined by the mapping of |I|+m/|B|
random points on the real unit circle. The important observation is that it
is not the exact position of these points but only their clockwise ordering
around the circle matters. Therefore, we need only enough precision bits
so that the ordering on a set of |I| + m|B| random points is with high
probability completely defined if we use only this number of bits in the
representation of the points. Luckily, it turns out that this is already the
case for O(log || + m|B]|) bits of precision. More precisely:

Lemma 2: With probability at least 1 — 1/N, the clockwise ordering
on n random points in the unit circle is determined by the 2log(Nn) most
significant bits of the points (N is an arbitrary confidence factor).

And even better, this is still the case if the points are k-way indepen-
dently distributed for & > 2, instead of completely randomly distributed.

Putting the above results together gives us the following theorem.

Theorem 3: If the mapping of items and buckets are Q(tlog(NTk))-
way independent (N is a confidence factor), items are mapped independently
of bucket points and O(log(N (m|B| + |I|))) bits of precision are used then
Theorem 1 and Theorem 2 hold with probability at least 1 — 1/N.

That means we can map items and buckets

o Q(tlog(NTk))-way independently instead of completely randomly

e and only to those points on the unit circle that can be represented by
no more than O(log(N (m|B|+ |I|))) bits of precision

and with high probability we will still have all the nice properties of the
original UC,4n40m function.

5.3 An implementation of consistent hashing

The authors of [K98] founded a company called Akamai that actually em-
ploys consistent hashing. This company maintains caches all over the world
and offers content providers to cache data for them. Akamai caches mainly
pictures and other embedded files. The reasons are that these are typically
the big files (while the frame document itself is usually small) which make
up most of the load at the content provider and are also mainly responsible
for the high latency in retrieving a web page. Another reason for caching
only pictures is that the content provider is still able to monitor the traffic
at their site.

Akamai uses distributed caches that employ consistent hashing. The
interesting question is where the hashing happens. It turns out that Akamai
uses a nameserver hack to allow you to get the files from the nearest cache.
Figure 11 illustrates how this works.

The hashing is done in two steps:

1. The content provider hashes the URL to a serial number, e.g. 212
in the example. If this document is requested the local nameserver
first asks the Akamai high-level nameserver for the IP-address of the
low-level nameserver.

2. The low-level name server evaluates the consistent hash function for
the current view at the given serial number. It then returns the IP-
addresses of the caches that the document is mapped to under the
consistent hash function.

Akamai provides the content provider with a program that does the first
step, i.e., the mapping of URLs to serial numbers. In general, it tries to
map all the URLs in an HTML-document to the same serial number so as
to minimize the number of DNS lookups. However, if a certain limit on the
total number of object bytes on a serial number is reached it will start using
a new serial number. The goal is to minimize DNS lookups without making
it difficult to perform load balancing.
Suppose a content provider hashes a document in step 1 to “al.g.akamai.net”.

Below we use some useful tools to show how names resolution works for this

“akamaized” document and to track the way that a request for this docu-
ment takes.

dig (domain information groper) sends domain name query packets to
name servers and can be used to gather information from the Domain
Name System servers. In Figure 12 we ran dig al.g.akamai.net to find
out which akamai server our document is mapped to. The output tells
us that “al.g.akamai.net” resolves to the IP-addresses 206.245.157.79 and
206.245.157.71 and that the query time was 1 msec.

The second tool is traceroute. 1t prints the route packets take to a net-
work host. Figure 13 shows the results of a traceroute al.g.akamai.net.
We see that it takes a packet 10 hops until it finally reaches the akamai
server with IP-address 206.245.157.79 (recall from above that this is one of
the two IP-addresses that al.g.akamai.net is mapped to). Furthermore, it
takes a packet on average around 16 ms to get there.

6 Bibliography

[K99]

[L98]

[K97]

D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, Y. Yerushalmi. “Web Caching
with Consistent Hashing.” Proceedings of the 8th International WWW
Conference, May 1999.

D. Lewin “Consistent hashing and random trees : algorithms for
caching in distributed networks.” MIT Master Thesis, May 1998.

D. Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel
Lewin, Rina Panigrahy, “Consistent Hashing and Random Trees : Dis-
tributed Caching Protocols for Relieving Hot Spots on the World Wide
Web.” Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, May 1997.

= L - ? et A== 5=

Buckets

(i)

(i)

Figure 9: (i) A unit circle hash function with m = 4. Buckets A and B
have 4 points associated with each of them. Items are mapped to the buckets
closest to them going clockwise. Item 1 is closest to a point of bucket A
and item 2 is closest to a point of bucket B. Item 5 is closest clockwise to
a point of bucket A. (ii) The unit circle drawn as an interval with length
one where we imagine that the endpoints of the interval are glued together.
(iii) The parts of the circle (viewed as an interval) that buckets A and B
are responsible for. Bucket points are responsible for the arc directly to their
left. Since there are multiple copies of each bucket, buckets are responsible
for a set of arcs.

Buckets
(ii)

Figure 10: Monotonicity for the family UC,qndom- In this figure the unit
circle is depicted by an interval of length one, which is obtained by cutting
the unit circle at an arbitrary point. (i) The mapping of points to the circle
for aview Vo = A, B,C, D (m=2 in this example). The closest bucket point
clockwise of i’s point is one associated with the bucket D. (ii) For any view
Vi € Vi containing the bucket D (here Vi = C, D), the point closest to i’s
point will still be D. .

Akamai
high-level
nameserver

128.11.47.240

local
nameserver

Akamai
low-level
nameserver

206.245.167.66

Figure 11: The figure shows how a request for a212.g.akamai.net is resolved.

; <<>> DiG 8.2 <<>> al.g.akamai.net

)

al.
al.

O 00 N O 0O W N -

e
o

; res options: init recurs defnam dnsrch

; got answer:

; —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 4

; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 13, ADDITIONAL: 13
; QUERY SECTION:

al.g.akamai.net, type = A, class = IN

ANSWER SECTION:
g.akamai.net. 73 IN A 206.245.157.79
g.akamai.net. 73 IN A 206.245.157.71

; Total query time: 1 msec

; FROM: gs116.sp.cs.cmu.edu to SERVER: default -- 127.0.0.1
; WHEN: Thu Nov 30 20:46:01 2000

; MSG SIZE sent: 33 rcvd: 484

Figure 12: Using dig

GIGROUTER.NET.CS.CMU.EDU (128.2.254.36) 0.462 ms 0.353 ms 0.350 ms
RTRBONE-FA4-0-0.GW.CMU.NET (128.2.0.2) 0.713 ms 0.664 ms 0.562 ms
killifish.psc.net (198.32.224.11) 1.388 ms 0.992 ms 1.582 ms
SerialO-1-0.GW2.PIT1.ALTER.NET (157.130.19.241) 1.432 ms 2.164 ms 1.730 ms
554.at-2-1-0.XR1.DCA1.ALTER.NET (152.63.40.94) 6.427 ms 6.419 ms 7.960 ms
195.ATM6-0.GW4.PHL1.ALTER.NET (152.63.37.17) 10.451 ms 9.835 ms 10.468 ms
fastnetoc-gw.customer.alter.net (157.130.251.174) 10.484 ms 10.804 ms 9.631 ms
pos4-0-0-abepa.fast.net (206.245.159.113) 14.573 ms 15.731 ms 13.715 ms
custOl-abe.fast.net (209.92.0.9) 15.190 ms 15.269 ms 16.962 ms
a206-245-157-79.deploy.akamaitechnologies.com (206.245.157.79) 16.912 ms 15.424 ms

Figure 13: Using Tracroute

16.

