
Understanding the Limitations of
Causally and Totally Ordered Communication

David R. Cheriton and Dale Skeen

Computer Science Dept.

Stanford University

cheriton@cs.stan ford. edu

Abstract

Causally and totally ordered communication support

(CMOCS) has been proposed as important to provide as

part of the basic building blocks for constructing reliable

distributed systems. In this paper, we identify four major

limitations to CATOCS, investigate the applicability of

C~OCS to several classes of distributed applications in

light of these limitations, and the potential impact of these

facilities on communication scalability and robustness.

From this investigation, we find limited merit and several

potential problems in using CATCICS. The fundamental dif-

ficulty with the CN.OCS is that it attempts to solve state

problems at the communication level in violation of the

well-known “end-t&end” argument.

1 Introduction

Causally and totally ordered communication support

(C~OCS) has been proposed as another important facility
for constructing reliable distributed systems [2, 3, 13, 22,

24]. Causally-ordered communication ensws that mes-

sages are delivered in an order that is consistent with the

potential causal dependencies between messages, following

the logical clock model of imposing an overall partial order-

ing on events in a distributed system [16]. Totally ordered

communication support goes a step further to ensw that

messages are delivered in the same order to all participants.

CfWOCS implementations to date also provide atomicity of

message delivery, ensuring that either all messages are
received or none am, at least at processes that do not fail

during the interYal of interest. CATOCS implementations

may also provide failure notification that is causally (or

totally) orde~d with respect to the message traftic. With

these facilities, CATOCS has been advocated as well-suited

This research is supported in part by DARPA under Contract
DABT-63-91-K-001.

Permission to copy without fee all or part of this material IS

granted prowded that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and Its date appear, and notice IS given

that copying is by permission of the Assoclatlon for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or speclflc permission.

SIGOPS ‘93/12 /93/N. C., USA

o 1993 ACM 0-89791 -632 -8/93 /0012 . ..$l .50

Teknekron Software Systems, Inc.

Palo Alto, California

skeen@tss.com

t-or solving several important distributed computing prob-

lems, including, in particular, data replication.

However, CATOCS can only be justified by identifying

a significant class of real applications for which its facilities

are sui%cient and efficient, and whine requirements can not

be efficiently satisfied using alternative, general-purpose

mechanisms. In this paper, we investigate the applicability

of CATOCS to several classes of distributed applications

with particular focus on examples used in the CATOCS lit-

erature. From this investigation, we find limited merit in

using CATOCS. The basic diftkulty with CNOCS can be

best explained in terms of the end-to-end argument [25].

CATOCS is at the communication level, but consistency

requkmenta are typically expressed in terms of the applica-

tion’s state.

The next section describes in greater detail what we

mean by causally and totally ordered communication sup-

port (CATOCS). Section 3 describes a number of significant

limitations and cost of these techniques in a variety of com-

munication situations. Section 4 considers the applicability

of causal and total ordering protocols to a number of classes

of distributed applications, including examples from litera-

ture illustrating the use of CNOCS protocols. We show that

the limitations pmented in Section 3 can and do signifi-

cantly restrict the benefits of using CATOCS in these appli-

cation areas. Section 5 presents arguments why CMOCS on

the communications data transfer path has a significant scal-

ing cost. We conclude that a state-level approach imple-

mented using object-oriented technology provides a more

efficient, robust, scalable and easier to specialize solution to

the distributed systems problems we have considered.

2 Causally and Totally Ordered
Communication

In a causally ordered message system, messagea are

delivered in the order messages are sent, as determined by

the happens-before relationship [16] but restricted to mes-

sage sending and nxeiving eventsl. For convenience, we
extend the happens-before relationship to include messages.

1. This is a natural restriction, given that message events are the

only events that the message system knows about.

44

In the simplest case, message ml is said to happen-before

m2 if there exists a process P such that ml is sent by or

received at P before P sends m2. Taking the transitive C1O

sure of these simple cases yields the full happens-before

relationship on messages. The term causally precedes is a

synonym for happens-before, i.e., ml causally-precedes m2

if ml happens-before m2.

Figure 1 illustrates causal ordering using a common

charting device known as an event diagram. Message send-

ing and receiving events are arranged by column, one per
process, with time advancing from top to bottom. The dia-

gram shows that Process Q sends ml, which is later

received by Process P. Later, P sends m2, which is subse-

quently received by Process R, etc. Message ml causally

precedes both m2 and m4. Messages m3 and m4 are said to

be “concurrent” because neither causally precedes the other.

Causal multicast2 delivers messages in accordance

with the happens-before relationship within a specified

group of processes, known as a process group [13]. Specifi-

cally, if two messages are mukicast to the same process

group and the sending of one message happens befo~ the

sending of another message, then the first message is deliv-

ered before the second message at all processes in the

group. Hence, causal multicast really means “happens-

before-preserving.”

Figure 1. A 3-process event diagram. Messages ml
“causally precedes” m2 and rn4. Messages m3 and
m4 are “concurrent” and, hence, causally unrelated.

Proc. Proc. Proc.
P QR

T

Ill
E

I

M....................m 1sent by Q
ml

............... mlreceived by P

~llm2se~’~ypwm2

.,..m2 received by R

\

H
3

+++

2. In the literature, this is sometimes referred to as a “broadcast”
protocol [13], and sometimes as a “multicast” protocol [4]. We

prefer the term multicast.

Totally ordered multicast delivers all messages in the

same order to all processes within a process group, even

concurrent messages. Message delivery is commonly in

accordance with the happens-befo~ relationship, and we

make this assumption herein, although some systems do not

provide any causal guarantees.

Many systems providing CAT.OCS also implement

atomic message delivery, ensuring that a message is deliv-

ered to all non-failing processes or none. Without atomic

message delivery, the loss of a message at a process could

delay indefinitely the receipt of all casually dependent mes-

sage, effectively dropping those messages. Clearly, loss of a

message cmld transitively force the dropping of an arbi-

trary number of subsequent messages. Atomic message

delivery can be implemented in a relatively straight-forward

way by having each process in the group buffer each mes-

sage it nxeives until it is sure the message is stable, i.e.

received by all other members of the group. Therefo~, we

assume for this discussion that CATOCS systems also pro-

vide atomic message delivery. Note, however, that the atom-

icity property of message delivery does not include

processes that fail during the exwution of a CAKICS multi-

cast. Hence message delivery is atomic, but not durable.

(An action is durable if its changes survive failures and

recoveries.) Specifically, if the sender fails during CATOCS

protocol execution before the message is stable, there is no

guarantee that the remaining operational processes will ever

receive and deliver the message [4]. As a special case of this

problem, a process can send a message to its process group,

receive and act on the message locally (as a member) and

then fail, without any other members of the process group

receiving the message, potentially leaving its state inconsis-

tent with the other members of the process group. Atomic,

durable message delivery within CiJWOCS appears expen-

sive to provide, is not supported in any implementations we

are aware of, and yet is a significant deficiency for using

CATOCS for reliable replicated data update.

CATOCS systems may also provide faihne notification

that is consistently ordered with respect to message receipt

at each process in the group. When appropriate, we consider

the utility of this ordering in conjunction with the merits of

CATOCS in general. Note that ordered failure notification

can be provided without CATOCS and is useful as a stand-

alone capability [10]. However, it should be stressed that

our focus is on understanding the merits of ordered message

delivery and, hence, we do not consider the merits of

ordered failure notification as a stand-alone capability.

There are systems supporting mukicast and process

groups but without causal communication support, UDP on

IP Multicast [7] and the earlier V-System [51 being two

examples. There are also systems that exploit causal rela-

tionships and other ordering relationships without incorpo-

rating this mechanism into the communication system,

Munin [14] being one example. Our concern is with the

45

merits of implementing ordering relationships on delivery

of messages from multiple sources within the communica-

tion system.

The ordering provided by CAIXICS is called incidental

ordering in this paper, because it is based on the ordering of

“incidents” of communication within a process group. This

incidental ordering is not necessarily consistent with the

semantic ordering determined by the information contained

in a message. For example, the notifications of changes to a

database should be disseminated in the order committed by

the database system, but C~OCS only ensures this seman-

tic ordering if the updates me provided to the communica-

tion system as “incidents” occurring in the semantic order.

Consequently, many systems use or provide what we call

prescriptive ordering where message delivery order is effec-

tively based on ordering constraints explicitly specified or

prescribed by a process at the time it sends a message. As

described in the following sections, prescriptive ordering

using state-level clocks, temporal or logical, offers an

attractive alternative to CATOCS in many ml applications.

3 Limitations and Costs of CATOCS

The general problem that arises when attempting to

apply CATOCS to acturd application problems can be char-

acterized as follows: CiWOCS is not adequate in itself to

ensure application-level consistency, and providing addi-

tional mechanism at the state level to remedy this deficiency

eliminates the need for C~OCS, or it is expensive except

at very small scale, and there is a far more efficient state-

level solution that is straight-forward to provide. The rest of

this section identifies specfic limitations and the costs of

CMOCS that lead to this situation. We informally summa-

rize these limitations of CATOCS as: 1) it can’t say ‘~or

sure,” 2) it can’t say the “whole story,” 2) it can’t say

“togethe~” and 3) it can’t say ejiciently.

1. Unrecognized Causality (or it can’t say ‘~or sure”).

Causal relationships can arise between messages at the

semantic level that are not recognizable by the “hap-

pens-before” relationship on messages and, hence, not

enforceable by CATOCS. This situation typically arises

from an external or “hidden” communication channel

[16], such as a shared database or external environment.

Figure 2 illustrates this limitation with a manufacturing

system that is typical of current manufacturing environ-

ments. Multiple instances of a “shop floor control” system

are executing and accessing a common database. A “start

processing lot A’ request arrives at instance (1) and shortly

thereafter a “stop processing lot A“ arrives. Each instance

processes its respective request, updates the shared data-

base, and mukicasts the results. A semantically-meaningfd

causal relationship is created between these requests using

the database as a (hidden) communication channel. How-

ever, because this interaction is outside the scope of the

communication substrate, the multicast messages are not
recognized as causally related and can arrive in an order at

recipients that violates their semantic-level causal ordering.

The same anomaly can arise if the two “instances”

refened to in the example of Figure 2 are two concunent

threads within the same multi-threaded process, with the

shared state of the address space constituting the “hidden

channel”. It is possible that thread 1 updates the shared

Figure 2. An example illustrating unrecognized, hence
unenforced, causal relationships. The shared
database orders all requests made to the Shop Floor
Control (SFC) system, but this ordering is unknown to
the communications substrate.

1 I I

Common
Database

b. Event Diagram

(dashed lines indicate messages sent out-
side of the communication substrate)

Client SFC Data- SFC Client
A (1) Base (2) B

“Start” Request (& reply)..
-......

h

t’”
,/ “Stop” Request (& reply)....

,1
,0

,,,,,,d..r
,$ ---... ,/.

“Start” broadcasted...........

“Stop” broadcasted.............

“Stop” received by B............

“Start” received by B.....................................

v v v v v

46

memory data structures first, but is delayed by scheduling in

sending its multicast message so that the second update by

thread 2 is actually muhicast first and therefore is delivered

by CATOCS out of order with respect to the actual shared

state update and the true causal dependencies. Forcing all

inter-thread communication to take place using the message

system instead of shared data structure would impractically

reduce the performance of multi-threaded servers, given the

cost of messages compared to the cost of shined memory

access. Even maintaining an optimized causal graph

between threads interacting through shared data structures

would be a significant code complexity and performance

overhead.

Figure 3 illustrates this same limitation with an external

channel, namely a tie, in a similar manufacturing setting. A

process controlling a furnace detects a&eon two separate

occasions and muh.icasts “fi#’ warnings accordingly. A

separate monitor program detects the “fire out” in the tirst

instance and multicasts its results. Unfortunately, the last

message received by a third process (Q) is the “fire out”

message, and it incorrectly concludes that the fire is out. All

messages are sent by causal multicast. Note that the same

behavior could be exhibited using a total-orde~d multicast.

The fire is effectively an external chaunel through which a

semantic causal dependency is created between the “fire”

and “fire out” messages. This dependency is not recognized

by the internal communication facilities, aud therefore not

enforced by CiWOCS.

This limitation significantly limits the usefulness of

causal communication for many applications because many,

if not the majority, of interactions take place through shared

resources and external chaunels that are outside the scope of

the communications substrate. For example, the increas-

Figure 3. An Event Diagram illustrating another
example of anomalous behavior, whereby dependent
messages are delivered late. All communication is via
causal multicast.

Proc. Proc. Proc.
P QR

T
I
M
E L.......................................first..~ire.:..m.essw,esent

M
second “fire” mess~e sent..............

last msg receive(-’~ire orJt”
I

~....
i

.................................=.......................

ingly popularity of multi-threaded shared servers makes the

shared state of threads a major problem. Similarly, a signifi-

cant amount of communication in real-time control systems

occurs through the external channel provided by the exter-

nal system being controlled. In any case, it is very di.flicult

to guarantee the absence of hidden channels, prompting us

to again characterize this limitation of CAK)CS as: can’t
say “for sure”.

These causal dependencies can be easily handled by

adding prescriptive ordering information to messages that

reflect the true ordering or causal dependencies, and having

recipients use this information to ensure the proper order-

ing. For example, considering the shared manufacturing

database above, if “lot status” records contained version

numbers, then any recipient can easily and correctly order

the messages. However, the provision of these version num-

bers, which can be viewed as logical clocks on the database

state, obviates the need for CiWOCS. Moreover, these

application state techniques also eliminate the uncertainty

of an overlooked hidden channel that is present with a

CATOCS-only solution3.

2. Luck of serialization ability (or can’t say “together”).

CMOCS cannot ensure serializable ordering between

operations that correspond to groups of messages.

Updates to data stmctures typically involve groups of

memory operations, so some means of ensuring serializabili-

ty of the group of operations constituting the update is

required for application-level consistency. For example, a

shared memory system among two or more processors can

ensure a consistent total ordering of accesses to memory,

but that alone does not ensure the consistency of the data

structures in the shared memory. Locking is the standard

solution, although optimistic concurrency control tech-

niques can also be used. CAXICS only provides ordering

between individual messages. An update that requires a

group of messages to be handled as a serial unit requires

additional mechanism. This extra mechanism typically

obviates the need for CATOCS. For example, locks on

shared data provide mutual exclusion between the memory

updates of different processors, making the relative ordering

of these memory access between processors otherwise irrel-

evant, so CATOCS is not required. This same argument

3. In theory, external communication channels can create prob-
lems for state-baaedapproaches, such as having an external chan-
nel communicate uncommitted updates in a transaction to another
part of the system. However in our experience, the computer chan-
nels are w much faster than the typical external channels that these
problems do not arise except possibly under catastrophic failure

conditions or with, for example, very long-lived transactions in
design systems where the users are making a trade-off favoring
availability over strict consistency. In these cases, user participa-
tion may be required to handle inconsistencies, just as arises after

continued operations during a network partition.

47

applies in our examples in Section 4 which require transac-

tional support. The attendant serialization facility of the

transaction mechanism obviates the need for CMOCS. The

lack of serialization ability for CATOCS is also a potentially

serious incompatibility when interfacing between

CATOCS-based applications and transactional systems,

which are quite prevalent commercially.

The inability of CATOCS protocols to group operations

is also a significant limitation in handling higher-level error

conditions. For example, an update message of replicated

state distributed across a group of server processes only

results in a consistent replicated state if each process is able

to accept and process the message, not just receive the mes-

sage in a consistent order. However, in reality, one or more

server processes may reject au operation because of lack of

storage or protection problems or other state/application-

level constraints. Standard atomic transaction protccols

allow a participating server process to abort a transaction

for these reasons. In many proposed uses of CAIOCS, such

as for maintaining distributed replicated data, a process

must effectively fail and invoke the full failure notification

mechanism if it rejects a message for this class of reasons,

or else rely on a separate rollback recovery mechanism for

undoing the effects of the message delivery at the other

nodes. The former case is expensive and generally assumes

that the message will eventually be accepted by the “failed”

process while the latter approach entails an atomic transac-

tion mechanism that again obviates the need for CATOCS.

Note that dropping a message at the statdapplication level

is equivalent to reordering the message delivery, so if drop-

ping the message is acceptable in this case, the message

ordering support of CATOCS is of limited or no value to the

application.

3. Unexpressed semantic ordering constraints (or it can’t
say the “whole story”). Many semantic ordering con-

straints are not expressible in the “happens-before” rela-

tionship and, hence, not enforceable by CATOCS.

Generalizing the previous limitation, the correct behav-

ior of au application requires ordering constraints over oper-

ations on its state, and these constraints are typically

stronger than or distinct from the ordering constraints

imposed by the happens-before relationship. Such ordering

constraints, referred to as “semantic” ordering constraints,

run the gamut from weak to strong, and they may or may
not require grouping as well. Example constraints include

causal memory [1], linearizability [12], and, of course, seri-

alizability. Even the weakest of these semantic ordering

constraints, causal memory, can not be enfomd through the

use of causal muhicast [1]. Although this weak ordering

constraint can be enforcecl using totally ordered muhicast.

such protocols am expensive and much cheaper protocols,

which utilize state-level logical clocks, can be used instead.

For the stronger ordering constraints, such as linearizability

and serializability, neither causally nor totally ordered mul-

ticast is sufficient, as illustrated in the stock trading example

developed in Section 4.1.

4, Lack of E@ciency Gain over State-level Techniques (or

can’t say eficientiy). CATOCS protocols do not any effi-

ciency gain over state-level techniques, and apWar far

less scalable.

CN.OCS imposes an ordering overhead on all mes-

sages yet does not eliminate the need for the p~scriptive

ordering on messages and operations requinxl for end-to-

end semantics. That is, CATOCS does not eliminate or

reduce the need for timestamps or versions in the real-time

manufacturing examples or the locks in the examples using

transactional techniques. Moreover, CfWOCS is prone to

delaying messages based on false causality, namely mes-

sages that am incidentally causally dependent at the com-

munication level but not semantically causally dependent.

This situation arises because the happens-before relation-

ship on messages indicates potential causality, not actual

causality. Just kecause one message is received before a sec-

ond message does not necessarily mean that the first mes-

sage caused the second. For example, false causality would

arise in Fig. 1 if message m2 just happened to be sent after

receipt of message ml but was not in any semantic sense

“caused” by receipt of message ml (It could have been

caused by an internal timer or external input, for instance).

False causality reduces performance by unnecessarily

delaying messages until the earlier supposedly “causally

related” messages are received and delivered.4 It also

increases the total memory ~quirements for buffering

“unstable” messages, a potentially prohibitive cost with

scale, as argued in Section 5. The amount of false causality

appears to be dependent on application behavior and the

causal domain or group size. However, there have not been

any studies of the overheads incurred by false causality, so a

major concern for the designer of systems using CATOCS is

the uncertainty regarding the false causality overhead to

expect, and of course the challenge to construct groups

whose communication patterns minimize false causality.

F~y, CATOCS imposes overhead on every message

transmission and reception-ordering information is added

each transmission and checked on each reception. This

overhead will be an increasingly significant cost as net-

works go to ever higher transfer rates and other aspects of
protocol processing m further optimized. However, opti-

mizing of CATOCS is of limited interest unless greater

4. Note that lightweight causal multicast protocols delay messages

in order to preserve “causal” ordering [4]. As an alternative to
delaying dependent messages, causal protocols can append earlier

“causal” messages to later dependent message, but this technique

can significantly increase network traflic.

48

functional benefit can be identied, the question we return

to in the next section.

Overall, CfWOCS as a communication facility is lim-

ited to ensuring communication-level semantics and cannot

recognize and enforce application state-level or “end-to-

end” semantic Requirements, whether they arise through

“hidden channels;’ grouping requirements or state access

control and resource limits. This overall limitation is basi-

cally a corollary of the well-known end-toad argument,

which states that a lower-level facility cannot ensure higher-

level semantics, but can at best be an optimization for

higher-level mechanisms. In their original paper describing

this argument [251, this limitation is illustrated by consider-

ing a (careful) file transfer. A file transfer has completed

successfully only when all the file data has been safely and

correctly stored in the file system of the nxipient machine,

not just when the data has been delivered by the network to

the recipient machine. (The recipient machine could crash

or have a buffer overflow at that point, for instance.) An

end-t~end check can determine and acknowledge when the

entire file has been correctly and safely stored on the recipi-

ent’s file system. However, in this example, the basic trans-

port protocol is a useful lower-level optimization because it

can identify individual packets of file data that have been

dropped or reordered during transmission and correct the

situation. optimizing for the common case of transmission

problems and avoiding the overhead of retransmitting the

entire file. As we have argued, CATOCS appears to provide

no comparable optimization, and in fact appears to intro-

duce significant extra overheads.

4 Classes of Distributed Applications

Several classes of distributed applications, including

the major examples used in the C~OCS literatme to justify

CATOCS, are examined in order to evaluate the merits of

using CATOCS for these applications, as compared to other

established state-level techniques. The limitations identied

in the previous section arise repeatedly in this discussion.

4.1 Data Dissemination Applications

Netnews. Communication support for Usenet news-

groups is often cited as an example of the need for causally

ordered communication. In the current Usenet world, it is

possible to receive a response to an inquiry to a news group

before nxeiving the inqui&’, CA~CS would ensure that

5. The actual problem is not particularly severe because most
responses,in fact, contain sufficient information about the inquiry,
if not actually including the originat inquiry, that the news reader
can infer the inquiry from the response. In an informal poll of our
colleagues, we found no strong sentiment that this disordering of
messages in Usenet newsgroups was a significant problem. How-

ever, we have considered this example in detail because it has been

widely discussed in support of CATOCS.

the muhicast response was delayed until the causative

iIU@.Y had been delivered.

However, solving this problem using CATOCS would

introduce even less desirable behavior. If the causal group

was the entire news group, then all messages sent subse-

quent to the inquiry would have to be considered potentially

causally related to the inquiry. In this case, a user would see

all subsequent messages to a news group delayed if the

inquiry was lost or delayed. To match actual causality to the

incidental ordering of CAKICS, a new causal group would

have to be created for each inquiry. The number of resulting

causal groups would be enormous, given the number of

independent inquires at any time across all Usenet news

groups. The amount of state maintained by the communica-

tion system is proportional to the number of causal groups

as well as the amount of traffic that is “outstanding”. With

the current and growing levels of tra.f6c, scale and related

individual failures and down-time of participating nodes,

the overhead would be impractical. In addition, the logistics

regarding generation and deletion of groups would be non-

trivial. As many readers of news groups will realize, the

actual group of inquires and responses in practice can be

much more complicated than what we have considered here,

rendering the use of CATUCS even more problematic.

It is relatively straightforward to solve the Netnews

ordering problem at the application state level. Assign each

News article a globally unique id and, for each response,

have a designated field containing the id of inquiry article6.

The local news database could maintain order relationship,

and specitkally note which articles were missing. When the

news database is browsed, the user would have the option of

displaying out-of-order responses or not. The complexity of

maintaining ordering information in the local news database

is proportional to the number of inquiries that are of interest

to the user, rather than to the number that have been sent.

Furthermore, the database maintains only the actual causal

dependencies since it has access to the xequired semantic

information. This example further points out that the prob-

lems of CA~CS lie not with notion of causal relationships,

but with attempting to implement the causal ordering at the

communication level.

Trading Application Example. Security trading is

another application that has been widely cited in support of

the utility of CIWOCS. Dissemination of trading informa-

tion to trader workstations in a consistent order seems like a

natural use for causal multicast-certairdy one would not

want to observe price changes out of their actual order of

occurrence. However, causal multicast cannot enfoxce all

necessary semantic ordering constraints and appears to be

too expensive.

6. A version of this scheme already exists. The “References” line
of a posting can contain the “Message-ID” tags on which the post-

ing depends.

49

Figure 4. An Event Diagram for the trading example illustrating anomalws ordering behavior (all
communication is via causal multicast).

Theoretic Option user
Pricing Pricing Monitor Monitor Output

25 ’12 26 7/” 27

Option price 25.5 ~

Theoreticalprke 26.75

~ {

%=.
o
3

Option price 26 ~ 9(D:
s+
sJ:

Theoreticalprice 26.25
~bW

Option price 26.50””””””””””” -“” !
-1b......... ,Q

:
.

Theoretical price 27.0

w
$$”r .2

/’ :.....
\ Fake crossirr~ due [!

to ordering anomaly

Figure 4 illustrates a scenario in which the semantic

ordering constraints are not enforced. The price of an option

is multicast by one server. Another server calculates the the-

oretical price of the option, which is the basis for many trad-

ing decisions. The correct behavior for this application

obeys a semantic ordering constraint defined informally as

follows: a theoretical price is ordered after the underlying

option price from which it is derived and before all subse-

quent changes to that underlying price. An anomaly occurs

in the depicted example when the theoretical price data is

delivered after the underlying option price has changed. A

monitoring program could then observe an inconsistent

view of the world the new option price and a theoretical

price baaed on the old option price. Because the new option

price and the old theoretic price are “concurrent messages”

according to the happens-before relationship on messages,

neither causal or total multicaat can avoid this anomaly.

This example illustrates limitation 3—’’cat’t say the

whole story.” The semantic ordering constraint between the

new option price and the old theo@ic price is stronger than

the “hapWns-before” relationship and, hence, unenforce-
able by CATOCS. Note that a large percentage of the data

on a trading floor is computed data, e.g. the theoretical pric-

ing data, and therefore semantic ordering constraints are fre-

quent. (Note that although the anomaly in this example

super%cially resembles the “hidden channels” anomalies

7. We have helped design over 150 commercial trading floors that
are in production use and so speak from a significant basis of expe-

rience.

depicted in F@res 2 and 3, the limitation illustrated is dif-

ferent.)

A CATOCS-based solution also appears too expensive

because each unique stock and instrument should be

assigned its own process group so as to not over-comtmin

message ordering when using causal muhicast. However, a

large trading floor must monitor price changes on several

hundred thousand stocks and derivative instruments,

requiring more process groups than we understand current

CATOCS implementation cau support.

In production systems we have designed, every pricing

aerviceg maintains version numbers on security prices,

either as a real-time timestamp or as a sequenee number.

Each computed data object records the id and version num-

ber of its base data object in a designated “dependency”

field. General-purpose utilities maintain the dependencies

among data objects, and applications exploit this informa-

tion in ordering and presenting data. Thus, consistent with

our overall theme, a simple state-level solution based on

dependency-preserving utilities can k implemented with

low cost and a high-degree of generality. These utilities do
not require causal mukicast, nor would they bc simplified

by using it.

8. An example of an derivative instrument is an “buy option” on
an underlying stock.

9. Pricing information comes via communication lines from exter-
nal sources, such as the NYSE, with a local pricing server for each

such line.

50

Both the Netnews and the trading solutions outlined

above can be generalized to the notion of an order-presem-

ing data cache, which can be useful for a number of applica-

tions. This cache approach is another example of how

problems can be simplified when tackled at the right level of

abstraction within the system. Semantic information, such

as the inquiry-response relationship in Netnews and the

object version dependencies in trading applications, is

readily available in the application state level, but is not

exposed to the communication level.

4.2 Global Predicate Evaluation

Global predicate evaluation problems are normally

expressed in terms of a stable predicate (i.e., once tree,

always true-at least until detected and conedive action is

taken). Examples include distributed deadlock detection,

distributed garbage collection and orphan detection. The

most general solution to this problem involves taking a

snapshot of local process states that represent a consistent

cut of local process states, which can be done in a straight-

forward way with CATOCS [29].

CATOCS-based solutions for the stable predicate

detection problem, though elegant, have a couple of major

disadvantages. Firstly, they require the use of CATOCS on

every communication interaction that could possibly at%ct

the state of the stable predicate. Given that detection proto-

cols typically run periodically, rather than continuously, and

at a frequency that is often 3 orders of magnitude less than

the frequency of message sending, it would hard to justify

the cost of using CfWOCS on every communication just to

detect stable properties. Secondly, with limitation 1 of

CATOCS, a solution that relies on a CATOCS may also fail

when there are “hidden channels” or unrecognized causal

relationships.

Given the important role of stable predicate detection in

real systems, much reseaxch has focused on identifying effi-

cient protocols not requiring the use uf CiWOCS. Elnozahy

et al have proposed a periodic consistent snapshot protocol

that takes a full “consistent cut” at the state level without

CATOCS [9]. Such a protocol is useful both for checking

global predicates and for failure recovery.

Mamdlo and Sahel have identified a subclass of detec-

tion problems based on the notion of “locally stable” predi-

cates [211. This subclass contains most problems of

practical importance, including the detection of transaction

deadlock, RPC deadlock, k-of-n deadlock, loss of a token,

orphans, termination, and some forms of garbage collection.

The authors present an efficient, general-purpose detection

protocol for this class of problems and then proceed to

derive message-efficient. special-purpose detection proto-

cols from the general protocol. Schiper and Sandoz have
independently investigated a similar sukclass of detection

problems characterized by “strong stable” properties, and

they have presented an efficient detection protocol for that

class [26].

Focusing on deadlock detection problems, an important

subset can be m-formulated in terms of local pdicates

whose evaluation is insensitive to message ordering-effec-

tively transforming the detection problem from one of tak-

ing a consistent cut to one of taking just a cut, which is a
much simpler problem. These deadlock detection protocols

are a proper subclass of both locally stable detection prob-

lems and strong-stable detection problems, and can be

solved by a simple protocol. For example, consider distrib-

uted deadlock detection in transaction system using 2-phase

locking. Its local property is given below and is insensitive

both to event ordering and the message state of the system.

● Consider a set of transactions d, t2, t3, tn that uses

2-phase locking. The set is deadlocked if and only if

each of the following is independently true at some time

during their execution-tl waits-for t2, t2 waits for t3,...

tn-1 waits-for tn and tn waits-for tllO.

This property implies that “wait-for” relationships can

be detected incrementally, that it need not be detected in the

order in which events actually occurred, aud that the order

of nxeipt of “wait-for” information does not affect &e

detection of valid deadlocks. Hence, to construct the global

“wait-for” graph it is sui%cient to have each node mukicast

its local wait-for graph to all nodes running the detection

algorithm. No stronger ordering properties are required.

Also it follows from the “only-if” clause of the fist property

that only actual deadlocks are detected— no “false” dead-

locks are detected. Simple variants of the above deadlock

detection algorithm can also be used for nested transactions

[18], for RPC deadlock detection [6], and for orphau detec-

tion.

As the above discussion indicates. most of the impor-

tant stable predicate detection problems occurring in real

systems fall into subclasses that cau be solved with general

Pqse detection protocols that do not use CAl_OCS. These
protocols ate cheaper than CATOCS-based protocols

because the latter xequire the use of CATOCS on every com-

munication interaction. not just those communications

involved in taking a consistent cut. Even detection problems

requiring a full “consistent cut” can be solved using a peri-

odic consistent snapshot protocol, which can also be imple-

mented efficiently at the state level without CAl?OCS.

4.3 Transactional Applications

Transactional applications have also been cited as an

example use of CATOCS [4]. However, a distributed trans-

action management protocol already orders the transactions

10. Note that this property does not necessarily hold for non-2-
phase protocols,

51

(i.e. ensures serializability). In particular, with pessimistic

transaction management, the ordering of transactions is dic-

tated by 2-phaae locking on the data that is accessed as part

of the transaction. The relative message ordering from ccm-

current, but separate, transactions is irrelevant with regards

to conectness because each transaction is committed inde-

pendently, The p~pare-to-commit phase of the protocol

necessarily requires end-to-end acknowledgments because

each participating node must be allowed to abort the trans-

action. Thus, by limitation 2, CATOCS cannot be used to

execute this phase. Because the commit protocol is executed

by a single site, namely the commit coordinator, the deliv-

ery of commit phase messages is easily ordered by conven-

tional transport mechanisms without CATOCS. Hence,

CMOCS is not needed, and as noted as limitation 2, not

sufficient in place of locking because mutual exclusion

across a group of operations is reqhd, not just a consistent

ordering of the individual operations.

Considering intra-transaction ordering of operations,

conventional transactions are executed by a single sequen-

tial process so the operations are ordered by the process’s

execution and conventional transport protocol ordering

applied to the messages generated by the process. Wkhin a

multi-threaded transaction, the threads need to be synchro-

nized at the state level in general. Otherwise, groups of

operations by separate threads could be interleaved resulting

in inconsistencies, even with a consistent causal or total

ordering on these actions. Thus, CATOCS is again neither

adequate by itself nor necessary when a state-based solution

is applied.

With a so-called optimistic transaction system, transac-

tions are globally ordered at commit time, with a transaction

being aborted if it conflicts with an earlier transaction. Thus,

no inter-transaction ordering is required during the execu-

tion of the transaction operations. Mo~over, a simple order-

ing mechanism, such as local timestamp of the coordinator

at the initiation of the commit protecol, plus node id to

break ties, provides a globally consistent ordering on trans-

actions without using or needing CfWOCS.

4.4 Replicated Data

Replicated data management is a frequently cited rea-

son for using CfWOCS [4] because it supposedly simplifies

the higher-level mechanisms, avoids some of the update

aborts due to failures that can arise with a transactional
solution, and improves performance through asynchrony.

However, on close inspection, an optimized atomic transac-

tion approach appears uniformly superior.

First of all, the simple “begin-transaction/end-tm.nsac-

tion” facilities of a transaction mechanism provide a simple

high-level interface for application code. It also provides

more functionality in its ability to atomically group updates

and abort groups of updates (say “together’).

Secondly, a replicated data management system such as

a ~plicated transactional file system using a “read-any,

write-all-available” protocol can be optimized to match the

behavior of CATOCS in the presence of failure. In particu-

lm, a transaction updating replicated files can drop failed

servers from the availability list at transaction commit and

then commit the transaction with the n3maining servers pro-

vided the transaction was not holding read locks on any of

the failed servers. (The availability list mechanism is

requied for bringing servers backup into a consistent state

before they begin serving clients with both C~OCS and

transactions.) With this transaction protocol optimization, a

simple replicated tile update aborts for the same failure

cases as does CATOCS. However, the CATOCS provides no

comparable support for consistent update of groups of files

or objects (i.e. can’t say “together”) so it appmrs again as an

inferior solution compwed to optimized atomic transac-

tions.

Finally, the actual asynchrony one achieves with

CATOCS systems is limited, as illustrated by considering

the Deceit file system [27] which was built using the ISIS

system, a toolkit implementing CATOCS protocols [2]. In

Deceit, the write updates are sent to the replicas using

causal multicast but there is essentially no asynchrony

because each “cbcast”, the ISIS causal muhicast operation,

waits for k acknowledgments with a so-called “write safety

level” or fault-tolerance level of k. A write-safety level of O

is asynchronous but it has no acknowledgments so the write

data could be lost after a single failure (becauae of the lack

of durability), compromising the semantics of, and presum-

ably the purpose of, replication With a typical replication
level of 2, a non-zero write safety level implies synchronous

update with all servers, just as with conventional RPC,

because the write is multicast by the primary site server

handling the write operation. With higher degrees of repli-

cation, one would only ex~t some benefit if there were

significant differences in round trip times to the different

servers, and the write-safety level was smaller than the

number of replicas.

Generally speaking, CAT(ICS requires trading corwur-

rency for u,synchrony. Transactional systems execute indi-

vidual updates synchronously, but petit concurrent

updaters because these systems necessarily support concur-

rency control (for serializability). Therefore, although paral-

lelism within a single update is restricted, parallelism

among concurrent updates is not. Even individual computa-
tions can use threads to increase concurrency, hence paral-

lelism, while updating. In contrast, CATOCS-based

implementations typically enforce a primary updater

approach because CATOCS provides no explicit mechanism

for concurrency control [3, 27]. Similarly, the primary can

not be multi-threaded. However, asynchrony of updates is

limited because of non-durability, as discussed above, so the

52

C~OCS solution ends up keing less parallel and therefore

less efficient.

Considering Deceit in mae detail, a number of consid-

erations in this server further limit the benefits of C~OCS.

Firstly, considerable serveqwific mechanisms are

required to haudle reconciliation of files after significant

failures or network partitions, and CATOCS did not aid the

implementation of these mechanisms. In fact, according to

the implementor of Deceit, the faihne detection was the pri-

mary benefit provided by the ISIS facilities for this server,

and CATOCS (spectically, caustil mukicast) was of rela-

tively limited benefit [28]. Secondly, every failure in Deceit

results in a flurry of messages between members of the pro-

cess group for each “active” file to create a new view and

“flush” [4] messages sent under the previous view. This

view change is managed as a synchronous operation and

imposes a processing and messaging overhead to the “avail-

ability set” update similar to the overhead required with a

transactional system.

As a specific point of comparison, the HARP file server

[4] is a transaction-based replicated NFS file server provid-

ing a service to the CATOCS-based Deceit file server.

HARP uses highly optimized atomic transactions tech-

niques, is claimed to provide better performance than Deceit

and tolerates a wide range of failures. This is achieved in

spite uf the fact that NFS dictates treating each file write as

a separate transaction.

4.5 Replication in the Large

Replication in the large, such as with large-scale nam-

ing services [17], can exploit application state-specific tech-

niques to ensure consistency of updates and also exploit

application-specific tolerance of inconsistencies and anoma-

lies to favor availabiMy and performance over strict order-

ing. For instance, Lampson’s design suggests that duplicate

name binding can be resolved by undoing one of the name

bindings. In the scale of multi-national directory service that

this design addresses, tolerating the occasional “undo” of

this nature seems far preferable in practice than having

directory operations significantly delayed by message losses

or reordering. Moreover, there is no experience with oper-

ating causal or total ordering support on this scale, and the

size of communication state that would be required in each

node seems impractical, given expected levels of traf6c and

reasonable probabilities of node and communication fail-

ures. Finally, although CA!TOCS might be viewed as a more

general solution, the saving in code and the expected extra

costs of operation do not appear to justify using it over a
mom specialized solution, especially extrapolating horn the

Deceit experience where the overall system complexity was

dominated by management and recovery aspects outside of,
and independent of, the base CArOCS facility.

4.6 Distributed Real-time Applications

Real-time applications, another cited application area

for CATOCS [3], are generally characterized as systems that

monitor and/or control some physical system in real-time or

“clock-on-the-wall” time. Examples include factory moni-

toring and control, airplane autopilots, distributed interac-

tive simulation and many others. One can distinguish a

monitoring aspect and a control aspect to most of these sys-

tems and applications. The limitations of CA~CS in real-

time systems are significant.

Firstly, as pointed out in Section 3, the causal relation-

ships implemented by CNOCS in a real-time system may

be incomplete because many tie or semantic causal rela-

tionships a “implemented” in the monitored system,

totally outside of the CA~CS mechanism (i.e., the “umec-

ognized causality” limhat.ion). For example, a message sent

to an actuator to move a temperature sensor within a factory

oven may semantically cause an alarm message from a sep-

arate oven temperature sensor but this relationship is not

recognized in the CfWOCS mechanism. In particular, the

control message may be received at a message logging

device after the alarm message.

Secondly, CA~CS does not support the need in real-

time systems to execute groups of operations at the same

real time to achieve a desired effect, which is otherwise eas-

ily implemented by timestamping messages and possibly a

transaction mechanism to abort the group. For example, in

starting up a factory oven, the lighting of the pilot should be

grouped with the opening of a gas value to the pilot flame.

Finally, the CA~CS inefficiency of delaying message

delivery because of false causality and its general communi-

cation overheads detracts, not just from the performance,

but iiom the correctness of a real-time system. In a moni-

tored system, the conectness of the system, that is the

semantic notion of consistency, is maximized by minimiz-

ing the difference between the computer-stored state and the

actual state of the monitored system. For example, the value

for the oven temperature stored by a computer-based oven

control in a factory should be close to the actual temperature

of the oven, what we call “sufficient consistency”. Sufficient

consistency is normally provided by the sensors transmit-

ting periodic updates, the communication system giving pri-

ority to the most recent updates (dropping older updates if

necessary), aud the monitoring system interpolating,

smoothing and averaging updates to accommodate lost

updates, replicated sensors and erroneous readings [201.

Update messages delayed by CiW.OCS reduce consistency

with the monitored system aud therefore detract from the

correctness of operation. The delay occurs whenever a mes-

sage is received that is potentially causally dependent on

another message that has not yet been received. Moreover,
the consistent ordered view of failures provided in some

CATOCS systems means that additional message delays are

53

often incurred when a prmess fails while the new view is

determined and propagated to all process group members.

Additional group-wide delay in real-time systems is often a

worse form of failure than a failure of an individual group

member, given that the process functions are often repli-

cated in systems requiring reliability.

Implementing only part of the message traffic in a sys-

tem with CATOCS to avoid these disadvantages only aggra-

vates the problem of the message delivery using CATOCS

accurately reflecting neither the “happens-before” nor the

true causal relationships among messages. For example, an

update message to an oven controller may cause it to send

out a message to a cell controller, which may in turn cause it

to initiate some reconfiguration action. If the first message is

sent outside of CiWOCS, but the rest sent within causal or

totally ordered process groups, only part of the causal rela-

tionship is recognized by the CATOCS. The real-time pro

grarnmer must therefore carefully reason that this partial

correctness of the C~OCS delivery is sufficient for the

application.

Similar arguments cau be put forward for the controller

aspects of real-time distributed systems (see [61).

In contrast to CATOCS-based approaches, a state-based

approach using real-time clock values, the key shared piece

of state in a real-time system, is simple to implement and

provides far better semantics, including true temporal prece-

dence, the most important precedence relationship in real-

time systems. For example, if an oven sensor places a real-

time timestamp in each update message, this information

can be used for ordering of events by real-time, recording

these events in a log and correlating these events with other

factory events that may have occurred outside of the moni-

toring system. For example, the local power utility may

report a power surge at a particular (ml) time that the fac-

tory manager wishes to correlate with the log of oven

behavior. A real-time timestamp provides this ability, while

the purely logical and incidental ordering provided by

CATOCS does not. The implementation of distributed (real-

time) clock synchronization is well understood, takes little

communication or processing, and is available in a variety

of distributed systems. The amount of mechanism required

is substantially smaller than that required for CfWOCS and

is also “off the critical path” in the sense that the time syn-

chronization is not invoked on every data communication

action. Synchronized time service is required in most real-
time systems in any case and can be made highly reliable.

Finally, a computer-maintained timestarnp can be far more

accurate than the timing of events within most real-time

systems. For example, a timestarnp can have a granularity in

the microsecond range and an accuracy to less than one mil-

lisecond, and yet the events in mmt real-time systems occur

at the granularity of tena of milliseconds or more. For exam-

ple, even computer-controlled flight surfaces on the

advanced tactical fighters (ATF) operate in only the 25 Hz

range. Mo~over, for very high-performance control, it does

not make sense to separate the sensor from the controller by

a network, given that packets can be lost, introducing delays

exceeding those acceptable to the application. (Note that the

potential delay due to a lost packet is generally well above

the round-trip time, especially for multicast communication

where the problem of acknowledgment implosion precludes

tight time-outs.)

Overall, “temporal precedence” provided by time-

stamping specifies an ordering of events that is semantically

meaningful in real-time systems and that provides all the

ordering of events that is required without imposing load or

complexity on the communication system. In contrast,

CATOCS cannot with its incidental ordering capture the

actual causal relationships and semantic ordering con-

straints between messages, unnecessarily delays the deliv-

ery some messages detracting from conectness and

@ormauce, and imposes a complexity and processing bur-

den on the communication support.

5 CATOCS Scalability

CATOCS appears to introduce significant problems

with scaling because of the roughly quadratic growth in

expected message buffering that arises with growing the

11 This section providesnumbers of participating processes .

an informal proof of this expected behavior.

Consider scaling a system of N processes using

CATOCS. The causal order of messages in a system can be

represented as a directed acyclic graph with nodes as mes-

sages and an arc between two nodes that ~present messages

that are potentially causally related. The active causal graph

is the subgraph that results from deleting nodes correspond-

ing to “stable” messages and their incidental arcs, where

stable messages are those known to have delivered every-

where.

The number of nodes (messages) in the active causal

graph is proportiomd to the number of processes in the sys-

tem by the following reasoning. ‘he time between the send-

ing of a message and its deletion from the active causal

graph is roughly proportional to the “diameter” of the sYs-

tem, that is the time T to propagate a message across the

system. The number of messages transmitted during time T,

and thus the number constituting the nodes of the active

causal graph, is equal to the message rate per process times

the number of processes times T. The time T grows with the

number of processes, roughly proportional to the square

12 Actually, we just need Troot of the number of processes.

11. We use the term process here to designate a participant in a
CATOCS group to be consistent with the previous discussion and
the terminology of most CATOCS literature. However, a process in
this discussion is typically representative of a service on a network
node.

54

to be non-decreasing with the number of processes for the

desired result.

The number of arcs can grow quadratically in the num-

ber of messages. For instance, a process that multicasts a

new message to the group after receiving a message intro-

duces N new arcs into the graph. Although one might argue

that properly structured applications exhibit Iiiear growth in

the active message graph, the number of arcs grows qua-

dratically in almost all possible causal graphs and “false”

causality tends to increase the number of arcs beyond the

actual causal relationships in the application.

The amount of buffering in a CiWOCS system tends to

grow proportional to the number of arcs in the active causal

graph for several msons. If the number of causal graph arcs

is quadratic in the number of processes, the number of

causal dependencies communicated in each message must

be, on average, linear in the number of processes. The mun-

ber of messages referenced in these causal dependencies

that have not been received by the process also grows lin-

early in the number of such references, assuming the error/

delay rate is roughly a fixed percentage of the message rate,

a standard and realistic assumption. Thus, the amount of

buffering used by each process for holding these delayed

messages can be expected to grow linearly in the number of

processes in “tie system.

l%erefo~, the buffering requirements in the system

tend to grow quadratically with the number of processes.

More practically stated, the buffering requirements at an

individual node tend to grow linearly with the increase in

scale of the system in which the node participates, an unfor-

tunate property that has caused problems in other systems

(like the Xerox Grapevine mail system). The buffering

reqtimenta also grow quadratically because of the mem-

ory reqtid to store the active causal graph although these

descriptors tend to be much smaller than the messages

themselves.

Buffering requirements are further increased in imple-

mentations that provide atomic message delivery because

each node must retain a copy of each message it references

in any message it sends until the referenced message is

known to be stable, i.e. all the recipients have received these

referenced message. For example, if a cell controller sends

out a message that is potentially causally &pendent on a

message from a sensor according to the CATOCS, the cell

controller buffers the message from the sensor until the sen-

sor message is stable. As argued in Section 2, atomic mes-

sage delivery seems necessary for any useful

12. The square root growth assumes a uniform world of nodes
packed into a circle. In reality, there is a significantly higher delay
for wide-area communication compared to local-area communica-
tion. Relatedly, growing scale introduces growing heterogeneity of
communication technology and capacities, further increasing delay
and packet loss.

implementation of CATOCS, plus it is assumed in many

example uses of CATOCS for fault-tolerant systems. That

is, the receiver of a new message assumes it can get copies

of tie causally referenced messages from the sender of the

new message even if the original sender of one of the refer-

enced messages has crashed.

Group membership change protocols, required by

C~OCS to enforce atomic delivery semantics, are another

scalability concern because the rate of member failures

increases linearly with group size as well as the cost of each

protocol execution. Membership change protocols also sup-

pnMs the sending of new messages during a significant por-

tion of the protocol.

Partitioning a large process group into smaller process

groups does not necessarily reduce this problem unless the

smaller groups are not causally related. For instance, the

“causal domain” [4], proposed as a causally related set of

groups, can have the same quadratic growth. The division

into groups only reduces the application-generated message

traffic to each receiver, not the message delivery delays.

The buffering requirements can be reduced by delaying

the sending of messages (in addition to delaying their deliv-

ery). This delaying has obvious detrimental effects on appli-

cation performance, particularly in real-time or near real-

time applications such as trading example of Section 4.1.

The delaying of messages also produces a highly synchro-

nous execution, because messages must be delayed for end-

t~end acknowledgments indicating stability. Finally, it

increases the communication overhead for “stabilizing”

messages because there are fewer application messages on

which to piggyback acknowledgment information (such as

the “vector clock” [4]).

In summary, the worst-case and statistically expected

behavior for CiWOCS is for the buffering requirements to

grow quadratically in the number of processes in the sys-

tem. Delaying transmission of messages and nxtricting the

communication topology can reduce this problem at the cost

of application performance. Various optimization such as

partitioning process groups, sending additional message

traffic, and such like may Educe the buffering required as

well, but these techniques provide no guarantees and

increase the complexity of the implementation-a trouble-

some situation for applications that are striving for fauh-tol-

erance. Finally, the state-level solutions that we have put

forward as alternatives throughout the paper either do not

requhe extensive buffering, as in the ~al-time applications,

or me able to buffer updates on secondary storage, as in the

replicated data implementations. Moreover, state-based

applications can easily distinguish updates from queries to

redum the buffering or logging, whereas a C~OCS

approach cannot without using a separate process group for
reads from writes with the attendant loss of causal ordering

between these types of operations.

6 Conclusions

Causally and totally ordered communication support

(CWOCS), while an appealing idea, appears to be signifi-

cantly limited by four major limitations, that we have identi-

fied informally as: 1) can’t say “for sure,” 2) can’t say

“together,” 3) can’t say the “whole story,” and 4) can’t say

efficiently. In the classes of distributed applications we have

considered, which include those used in the CATOCS litera-

ture to justify this support, these limitations imply that

C~OCS is not adequate or else is only very narrowly

applicable. In each case, we have presented a state-based

solution using established techniques that appears relatively

straight-forward to implement and obviates the need for

C~OCS. In the cases we have examined, CWOCS also

fails to provide much simplification to the application

writer. Finally, scalable performance appears to be another

problem with using CATOCS. It adds processing overhead

and buffering to the performanceaitical message transmis-

sion and reception paths, it unnecessarily delays messages

I_xcause of false causality, and it fails to allow much asyn-

chrony because of the need for end-to-end acknowledg-

ments (except in real-time uses where the C~OCS

mechanism appears to have limited benefit). In fact, these

considerations and its expected quadratic cost in message

buffering appear to restrict its practical deployment to appli-

cations that are significantly restricted in size and communi-

cation topology.

The well-known end-to-end argument has played a key

role in our investigation and these conclusions. By consider-

ing real distributed applications in some detail, the “end-to-

end” semantics of these applications were available for crit-

ically evaluating both their full requirements and alternative

techniques to CATOCS. In contrast, much of the CATOCS

literature contains abstxact process/message examples that

lack sufficient detail to identify these alternatives. We

repeatedly observe that the applications place requirements

on the distributed state, whereas CATOCS can only provide

limited consistency guarantees on the communication. By

the end-to-end argument, state consistency can only be

ensured by state-level operations and CfWOCS can at best

be regarded as an optimization. However, the mechanism

required to ensure state-level consistency subsumes the

need for CATOCS, and C.KIOCS provides no performance

improvement in the cases we considered.

It is attractive to have one generic mechanism or
abstraction such as CIWOCS that can k used across a vari-

ety of distributed applications and systems even if there is

an application-specific solution that is better for each prob-

lem. However, the ideal framework should be a state-level

framework, not a communication-level one like CIWOCS,

because, again, consistency requirements are at the state-

level. Distributed systems supporting objects and abstract

types, under development in a number of research and

development organizations, and in fact in commercial use in

some cases, provide such a framework [8, 11, 15, 23, 301.

Objects are state-level entities so object systems are focused

on the state level techniques, with communication being

incidental to their implementation, as appropriate for con-

sistency and diability considerations. Moreover, object

systems provide the powerful object-oriented mechanisms

of inheritance and type-safe dynamic binding to allow

applications to use generic base class functionality (such as

atomic transaction support) yet specialize from these base

classes as needed to meet application-specific ~quirements.

The resulting frameworks are easier to use than program-

ming at the basic message level, solve state problems at the

state level, and avoid complicating the base communication

facilities (the~by avoiding the attendant performance and

robustness penalties).

Broadening our focus slightly, we conjecture that the

view expressed by Lamport of logical clocks based on com-

munication activity is better applied at the state level. In the

object-oriented view of distributed systems, it is the “clock

ticks” on the state, the object versions, that are relevant, not

the “communication clcck ticks.” Moreover, the state clocks

generally advance at a rate that is an order of magnitude

slower than communication clocks (because Rack outnum-

ber writes.) Finally, state clocks are easily made as durable

as the state they relate to because one can write out the

clock value as part of updating the state, whereas the high

rate of communication clock ticks generally makes their sta-

ble storage infeasible. Thus, reasoning about distributed

systems using communication clocks fails to focus on the

devant aspect, namely the state, separates one from the

important dynamics, namely the state updates, and deals

with rather ephemeral and easily recreated activity, the com-

munication, rather than the key issue for fault-tolerance and

recovery, namely state durability. State-level clocks not only

more accurately drive our nasoning but correspond more

directly with practical implementations.

Although this work has focused primarily on under-

standing the limitations of CATOCS, it also addresses the

generid issue of placement of function in distributed sys-

tems, using the powerful end-to-end argument to show the

merits of state-level reasoning and implementation tech-

niques over communication-level approaches. Whh applica-

tions dictating requirements and with a choice of

implementation techniques available at each level, we

regard the correct level of function placement as a key chal-

lenge for systems designers, Our proposed principle, solve
state problems at the state level, represents a promising

starting point. We hope and expect that further research and

experience with distributed systems and applications will

refine and extend our understanding in this area.

7 Acknowledgments

The paper benefited enormously from the comments of

the anonymous reviewers as well as those from Stuart

56

Cheshire, Ed Lazowska, Keith Marzullo, Hector Garcia-

Molina, Alex Siegel, Raj Vaswsni and Wdly Zwaenepoel.

8 References

[1]

[2]

[31

[4]

[5]

[61

[71

[81

[91

[10]

[11]

[12]

[13]

[14]

M. Ahmad, P. Hutto and R. John, Implementing and

Programming Distributed Shared Memory, Proc. of
the llth International Conference on Distributed
Computing Systems, May, 1991.

K.P. Birman and T.A. Joseph, Reliable Communica-
tion in au Unreliable Environment ACM Transac-
tions on Computer Systems 5, 1 (Feb. 1987), 47-76.

K.P. Birman and T.A. Joseph, Exploiting replication
in distributed systems, in Distributed Systems, edited
by S. Mullender, ACM Press, Addison-Wesley, New
York, 1989.

K.P. Birman, A. Schiper and P. Stephenson, Light-
weight causal and atomic group mukicast, ACM
Transactions on Computer Systems 9,3 (August
1991), 272-314.

D.R. Cheriton aud W. Zwaenepoel, Distributed Pro-
cess Groups in the V Kernel, ACM Transactions on
Computer Systems 3,2 (May 1985), 77-107.

D.R. Cheriton and D. Skeen, Understanding the Lim-
itations of Causally and Totally Ordered Communi-
cation, Comp. Sci. Reseamh Report STN-CS-93-
1485, Stanford Univ., Sept. 1993.

S.E. Deering, Host Extensions for IP Muhicast Inter-
net RFC 1112, Aug. 1989.

D.L. Detlefs, M.T. Herlihy, and J.M. Wing, Inherit-

ance of Synchronization&Recovery Properties in
Avalon/C++, IEEE Computer, Dec. 1988,57-69.

E.N. Elnozahy, D.B. Johnson and W. Zwaenepoel,
The Performance of Consistent Checkpointing, Proc.
of the 11th Symp. on Reliable Distributed Systems,
Oct.1992,39-47.

N. Goodman, D. Skeen, A. Chsn, U. Dayal, S. Fox
and D. Ries, A Recovery Algorithm for a Distributed
Database System, Proc. of the 2nd Symp. on the Prin-
ciples of Database Systems, Atlanta Georgia, March
1983,8-15.

M.P. Herlihy., A Quorum-Consensus Replication
Method for Abstract Types, ACM Transactions on
Computer Systems 4,1 (Feb. 1986), 32-53.

M3?. Herlihy and J.M. Wing, Linearizability: A Cor-
=tness Condition for Concurrent Objects, ACM
Trans. on Programming Languuges and Systems 12,
3 (holy 1990), 463-492.

T.A. Joseph and K.P.Birman, Reliable Broadcast Pro-

tocols, in Distributed Systems, edited by S. Mul-
Iender, ACM Press, Addison-Wesley, 1989.

P. Keleher, A.L. Cox, and W. Zwaenepoel, Lazy
Release Consistency for Software Distributed Shared
Memory, Proc. of the 19th Int. Symp on Computer
Architecture, 13-21, May 1992.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[301

R. Ladiu, B. Liskov, L. Shrira and S. Ghemawat, Pro-
viding High Availability Using Lazy Replication,
ACM Transactions on Computer Systems 10,4 (Nov.
1992), 360-391.

L. Lamport, Time, Clocks and the Ordering of Events
in a Distributed System, Comm. of the ACM 21,7
(Jtiy 1978), 558-565.

B. Lampson, Designing a Global Name Service,
Proc. 5th ACM Symp. on Principles of Distributed
Computing, Calgary, Aug. 1986, ACM, 1-10.

B. Liskov, D. Curtis, P. Johnson and R. Scheifler,
Implementation of Argus, Proc. of the Hth Sympo-
sium on Operating System Principles, Austin, TX,
Novembex 1987.

B. Liskov et al., Replication in the Harp File System,
Proc. of the 13th Symposium on Operating System
Principles, Oct.1991, Pacific Grove, CA, 226-238.

K. Marzullo, Tolerating Faihnes of Contirmous-Val-

ued Sensom, ACM Transactions on Computer Sys-
tems 8,4 (Nov. 1990), 284-304.

K. Marzullo and L. Sahel, Using Consistency Sub-
cuts for Detectiug Stable Properties, Proc. of the
International Workshop on Distributed Algorithms,
Delphi, Greece, Oct. 1991.273-288.

S. Mishra, L. Peterson, R. Schlicting, Implementing
Fault-tolerant Replicated Objects using Psync, Proc.

of the&h Symposium on Reliable Distributed Sys-
tems, Seattle, Washington, Oct. 1989.

B. Oki, M. F%eugl, A. Siegel, D. Skeen, The Infor-
mation Bus@- An Architecture for Extensible Dis-
tributed Systems, Proc. of the 14th Symposium on
Operating System Principles, Dec. 1993, Asheville,
North Carolina.

L. Rodrigues and R Verissimo, xAMp a Muki-prim-
itive Group Communications Service, Proc. of the
llth Symposium on Reliable Distributed Systems,
IEEE, Houston, TX, October 1992.

J.H. Saltzer, D.P. Reed and D.D. Clark, End-to-End
Arguments in System Design, ACM Trans. on Com-
puter Systems 2,4 (Nov. 1984) 277-288.

A. Schiper and A. Sandoz, Strong Stable Properties
in Distributed Systems, Ttical Report LSE-TR93-
02, Dept. of Computer Science, EPF Lausanne,
March 1993.

A. Siegel, K.Birman and K. Marzullo, DeceiC A
Flexible Distributed File System, Proc. of the Usenix
Summer Conf, Anaheim, CA June 1990,51-61.

A. Siegel, Private communication, April 1993.

R. van Renesse, Causal Controversy at Le Mont St.-
Michel, Operating Systems Review 27,2 (April
1993), 44-53.

W.E. Weihl and B. Liskov, Implementation of Resil-
ient, Atomic Data Types, ACM Transactions on Pro-
gramming Languages and Systems 7,2 (April 1985),
244-269.

57

